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Coupling between charge and spin, and magnetoelectric effects more generally, have been an area of great
interest for several years, with the sought-after ability to control magnetic degrees of freedom via charge currents
serving as an impetus. The orbital Edelstein effect (OEE) is a kinetic magnetoelectric effect consisting of a bulk
orbital magnetization induced by a charge current. It is the orbital analog of the spin Edelstein effect in spin-orbit
coupled materials, in which a charge current drives nonzero electron spin magnetization. The OEE has recently
been investigated in the context of Weyl semimetals and Weyl metals. Motivated by these developments, we
study a model of electrons without spin-orbit coupling which exhibits line nodes protected by nonsymmorphic
glide symmetries that get gapped out via symmetry breaking due to an interaction-induced charge density wave
order. This model is shown to exhibit a temperature dependent OEE, which appears due to symmetry reduction
into a nonchiral, yet gyrotropic, crystal class. We present a solenoid picture for this emergent OEE that arises
from broken glide and inversion symmetries.
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I. INTRODUCTION

The field of magnetoelectric effects has seen a revival in
interest in the past decades on several fronts. The discovery
and study of multiferroicity in correlated materials has un-
covered unconventional mechanisms which can give rise to
a large effective magnetoelectric coupling [1–8]. Similarly,
the discovery of three-dimensional (3D) topological insulators
has led to an exploration of novel magnetoelectric effects due
to emergent axion electrodynamics in such topological phases
[9–18]. The wide interest in such magnetoelectric effects
stems partly from the technological potential of controlling
charge degrees of freedom via magnetic fields or, conversely,
tuning magnetism via an applied electric field.

A prominent example of such a magnetoelectric effect
is the nonequilibrium phenomenon of current-induced mag-
netization, which is also termed kinetic magnetoelectric ef-
fect (KME) [19,20]. The intrinsic-spin variant of this effect,
wherein a charge current in a spin-orbit-coupled conductor
gives rise to bulk spin polarization and, hence, a net magne-
tization, is referred to as the Edelstein effect or the inverse
spin-galvanic effect [21,22] and has been under study for
several decades [23]. A great deal of experimental work
has focused on the Edelstein effect in 2D systems, notably
in thin-film semiconductors [24–29] and at metal surfaces
[30]. However, experiments on 3D materials have been scant,
although some recent studies have reported its observation in
trigonal tellurium [31,32].

In recent years, it has come to light that 3D systems can
have an intrinsic orbital contribution to the KME, analogous
to the spin part and arising as a consequence of the orbital
magnetic moment of Bloch bands [20,33–40], notably in trig-
onal selenium and tellurium. Whereas the ordinary Edelstein
effect (hereafter referred to as the spin Edelstein effect, SEE)
relies on crystalline spin-orbit coupling (SOC) to give Bloch
states a spin texture and, hence, is limited by the size of the

SOC, the orbital Edelstein effect (OEE), also referred to as the
inverse gyrotropic magnetic effect [34], is determined solely
by the geometry of the crystal [33,36].

Chiral crystals are a subset of those that can exhibit the
KME. Previous studies have considered trigonal selenium and
tellurium and viewed their chiral nature as descending from
a charge-density-wave (CDW) instability of a hypothetical
parent phase [41], and others have studied optical gyrotropy
as a probe for symmetry breaking in the chiral CDW phase
of 1T -TiSe2 [42] and in stripe-ordered cuprates [43]. It has
also been shown that Weyl nodes at the Fermi level can yield
a large intrinsic contribution to the KME [33,36].

Our work builds on this theme and explores the KME
induced by symmetry breaking in a system with line nodes
protected by nonsymmorphic symmetries in the electronic
band structure. The resulting phase is a nonchiral but gy-
rotropic crystal, and we study the concomitant temperature-
dependent KME as a probe of the density-wave order. Below,
we briefly review the OEE, before introducing our model
Hamiltonian and presenting its theoretical study. Our work
suggests that line node semimetals which are weakly gapped
by charge order might be a promising place to search for large
OEE.

II. ORBITAL EDELSTEIN EFFECT

Electrons in crystalline solids form Bloch bands with an
intrinsic spin magnetic moment

skn = − ge

2me
〈ukn|s|ukn〉, (1)

where s = h̄σ/2 is the spin operator for the electrons and the
electron charge is (−e). The modern theory of magnetization
in solids [44–47] has discovered that such Bloch bands also
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host an intrinsic orbital magnetic moment given by

mkn = e

2h̄
Im 〈∇kukn| × (Hk − εkn)|∇kukn〉, (2)

where Hk is the Bloch Hamiltonian, n is the band index,
and Hk|ukn〉 = εkn|ukn〉. This orbital magnetization has been
shown to arise from the self-rotation of wave packets in
the semiclassical theory of electron dynamics [45,48]. Since
mkn → −m−kn under time reversal and mkn → m−kn under
spatial inversion, it is clear that at least one of these symme-
tries must be broken in order for mkn to not be identically
zero.

From the viewpoint of semiclassical dynamics, given an
electron distribution function fkn, the intrinsic contribution to
the net electronic magnetization is given by [20,44,48]

M = 1

V
∑
kn

fkn(mkn + skn), (3)

where V is the crystal volume. In thermodynamic equilib-
rium for a time-reversal symmetric system, the Fermi-Dirac
distribution, f 0

kn = f (εkn − μ) forces zero a net magnetiza-
tion M = 0 because of cancellation between contributions
from opposite crystal momenta [36]. However, an asymmetric
distribution function, such as that arising from an applied
electric field, can generally give rise to nonzero net bulk
magnetization.

Explicitly, to lowest order in an applied uniform DC elec-
tric field E, the distribution function becomes [49]

fkn = f 0
kn + eτ (E · vkn)

df

dξ

∣∣∣∣
ξ=εkn−μ

, (4)

where vkn is the electronic group velocity and τ is the
impurity-scattering relaxation time in relaxation-time approx-
imation. Hence, the magnetization arises as a linear response
to an applied electric field,

Mκ = ακλEλ, (5)

with the linear response tensor

ακλ = αorb
κλ + α

spin
κλ (6a)

= τe
1

V
∑
k,n

df

dξ

∣∣∣∣
ξ=εkn−μ

(mkn,κ + skn,κ ) vkn,λ, (6b)

where κ and λ are Cartesian indices. The tensors αspin and
αorb, respectively, describe the SEE and the OEE.

The form of the tensor α is significantly constrained by
crystal symmetry [23,36,50,51]. Indeed, α is an axial rank-two
tensor since it relates a polar vector E to an axial vector
M. Crystal classes whose point-group symmetries allow for
nonzero axial rank-two response tensors are known as gy-
rotropic. The reason for this name is that the tensor governing
natural optical activity, or gyrotropy, transforms in the same
way as α; thus KME and optical gyrotropy go hand in hand.

We note that the same symmetry constraints govern the
appearance of nonzero spin and orbital contributions to α, so
both are expected to arise together, and there is no clear route
to disentangling them experimentally in a 3D system [32,36].
Indeed, the authors of Ref. [32] conclude by speculating that
the current-induced magnetization they observe in trigonal

FIG. 1. Tetragonal crystal structure showing identical atoms
(large gray spheres) on the A and B sublattices, with a legend for hop-
ping amplitudes and repulsion strengths. Primitive translations a, b,
and c are defined in the main text. The volume shown corresponds
to two unit cells as defined in Sec. III, and the projection of the unit
cell onto the x-y plane is shaded in blue. The secondary atoms (small
dark-blue spheres) are not considered in the tight-binding model, as
discussed in the main text.

tellurium may be due not only to the well-known SEE, but
also to the OEE.

III. MODEL

As an example of the OEE brought about by symmetry
breaking, we consider a tight-binding toy model of electrons
moving in the tetragonal crystal shown in Fig. 1, consisting
of identical atoms arranged in layered square lattices. We
assume a single isotropic orbital and ignore the electron spin
hereafter; for this reason, there is no spin contribution to α

in this work. There are many cases where this is a useful
starting point. In crystals with density-wave order driven by
nearest-neighbor (NN) electronic repulsion, such as we will
consider below, both spin components behave in the same
manner—including spin then only leads to an extra factor of
two in certain equations below. The other case where spin
may be ignored is in spin-polarized systems, which might be
a useful description of states in a large energy interval around
the Fermi energy in strong ferromagnets (i.e., in half-metals).

We define the x-y-plane NN lattice constant to be a0 and the
lattice constant along the stacking direction ẑ to be c. In the x-y
planes, we include NN hopping t1 and next-nearest-neighbor
(NNN) hopping t ′

1. In the y-z and z-x planes, we include NN
hopping t3 and the peculiar NNN hoppings depicted in Fig. 1,
with t2A �= t2B. Although the atoms are chemically identical,
this last choice differentiates A and B sublattices, requiring
us to use a two-atom unit cell with primitive translations a =
a0(x̂ − ŷ), b = a0(x̂ + ŷ), and c = cẑ. Hereafter, this unit cell
is referred to as the unit cell and its first Brillouin zone, as
the first Brillouin zone. The crystal’s space group is P4/nbm,
and its associated crystal class is 4/mmm. Importantly, this
crystal has centers of inversion at the middle point of ev-
ery x-y-plane NN bond. We use the following values for
the hopping parameters: t ′

1 = 0.7 t1, t2A = 0.1 t1, t2B = 0.4 t1,
and t3 = 0.5 t1; we have checked that our results are qualita-
tively robust upon tuning these parameters.
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The nonequivalence of the hopping amplitudes t2A and
t2B giving rise to P4/nbm symmetry may be rationalized
as depicted in Fig. 1: If a secondary set of atoms (shown
in dark blue) is present only along the red bonds—which
would be consistent with the space-group symmetry of the
model—and their energy levels are far from the Fermi energy,
their dynamics could be integrated out, with the end result
of renormalizing the hopping amplitude between the primary
atoms (shown in gray), effectively leading to t2A �= t2B. The
same reasoning holds if there are additional secondary atoms
on the green bonds provided they are of a species different from
those on the red bonds.

As is true for any crystal class with inversion symmetry,
4/mmm is nongyrotropic [50,51]. However, if the symmetry
of the crystal were to be reduced, for instance by the onset
of CDW order, the inversion symmetry could be broken and,
indeed, the ordered structure could fall into a gyrotropic class.
Below, we first study the band structure of this model in
the absence of interactions, before turning to the impact of
electronic repulsion.

A. Noninteracting band structure

The noninteracting Hamiltonian is

K =
∑
α,β

∑
i, j

−tαβ
i j cα

i
†c β

j , (7)

where cα
i

† creates an electron on sublattice α of unit cell i (that
is, on the atom at position rα

i ). In momentum space,

K =
∑

k

ψk
†
(
d0

k + �dk · �τ
)
ψk, (8)

where cα
k = N−1/2 ∑

i e−ik·rα
i cα

i , N is the number of unit cells,
�τ is the vector of Pauli matrices (acting in sublattice space),
and ψk

† = (cA
k

† cB
k

†). Because of time-reversal symmetry, the

hopping amplitudes tαβ
i j are necessarily real valued. We will

measure momenta in units of inverse lattice spacing, setting
a = c = 1 henceforth. With this, we arrive at

d0
k = −2t3 cos(kc) − 2t ′

1(cos(ka) + cos(kb)) (9a)

d1
k = −4 cos

(
ka

2

)
cos

(
kb

2

)
(t1 + (t2A + t2B) cos(kc))

(9b)

d2
k = 4(t2A − t2B) cos

(
ka

2

)
cos

(
kb

2

)
cos(kc) (9c)

d3
k = 0. (9d)

The product ΠΘ of the aforementioned inversion sym-
metry Π with the Hamiltonian’s time-reversal symmetry Θ

constrains d3
k ≡ 0 identically; for this reason, band touchings

for this crystal will generically arise as line nodes, as seen in
the noninteracting band structure (top panel of Fig. 6). More
specifically, the nonsymmorphic symmetries present in the
space group P4/nbm give rise to band touchings along high-
symmetry lines (see Appendix C); Fig. 2 shows the location
of these lines in the Brillouin zone.

FIG. 2. Location of the line nodes (solid lines, shown in color)
present in the symmetric phase within the first Brillouin zone as
defined in Sec. III. High-symmetry points are labeled.

B. Repulsive interactions

Next, we include repulsive interactions between NNs and
NNNs; that is,

V = 1

2

∑
(i,α)�=( j,β )

V αβ
i j nα

i nβ
j , (10)

where nα
i = cα

i
†cα

i is the number operator for the atom (i, α)
and we take V αβ

i j = V βα
ji . We take nonzero repulsions V αβ

i j on
the same bonds as the hopping amplitudes and use a similar
naming scheme, as shown in Fig. 1. Note that, unlike for the
hopping amplitudes t2A �= t2B, we take the repulsion strengths
to be V2 on both the red and green bonds—this choice serves
as a representative slice through the full parameter space and
illustrates some of the key ideas. Hence, the full Hamiltonian
is given by H = K + V and has the same (nongyrotropic)
space-group symmetry P4/nbm as K .

Spontaneous symmetry breaking (SSB), however, could
reduce the symmetry of the crystal. A simple scenario is a
CDW phase in which the densities on the A and B atoms are
unequal, in which case the space group becomes P4̄2m, whose
crystal class—4̄2m—is gyrotropic.

We note that in the absence of spin order, a Hubbard term
U

∑
i ni↑ni↓ would modify the mean-field (MF) Hamiltonian

by a mere uniform offset in the chemical potential μ. Hence,
as we will restrict ourselves to ansätze without spin order, we
do not bother including the Hubbard interaction.

We performed a MF calculation of the CDW order in the
above system, allowing for a finite set of commensurate wave
vectors. The ordering wave vectors favored by the interaction
were identified by considering a simple model of classical
charges resting at each atomic site of the crystal of Fig. 1—see
Appendix A. Based on this, the four ordering wave vectors
included in the ansatz are

Q0 = 0, Q1 = π â + π b̂,

Q2 = π ĉ, Q3 = π â + π b̂ + π ĉ.

The order parameters for the mean-field theory are the Fourier
amplitudes ρα

Q for the Q listed above, where α ∈ {A, B}.
However, we find it convenient to express the amplitudes
on the A and B sublattices in terms of a symmetric and an
antisymmetric part, respectively defined as

ρs
Q := ρA

Q + ρB
Q

2
, (11a)

ρa
Q := ρA

Q − ρB
Q

2
. (11b)
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FIG. 3. CDW phases arising in the MF study as a function of the
electronic filling ρ and g (which parametrizes the repulsion strength).
Continuous and discontinuous transitions are, respectively, shown
as thin and thick solid lines, while insulating lines, which occur at
fillings 1/4, 1/2, and 3/4, are dashed. The nature of Phases I and II
is described in the text.

Since ρs
Q0

= ρ, the electron filling, we are left with seven
independent MFs.

IV. RESULTS

A. Mean-field theory of charge-density-wave order

We focus on a cut of parameter space parametrized by g
such that

V1 = g, V ′
1 = g

2
, V2 = g

2
, V3 = g

2
. (12)

According to the model of electrostatic charges, at these rela-
tive repulsion values (marked by a white star in Fig. 10), the
interaction most favors an ordering with ρa

Q0
�= 0; however,

the region of parameter space with ρα
Q3

�= 0 most favored is
nearby (see Appendix A).

The MF calculation, for which the zero-temperature phase
diagram is shown in Fig. 3, does indeed identify a swath of
pure ρa

Q0
�= 0 order for sufficiently large g and for approxi-

mately 0.3 < ρ < 0.6—call this Phase I. In addition to this
phase, at high and low filling, we discover regions where
multiple CDW modes coexist (specifically, Q0 and Q3); that
is, ρa

Q0
�= 0 and ρα

Q3
�= 0 (where α is either A or B)—call these

regions Phase II. The orders in these phases are depicted in
insets to Fig. 3.

For g/t1  1, we observe that the phase diagram is ap-
proximately symmetric under ρ → 0.5 − ρ; this is expected
given the particle-hole symmetry of V , which becomes an
approximate symmetry of H when K is nonzero but small
compared with V . The system is insulating at zero temperature
along lines shown as dashed in the phase diagram. These lines
are located at fillings 1/4, 1/2, and 3/4, and each terminate
at a point corresponding to a metal-insulator transition at
commensurate filling. We can qualitatively understand the

FIG. 4. CDW phases arising in the MF study at half filling (ρ =
0.5) as a function of temperature and g (which parametrizes the
repulsion strength). The transition into Phase I from the symmetric
phase is continuous. The nature of Phase I is described in the text.

appearance of these insulating phases at commensurate fill-
ings as follows. The classical picture in Appendix A, appro-
priate in the large-g limit, favors the Q0 charge-ordered state
for our choice of interaction parameters. It is pictorially clear
from Fig. 3 that this ordered state can be a stable “atomic”
insulator at 1/2 filling. However, at 1/4 and 3/4 filling, this
charge-ordered state will continue to host a gapless Fermi
surface. Instead, at these other commensurate fillings, it is
advantageous to have a secondary Q3 order which doubles
the unit cell, permitting a gapped lowest band, again stabi-
lizing a simple “atomic” charge-ordered insulator as is again
pictorially clear from Fig. 3. The phase diagram at ρ = 0.5
as a function of T and g is shown in Fig. 4 and reveals
that raising the system temperature progressively suppresses
Phase-I order.

B. Magnetoelectric response in Phase I

We study the temperature-dependent SSB-induced OEE in
broken-symmetry Phase I, whose sole order parameter is ρa

Q0
.

The other phases of the mean-field theory, such as Phase II,
involve additional breaking of translational symmetry; this
enlarges the unit cell and leads to more bands, making the
analysis less transparent. Figure 5 shows the evolution of
ρa

Q0
and the components of the response tensor αorb at half

filling (ρ = 0.5) and fixed interaction strength (g = 1.5 t1).
The phase transition, which is seen to be continuous, takes
place at kBTc ≈ 1.4 t1.

As alluded to previously, the point-group symmetry in
Phase I is the 4̄2m, and a symmetry analysis (Appendix D)
reveals that symmetry constrains the response tensor α to the
form [50]

α =
⎛
⎝αaa

−αaa

0

⎞
⎠. (13)
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FIG. 5. Evolution of the magnetoelectric response through a
phase transition with g = 1.5t1 and ρ = 0.5. (Top panel) Order
parameter (ρa

Q0
) as a function of temperature. (Bottom panel) Com-

ponents of the OEE response tensor αorb as a function of temperature.
Components that are not shown are identically zero.

As seen in the lower panel of Fig. 5, the calculated αorb is
indeed of this form. The nonmonotonicity of αorb is under-
stood via the MF band structure, shown in Fig. 6. The top
panel shows the high-temperature band structure; specifically,
kBT = 2.00 t1. Although the system is in a metallic phase
with many states within kBT (gray shading) from the chemical
potential μ (dashed line), in the high-symmetry phase, mkn =
0 identically, so αorb = 0. The middle panel shows the band
structure at an intermediate temperature kBT = 1.20 t1 (near
the peak in the αorb); this is below the transition temperature,
where the Phase-I charge order breaks inversion symmetry
(along with the nonsymmorphic symmetries) and splits the
bands throughout the Brillouin zone. The reduced symmetry
of this phase allows gyrotropic response, so αorb �= 0. As the
temperature is further lowered, the size of the band splitting
increases and a full gap develops, with μ within this gap as
expected at half filling (lower panel of Fig. 5). Hence, it is

FIG. 6. Mean-field band structure at half filling (with parame-
ters as specified in the main text) at three different temperatures:
kBT/t1 = 2.00 (top), 1.20 (middle), and 0.05 (bottom). The black
dotted lines show the location of the chemical potential μ at each
temperature, and the shaded areas centered at μ show the width kBT .

clear that in the low-temperature limit, as the sum in Eq. (6)
approaches a Fermi-surface integral, αorb should again vanish.

C. Role of line nodes

In this subsection, we inspect the contribution of the
gapped-out line nodes to the magnetoelectric response tensor
αorb in Phase I. We find that these constitute the dominant
sources of orbital magnetic moment mkn in the Brillouin
zone and the dominant contribution to αorb. First, we obtain
analytical expressions for the orbital magnetic moment mkn

in the vicinity of these nodes; then, we compare with data
computed from the lattice model.

In Phase I, the charge order breaks the inversion symmetry
Π (together with the nonsymmorphic symmetries); accord-
ingly, in the MF Hamiltonian for Phase I, d3

k is no longer
constrained to be zero; hence the disappearance of the band
touchings. Rather, d3

k is set by the Phase-I order parameter
ρa

Q0
. As a shorthand, define

ν := ρ̃a
Q0

, (14)

where ρ̃a
Q0

, defined in Appendix B, is proportional to the
Phase-I order parameter ρa

Q0
.

In the high-symmetry phase, three independent line nodes
exist in the first Brillouin zone (Fig. 2): (i) the X -R segment,
(ii) the X -M segment, and (iii) the R-A segment—all other
line nodes are related by the symmetry of Phase I. We expand
about these (now-gapped) line nodes, denoting small devia-
tions in momentum by k̃. In the neighborhood of the (gapped)
nodes, we have

(i) ka = π + k̃a, kb = k̃b, −π < kc � π

d0
k = −2t3 cos(kc) (15a)

d1
k = 2(t1 + (t2A + t2B) cos(kc))k̃a (15b)

d2
k = 2(t2A − t2B) sin(kc)k̃b (15c)

d3
k = ν (15d)

(ii) −π < ka < π, kb = π + k̃b, kc = k̃c

d0
k = −2t3 + 2t ′

1(1 − cos(ka)) (16a)

d1
k = 2(t1 + t2A + t2B) cos

(
ka

2

)
k̃b (16b)

d2
k = 4(t2A − t2B) sin

(
ka

2

)
k̃c (16c)

d3
k = ν (16d)

(iii) −π < ka < π, kb = π + k̃b, kc = π + k̃c

d0
k = 2t3 + 2t ′

1(1 − cos(ka)) (17a)

d1
k = 2(t1 − t2A − t2B) cos

(
ka

2

)
k̃b (17b)

d2
k = −4(t2A − t2B) sin

(
ka

2

)
k̃c (17c)

d3
k = ν. (17d)

For a two-band model with Bloch Hamiltonian Hk =
d0

kτ 0 + �dk · �τ , mkn is the same for both bands and can be
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written in the closed form [34,36]

mkn,κ = − e

2h̄

∑
λζ

εκλζ

�dk

| �dk|2
·
(

∂ �dk

∂kλ

× ∂ �dk

∂kζ

)
, (18)

where κ, λ, and ζ are Cartesian indices. In the neighborhood
of a (gapped) line node in the â direction, the Hamiltonian can
generically be expressed as

d0
k = f (ka), �dk = (g1(ka)k̃b, g2(ka)k̃c, h(ka)), (19)

where f , g1, g2, and h are functions of ka, and, hence, the
components of mkn are given by

mkn,a = e

2h̄

1

| �dk|2
g1g2h (20a)

mkn,b = e

2h̄

k̃b

| �dk|2
g2(g1h′ − g′

1h) (20b)

mkn,c = e

2h̄

k̃c

| �dk|2
g1(g2h′ − g′

2h), (20c)

where primes denote differentiation of the single-variable
functions. To describe a line node in another direction, the
indices in Eqs. (19) and (20) must be changed appropriately.
We see that the longitudinal component mkn,a is greatest at
the (gapped) node itself (i.e., at k̃b = k̃c = 0, where | �dk|2 is
minimized), whereas the transverse components mkn,b and
mkn,c are sizable in the neighborhood of the (gapped) node
but vanish at the (gapped) node itself.

Figure 7 shows the orbital magnetic moment mkn,κ as well
as the product −mkn,κvkn,κ for bands n ∈ {1, 2} and compo-
nents κ ∈ {a, b} calculated from the lattice model—these are
directly relevant to the nonvanishing components of αorb. The
parameters used are the same as for the middle panel of Fig. 6.
As shown by Eq. (6), up to constant factors, the integrand for
αorb

κκ is −mkn,κvkn,κ multiplied by −df /dξ |ξ=εkn−μ, a positive
weighting factor concentrated within kBT around the chemical
potential μ. Hence, the equal-energy surfaces at εkn = μ

(solid black lines) and εkn = μ ± kBT (dashed black lines) re-
veal the main contributions to the integral—generically, these
are the (gapped) line nodes. In particular, at this temperature,
for our choice of parameters, the largest contributions to αorb

are from the (gapped) line nodes at kc = ±π .
As outlined in Appendix D, the data of Fig. 7 reflects all

the symmetries of the point group 4̄2m of Phase I as well
as time-reversal symmetry, which dictates mkn = −m−kn and
vkn = −v−kn. The large values of mkn are attributable to the
presence of line nodes and are as expected from Eqs. 20:
focusing on mkn,a, for the slices kc = ±π/2, we see the signa-
ture of line node (i) (transverse to â), for which mkn,a → 0 in
proximity to the node, and for the slices kc = 0 and kc = ±π ,
we also recognize contributions from line nodes (ii) and (iii)
(longitudinal to â), which are largest at the locus of the line
nodes. The product −mkn,κvkn,κ still retains the general form
of mkn,κ , though with a modified symmetry that allows a
nonzero integral over the Fermi surface. The difference in
the magnitude of the longitudinal contributions at kc = 0 and
kc = ±π can be retraced to the different g1(ka) for line nodes
(ii) and (iii): while g1(ka) = 2(t1 + t2A + t2B) cos(ka/2) for the

former, g1(ka) = 2(t1 − t2A − t2B) cos(ka/2) for the latter, and
|t1 + t2A + t2B| > |t1 − t2A − t2B| with our parameter values.

V. DISCUSSION AND CONCLUSION

It is sometimes overlooked that gyrotropy can arise without
chiral or time-reversal symmetry breaking [23,43]. Since the
point group 4̄2m of the Phase-I order contains mirror symme-
tries (in our coordinates, one perpendicular to x̂ and another
perpendicular to ŷ), the ground state of this broken-symmetry
phase is an example of a nonchiral gyrotropic structure. This
is unlike many of the examples of the OEE studied so far
[33,36], such as trigonal selenium and tellurium [20,35].
Furthermore, it constitutes a concrete example of longitudinal
magnetization induced by a current in a mirror-symmetric
structure, which had been implied to be disallowed by sym-
metry [33]. While longitudinal magnetization is forbidden
by mirrors perpendicular or parallel to the current, it is not
forbidden by mirrors at 45◦ angles from the current, such as
those in Phase I.

Similarly to a previously studied model [36], a picture
of current flowing through solenoidal paths in the crystal
provides a qualitative understanding of the OEE in Phase I.
Furthermore, this picture makes physically clearer why the
OEE response vanishes (i) when t2A = t2B—hence giving an
intuitive explanation for the necessity of assuming t2A �= t2B

from the start—and (ii) in the absence of charge order, that is,
when the atoms are indistinguishable. We imagine a current j
driven in the b̂ direction: The simplest solenoidlike paths that
result in net displacement purely in the b̂ direction are shown
in Figs. 8 and 9.

(i) Each row of atoms, whether on sublattice A or B, is
surrounded by a solenoid traced out of t2A (green) hoppings
and another traced out of t2B (red) hoppings (Fig. 8). These
two solenoids are of opposite helicities given the current j, and
if t2A = t2B, their induced magnetic fields cancel identically,
precluding any current-induced magnetization whether in the
symmetric phase or in a charge-ordered phase. Indeed, if
t2A = t2B, there exist additional mirror planes (perpendicular
to â and to b̂) that interchange the two solenoids, but these
mirrors are absent for t2A �= t2B.

(ii) If t2A �= t2B, let us presume without loss of generality
that t2B (in red) is dominant and ignore the t2A solenoids.
Figure 9 shows that, given the current j, a solenoid whose
central axis is a row of A sites is of helicity opposite to
one whose central axis is a row of B sites. If the atoms on
the two sublattices are indistinguishable, the magnetic fields
induced by these two solenoids are equal and opposite and
cancel when averaged over several lattice spacings. If the A
and B atoms are distinguishable, however, the two sets of
solenoids are distinct and can give rise to net magnetization.
Indeed, the glide planes Ga and Gb (defined in Appendix
C) of the symmetric phase interchange the dotted-line and
solid-line solenoids; however, these glide planes are broken in
Phase I.

It is surprising a priori that such a solenoid picture can
exist in a nonchiral crystal (previous examples have focused
on chiral structures and the helicity that naturally arises
therefrom [20,33,36]); however, the two mirror symmetries
of point group 4̄2m—one perpendicular to x̂ and the other
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FIG. 7. Magnetic moment mkn,κ and product −mkn,κvkn,κ for bands n ∈ {1, 2} and components κ ∈ {a, b} at kBT = 1.20 t1. (Note that
mkn is the same for both bands.) For clarity, the first Brillouin zone is not drawn to scale. The largest contributions to these two quantities are
attributable to the line nodes depicted in Fig. 2. The solid lines in middle and right panels depict εkn = μ surfaces. The dashed lines show εkn =
μ ± kBT surfaces, which delimit the region most heavily weighted in the integral of Eq. (13). The slices shown are kc = −π, −π/2, 0, π/2,
and π .

perpendicular to ŷ—do not bring the solenoids into them-
selves, but rather exchange the â-axis solenoids with the b̂-
axis solenoids. Hence, instead of forbidding a magnetoelectric
response, the mirrors explain why the OEE coefficients along
the â and b̂ axes are opposite in sign, since the current is a
polar vector and the magnetization is an axial vector.

In summary, we have discussed a simple model of a crystal
with lines nodes and shown how charge order can lead to
a nonzero OEE. Such an OEE could be probed by nuclear
magnetic resonance experiments. We have also discussed how
the magnetoelectric response has a large contribution arising
from the vicinity of line nodes. Our work suggests that line
node semimetals which are weakly gapped by charge order
might be a promising place to search for large OEE.

Note added. Recently, we came across a theory preprint
[52] which discusses the OEE induced by quadrupolar sym-
metry breaking in certain diamond lattice materials. While
some of the ideas in that preprint overlap with our work, many
of the details we consider (lattice structure, type of ordering,
and line-node analysis) are significantly different.
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APPENDIX A: CLASSICAL PHASE DIAGRAM

The charge ordered states favored by the interaction of
Eq. (10) were identified by determining the energy of CDW
modes in a classical picture of electrostatic charges by Fourier
transforming and minimizing the repulsive interaction in mo-
mentum space. In Fig. 10, we show using which state has the
lowest energy (according to V ) as a function of the (relative)
sizes of the repulsion strengths V1, V ′

1, V2, and V3; the white
star shows the relative parameter values used in the MF
calculation. The ansatz for the mean-field theory described in
the main text was chosen to potentially allow all the ground
states that occur in this simplified model.

FIG. 9. For a current j oriented in the b̂ direction, solenoidlike
paths with their axis along A atoms (solid lines) have opposite
helicity to those with their axis along B atoms (dashed lines). If
the atoms are indistinguishable, the magnetizations from the two
solenoids cancel on average. Crystal is not drawn to scale.

FIG. 10. Phase diagram showing the lowest-energy charge or-
dered states resulting from a model of electrostatic charges subject
to the interaction of Eq. (10); the colors correspond to the indicated
charge ordering patterns. The white star shows the relative parameter
values used in the MF calculation.

APPENDIX B: DETAILS OF THE MEAN-FIELD
CALCULATION

Here, we provide additional information regarding the self-
consistent MF calculation of the CDW order. The electronic
interaction of Eq. (10) was decomposed in the density chan-
nel, giving rise to the following MF interaction term:

VMF = 1

2

∑
(i,α)�=( j,β )

V αβ
i j

(
ρα

i n β
j + nα

i ρ
β
j

)
(B1a)

= N
BZ∑
q

∑
αβ

V αβ
q ρα

q
∗n β

q . (B1b)

Here, N is the number of unit cells in the crystal, ρα
q =

N−1 ∑
i e−iq·Riρα

i (and likewise for nα
q), and V αβ

q is the Fourier

transform of V αβ
i j , which is invariant under simultaneous

translation of i and j.
Choosing a closed set of commensurate wave vectors {Q}

defines a reduced Brillouin zone (RBZ), which is mapped to
the full Brillouin zone under addition of the wave vectors Q.
This property allows us to rewrite the integral of reciprocal-
space-periodic functions as

BZ∑
k

f (k) =
∑

Q

RBZ∑
k

f (k + Q), (B2)

where the domain of the momentum sums is indicated above
the summation symbol. Hence, we diagonalized the Hamilto-
nian HMF = K + VMF in the RBZ by writing it in the form

K =
RBZ∑

k

∑
αβ

∑
Q

cα
k+Q

†hαβ

k+Qc β

k+Q (B3)

VMF =
RBZ∑

k

∑
α

∑
QQ′

cα
k+Q

†
ρ̃ α

Q−Q′cα
k+Q′ , (B4)

where ρ̃ α
Q = ∑

β V αβ

Q ρ
β

Q and hαβ

k is the Bloch Hamiltonian, in

our case given in Eq. (8) as hk = d0
k + �dk · �τ . Starting from a

series of randomized values for the MFs ρα
Q, we iterated until

the computed expectation values agree with the input MFs to
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within 10−6. We compared the Helmholtz free energy F of
the different ground states thusly obtained and selected the
one with minimal F at every point in parameter space.

APPENDIX C: NONSYMMORPHIC SYMMETRIES AND
PROTECTION OF THE GAPLESS LINES IN THE

HIGH-SYMMETRY PHASE

In this Appendix, we show how the nonsymmorphic sym-
metries present in the space group P4/nbm (that of the bare
crystal in the absence of charge order) constrain the location
of gapless lines via a Kramers-like degeneracy of the spinless
fermions [53,54]. Three independent nonsymmorphic sym-
metries are present in the group. In Seitz notation and with
respect to an origin at an inversion center, they are

Ga =
{

ma

∣∣∣∣b
2

}
, (C1a)

Gb =
{

mb

∣∣∣∣a
2

}
, (C1b)

Gc =
{

mc

∣∣∣∣a + b
2

}
. (C1c)

Each of these symmetries composed with time reversal
gives rise to Kramers-like degeneracies along certain high-
symmetry lines in momentum space. In order to obtain a
Kramers-like degeneracy at momentum k due to an antiu-
nitary operator Θ̃ , two conditions must be fulfilled: (i) Θ̃

must map k to itself up to a reciprocal lattice vector, and
(ii) for any |ψ〉 within the fixed-k subspace, we must have
Θ̃2 |ψ〉 = − |ψ〉 (that is, Θ̃ must “square to −1”).

For instance, under the action of Θ̃ = ΘGa,

ΘGa|ka, kb, kc, α〉 =
{|ka,−kb,−kc, B〉∗ α = A

e−ik·b|ka,−kb,−kc, A〉∗ α = B,

(C2)

while under the action of Θ̃2 = (ΘGa)2,

(ΘGa)2 |k, α〉 = e−ikb |k, α〉 ∀α, (C3)

where k = kaâ + kbb̂ + kcĉ and |k, α〉 = N−1/2 ∑
i e−ik·rα

i

|i, α〉. It is then easy to see that the set of points at which
conditions (i) and (ii) are fulfilled is

{k ∈ 1st BZ | kb = π and kc ∈ {0, π}}. (C4a)

Similarly, taking Θ̃ = ΘGb and Θ̃ = ΘGc, respectively,
gives Kramers-like degeneracies at momenta in the sets

{k ∈ 1st BZ | kb ∈ {0, π} and kc = π} (C4b)

and

{k ∈ 1st BZ | (ka, kb) = (0, π ) or (ka, kb) = (π, 0)}. (C4c)

Hence, we have shown that the existence and location of the
line nodes shown in Fig. 2 are determined by the nonsym-
morphic symmetries of the space group combined with time
reversal symmetry.

APPENDIX D: CRYSTAL CLASS 4̄2m

As stated in the main text, the (macroscopic) point group
of Phase I is 4̄2m. With respect to the coordinates used above,
the elements of the point group 4̄2m are as follows.

(i) E , the identity;
(ii) 4̄c and 4̄−1

c , a fourfold rotoinversion axis parallel to ĉ
and its inverse, respectively;

(iii) 2c = 4̄2
c , a twofold rotation axis parallel to ĉ;

(iv) 2a and 2b, twofold rotation axes parallel to â and b̂,
respectively;

(v) md1 and md2 , mirror planes perpendicular to (â +
b̂)/

√
2 and (â − b̂)/

√
2, respectively.

Under an (active) rigid-body transformation R, the axial
rank-two tensor α transforms as [50]

ακλ → α′
κλ = det(R)

∑
ζη

Rκζ Rληαζη, (D1)

where det(R) = 1 for a transformation that preserves the
parity of the axes and det(R) = −1 for one that changes
it. If R ∈ 4̄2m [that is, R is a (macroscopic) symmetry of
the crystal], then the response tensor must obey α = α′; this
restricts the possible entries of the response tensor and, for
4̄2m, leads to the form shown in Eq. 13.

The point-group symmetry also constrains the form of
the polar vector vkn and of the axial vector mkn. For any
transformation R in the point group,

vn(k) = R vn(R−1k) (D2a)

mn(k) = det(R)R mn(R−1k), (D2b)

where we have used functional notation for the crystal mo-
menta in order to avoid excessive indexing.

For example, if R = 4̄c, then

4̄ck =
⎛
⎝ kb

−ka

−kc

⎞
⎠, (D3)

and so ⎛
⎝vn,a(k)

vn,b(k)
vn,c(k)

⎞
⎠ =

⎛
⎝+vn,b

(
4̄−1

c k
)

−vn,a
(
4̄−1

c k
)

−vn,c
(
4̄−1

c k
)
⎞
⎠ (D4a)

⎛
⎝mn,a(k)

mn,b(k)
mn,c(k)

⎞
⎠ =

⎛
⎝−mn,b

(
4̄−1

c k
)

+mn,a
(
4̄−1

c k
)

+mn,c
(
4̄−1

c k
)
⎞
⎠. (D4b)

This and other constraints are consistent with the data of
Fig. 7, as is clear by inspection.
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[20] C. Şahin, J. Rou, J. Ma, and D. A. Pesin, Pancharatnam-Berry
phase and kinetic magnetoelectric effect in trigonal tellurium,
Phys. Rev. B 97, 205206 (2018).

[21] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T.
Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015).

[22] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine,
New perspectives for Rashba spin–orbit coupling, Nat. Mater.
14, 871 (2015).

[23] S. D. Ganichev, M. Trushin, and J. Schliemann, Spin polariza-
tion by current, in Handbook of Spin Transport and Magnetism,
edited by Evgeny Y. Tsymbal and Igor Zutic, 2nd ed. (Chapman
and Hall/CRC, Boca Raton, 2016), pp. 504–513.

[24] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Current-Induced Spin Polarization in Strained Semiconductors,
Phys. Rev. Lett. 93, 176601 (2004).

[25] A. Y. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and
N. S. Averkiev, Current-induced spin polarization at a single
heterojunction, Appl. Phys. Lett. 85, 5929 (2004).

[26] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Electrical initialization and manipulation of electron spins in
an L-shaped strained n-InGaAs channel, Appl. Phys. Lett. 87,
022503 (2005).

[27] V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and
D. D. Awschalom, Spatial imaging of the spin Hall effect and
current-induced polarization in two-dimensional electron gases,
Nat. Phys. 1, 31 (2005).

[28] N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and
D. D. Awschalom, Current-Induced Polarization and the Spin
Hall Effect at Room Temperature, Phys. Rev. Lett. 97, 126603
(2006).

[29] C. L. Yang, H. T. He, L. Ding, L. J. Cui, Y. P. Zeng, J. N. Wang,
and W. K. Ge, Spectral Dependence of Spin Photocurrent and
Current-Induced Spin Polarization in an InGaAs/InAlAs Two-
Dimensional Electron Gas, Phys. Rev. Lett. 96, 186605 (2006).

[30] H. J. Zhang, S. Yamamoto, Y. Fukaya, M. Maekawa, H. Li,
A. Kawasuso, T. Seki, E. Saitoh, and K. Takanashi, Current-
induced spin polarization on metal surfaces probed by spin-
polarized positron beam, Sci. Rep. 4, 4844 (2014).

[31] V. A. Shalygin, A. N. Sofronov, L. E. Vorob’ev, and I. I.
Farbshtein, Current-induced spin polarization of holes in
tellurium, Phys. Solid State 54, 2362 (2012).

[32] T. Furukawa, Y. Shimokawa, K. Kobayashi, and T. Itou, Ob-
servation of current-induced bulk magnetization in elemental
tellurium, Nat. Commun. 8, 954 (2017).

[33] T. Yoda, T. Yokoyama, and S. Murakami, Current-induced or-
bital and spin magnetizations in crystals with helical structure,
Sci. Rep. 5, 12024 (2015).

[34] S. Zhong, J. E. Moore, and I. Souza, Gyrotropic Magnetic
Effect and the Magnetic Moment on the Fermi Surface, Phys.
Rev. Lett. 116, 077201 (2016).
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