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The exact muffin tin orbital (EMTO) method features high efficiency and accuracy for first-principles
simulations with density functional theory. In this paper we report our implementation of the EMTO method
for electronic-structure and quantum transport simulation of device materials. We consider a device-material
structure with a central device region in contact with different semi-infinite electrodes. Based on the Green’s
function method, the infinite device, nonperiodic in transport direction, is transformed into a calculable finite
material system by treating the semi-infinite electrodes with electrode self-energies, and the Green’s function
of the device region is calculated with an efficient recursive technique. In the present implementation we adopt
the spherical cell approximation to treat the electrostatics, and we solve the electrostatic potential of the finite
device region by enforcing the boundary conditions to the known potential of electrode materials. The coherent
potential approximation is incorporated for treating the atomic disorders inevitable in realistic materials, and the
effects of multiple disorder scattering on electron transport are accounted for by vertex correction for simulating
disordered electronic devices. To demonstrate the capability of the present implementation, we calculate the
monolayer two-dimensional material MoS2 and black phosphorus, and study the spin-dependent tunneling in
the Fe/MgO/Fe magnetic tunneling junction. We find the EMTO electronic structures of the calculated systems
agree well with the results of the projector augmented wave method. The EMTO transport simulation produces
the important spin-filtering effect of the Fe/MgO/Fe junction and the important influence of the interfacial
disorders on the spin-dependent tunneling, agreeing well with previous theoretical and experimental studies.
The implementation of the EMTO based device simulator provides an effective simulation tool for simulating
both ordered and disordered device materials, extending the capability for theoretical design of electronic devices
from first principles.
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I. INTRODUCTION

As continuing the miniaturization of device size, the
atomic discretization and quantum nature of the electron play
important roles in device functionality, especially at nanoscale
[1]. Therefore, the development of first-principles device-
materials simulation is of great importance for understand-
ing the effects of different materials, interfaces, and disor-
dered defects/impurities on device performance, and realiz-
ing theoretical material design for device applications [2–4].
Presently, density functional theory (DFT) based on the Kohn-
Sham (KS) ansatz [5,6] has been built as the workhorse for
first-principles material study in chemistry, condensed matter
physics, and material science and engineering. Many ad-
vanced methods, including linearized augmented plane wave
method [7,8], projector augmented wave method (PAW) [9],
linear combination of atomic orbital method [10], real-space
finite-difference method [11], etc., have been developed to
solve the KS equation with important successes. However, the
standard implementations of KSDFT are based on a periodic
or closed boundary condition, for example the widely used
software packages VASP [12], WIEN2K [13], etc., and thus face
important difficulties for simulating disorders, polar surfaces
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[14], interfaces, and material systems with open boundary
conditions, presenting great challenges for the simulations of
operating devices.

Nevertheless, the Green’s function technique provides an
important approach for treating complex systems with var-
ious mean-field theories [15–17] and a diagrammatic tech-
nique of many-body perturbation [18]. The implementation
of KS-DFT in combination with the Green’s function method
provides a sophisticated framework for realizing the first-
principles simulation of realistic materials and devices with
complex physical conditions, significantly extending the ca-
pability of KSDFT beyond the standard implementations
[19–29]. Among the different implementations of the first-
principles Green’s function method [19,20,22–29], the meth-
ods based on different generations of muffin tin (MT) or-
bital proposed by Andersen and his co-workers [30–37] are
the representatives. Compared to other basis functions, the
MTO since the second generation features important advan-
tages: (i) all-electron calculation overcomes pseudopotential
approximation for core electrons; (ii) the screened MTO is
very localized in real space, making the Hamiltonian matrix
sparse; (iii) MTO basis sets are minimal; and (iv) coherent
potential approximation (CPA) for treating atomic disorders
inevitable in realistic devices can be easily incorporated in
Green’s function formalism. With these important advantages,
the second generation of MTO, namely TB-LMTO method,
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has been widely used for the simulation of electronic struc-
tures, and electron/spin transport properties of multilayered
structures with important successes [2–4,21,38]. However, the
implementation of the TB-LMTO method possesses impor-
tant limitations in applicability due to two major problems:
The first is that the linearization of the basis function causes
an important error at the energy distant from the linearization
reference energy; the second error arises from the used atomic
sphere approximation (ASA) which utilizes spherically sym-
metric potentials inside each space-filling atomic sphere
and neglects the contribution of the interstitial region for
simplicity.

Recently, the third generation of MTO, called exact muffin
tin orbital (EMTO) [34,37], has been proposed with important
major improvements over the TB-LMTO method, including:
(i) the large overlapping potential spheres provide more ac-
curate representation of the potential of the material system;
(ii) the interstitial region is treated on the same footing
as the atomic region; and (iii) energy linearization is not
required within the Green’s function formalism. Based on
these improvements and the advantages of MTO listed above,
EMTO possesses an important potential for application in
the electronic-structure and electron-transport simulation of
realistic materials and devices. Presently, Vitos et al. [39–43]
has successfully realized the EMTO based self-consistent
electronic-structure calculation for bulk systems, and proved
its high efficiency and accuracy for a wide range of applica-
tions [44–53]. Their results of the EMTO method showed very
good agreement with other all-electron methods, such as full-
potential linear augmented wave method. However, presently,
the implementation of EMTO is only limited to the bulk
periodic structures. The first-principles EMTO simulation of
materials on the device level requires significant extensions on
the implementation of the EMTO method.

In this work we report our implementation of the EMTO
based KSDFT to realize the electronic-structure and quantum
transport simulation of electronic devices containing atomic
disorders from first principles. We consider a device-materials
structure containing a central device region in contact with
different semi-infinite electrodes. Within the Green’s function
method, the influences of the semi-infinite electrodes on the
central device interested are accounted for by the contact
self-energies, making the infinite device system into a calcu-
lable finite system. The electronic structures of the electrode
materials are calculated by the EMTO bulk solver and kept
fixed in the self-consistent calculation of the central region.
By dividing the system into principle layers, we apply the
recursive Green’s function technique to efficiently calculate
the device region. To effectively treat atomic disorders, co-
herent potential approximation is incorporated to calculate
the disorder averaged electronic structure. In the transport
calculation, the averaged transmission function is calculated
by accounting for the effects of multiple disorder scattering
with vertex corrections within the CPA. As a demonstration
of our implementation of EMTO for device-materials simu-
lation, we calculate the electronic structure of MoS2, black
phosphorus, and the spin-dependent quantum transport prop-
erties of Fe/MgO/Fe magnetic tunneling junctions (MTJs).
We compare our result with the calculations of PAW method
by using VASP [12].

The rest of the paper is organized as follows. Section II
presents the formalism of exact muffin tin orbital method.
In Sec. III, the Green’s function method is presented to
calculate the multilayered two-probe device structure in con-
tact with electrodes. In Sec. IV, coherent potential approx-
imation is incorporated to treat systems with disordered
defects/impurities. Section V introduces the calculation of
the transmission coefficient with vertex corrections to account
for the multiple disorder scattering, to realize the quantum
transport simulation of disordered nanoelectronics. Section VI
discusses the self-consistent implementation of the whole
algorithm, including the calculation of electron density and
effective potential. In Sec. VII we discuss the applications to
bulk MoS2 and black phosphorus, and two-probe Fe/MgO/Fe
MTJs. Finally, we conclude our work in Sec. VIII and provide
more information in the Appendix.

II. EXACT MUFFIN TIN ORBITAL METHOD

A. Exact muffin tin orbital

In the muffin tin potential approximation, the effective full
potential is approximated as

V (r) ≈ Vmt (r) ≡ Vmtz +
∑

R

[VR(rR) − Vmtz], (1)

where VR(rR) is the spherical potential well centered on each
lattice site R and Vmtz is a constant potential. (Here and in the
following, we use the notation rR = r − R, and rR =| rR |.)
Different from the conventional nonoverlapping muffin tin
spheres, the EMTO method utilizes the large overlapping
potential spheres which gives more accurate description of the
potential compared to the conventional approximation, espe-
cially for the interstitial region. As a result, the EMTO method
treats the interstitial and atomic regions on the same footing,
and thus can provide high accuracy for describing disordered
systems, interfaces/surfaces, and material structures with low
symmetry, beyond the second generation TB-LMTO method.

The energy dependent EMTO is composed of three parts
as follows:

�a
RL(ε, rR) = φa

RL − ϕa
RL + ψa

RL, (2)

including the partial wave φa
RL, free electron solution ϕa

RL, and
screened spherical wave (SSW) ψa

RL. Here the superscript a
denotes the screening representation (here we only provide
a brief introduction of EMTO for completeness, for more
details, please refer to the literatures [34–37,39,40,42]). The
partial wave φa

RL defined inside each overlapping potential
sphere (sR) is solved from the local Schrödinger equation
[54] with the potential VR(rR). The SSW φa

RL, served as the
envelope function, satisfies the interstitial Schrödinger equa-
tion, namely [∇2 + κ2]ψa

RL(κ2, rR) = 0, where κ2 = ε − Vmtz

is the kinetic energy. It is known that the SSW can be generally
expanded around other sites R′ in the form

ψa
RL(κ2, rR) = na

RL(κ2, rR)δRR′

+
∑
R′L′

ja
R′L′ (κ2, rR′ )Sa

R′L′,RL(κ2), (3)

where na
RL and ja

RL are the respective head and tail functions
and Sa is the corresponding screened slope matrix. Different

075134-2



EXACT MUFFIN TIN ORBITAL BASED … PHYSICAL REVIEW B 100, 075134 (2019)

from the second generation MTO [37], SSW is obtained by
adopting the general screening strategy of the Methfessel
formulation [55], namely introducing a set of nonoverlap-
ping screening spheres with radius aRl , and then imposing
boundary conditions so that it equals pure spherical harmonics
on its own a sphere and vanishes on and inside the other
a spheres (na

Rl |a = 1.0, ja
Rl |a = 0.0) [34–37,39,40,42]. SSWs

are continuous but not differentiable, presenting kinks on the
screening spheres.

The free electron solution ϕa
RL is defined in the region be-

tween the screening and potential spheres as [34–37,39,40,42]

ϕa
Rl (ε, rR) = na

Rl (κ
2, rR) + ja

Rl (κ
2, rR)Da

Rl (ε), (4)

where Da
Rl (ε) = Da

Rl{ϕa
Rl} is the logarithmic derivative of the

free-electron solution at aRl . By introducing ϕa
RL, EMTO

in Eq. (2) satisfies the proper boundary conditions that the
function is continuous at both aR and sR, and differentiable
at sR.

B. The overlap and Hamiltonian matrices and Green’s function

Within the EMTO, the overlap matrix 〈�a|�a〉 can be
approximated as [34–37]

〈�a|�a〉 = 〈φa − ϕa + ψa|φa − ϕa + ψa〉
≈ 〈φa|φa〉 − 〈ϕa|ϕa〉 + 〈ψa|ψa〉 (5)

in which the contribution of the terms 〈φa − ϕa|ψa − ϕa〉 and
〈ψa − ϕa|φa − ϕa〉 are neglected since they are very small
[∼o(s − a)4] [35]. By applying the Green’s second identity
[56], one can obtain 〈φa|φa〉 − 〈ϕa|ϕa〉 = −aḊa(ε), where
Ḋ(ε, s) ≡ ∂D(ε,s)

∂ε
is site diagonal. Furthermore, one can also

find 〈ψa|ψa〉 = aṠa(ε), in which Ṡa is the energy derivative
of the slope matrix. As a result, we obtain the overlap matrix
in EMTO:

〈�a|�a〉 = −aḊa(ε) + aṠa(ε) = K̇a(ε). (6)

Where K = aSa − aDa is called the kink matrix.
Instead of finding the Hamiltonian matrix 〈�a|H |�a〉,

we derive the matrix 〈�a|H − ε|�a〉. Similar to the overlap
matrix, we have

〈�a|H − ε|�a〉 ≈ 〈φa|H − ε|φa〉 − 〈ϕa|H − ε|ϕa〉
+ 〈ψa|H − ε|ψa〉. (7)

By referring to the literature [34–37], one can find the first
two terms in Eq. (7) 〈φa|H − ε|φa〉 − 〈ϕa|H − ε|ϕa〉 = aI +
aDa(ε), and the third term is given as 〈ψa|H − ε|ψa〉 =
−aI − aSa(ε), where I is the identity matrix. As a result,
we obtain

〈�a|H − ε|�a〉 = aDa(ε) − aSa(ε) = −Ka(ε). (8)

It is clear that the Ka is as short ranged as the screened slop
matrix Sa, providing the high efficiency for the computation
with the EMTO method. After obtaining overlap and Hamil-
tonian matrices, the Green’s function is then defined for a
complex energy z by

ga(z) = Ka(z)−1, (9)

and the corresponding normalized Green’s function is given as

G(z) = ga(z)K̇a(z). (10)

With the above Green’s functions, the physical properties of
materials and devices can be efficiently calculated with the
EMTO method.

III. GREEN’S FUNCTION FORMALISM
FOR TWO-PROBE DEVICES

In this section we shall focus on calculating the Green’s
function in Eq. (9) for the two-probe electronic device system.
The two-probe device consists of a central device region
sandwiched by the left and right semi-infinite electrodes as
shown in Fig. 1. The electron can transport through the central
device region with scattering by interface and defects from
one electrode to the other. The system features periodicity in
x-y plane, but nonperiodicity in the infinite transport z direc-
tion (note, for a disordered system, configurational average
restores the translation invariance). By using sufficiently long
buffer layers of electrode materials in the central region, the
electronic structure of electrodes could not be affected by
the central region. As an important consequence, we can use
the electronic potential self-consistently calculated by the
EMTO bulk solver for the electrode materials in the device
system. Therefore, we only need to determine the electronic
structure in the central device region to obtain the physical
properties of the whole device system, such as the electron-
transport property. To obtain the Green’s function of the
central region, we rewrite Eq. (9) for a two-probe device (we
omit ε in the following for simplicity),

⎛
⎜⎝

Ka
ll Ka

lc 0

Ka
cl Ka

cc Ka
cr

0 Ka
rc Ka

rr

⎞
⎟⎠

⎛
⎜⎝

ga
ll ga

lc ga
lr

ga
cl ga

cc ga
cr

ga
rl ga

rc ga
rr

⎞
⎟⎠ =

⎛
⎜⎝

Il 0 0

0 Ic 0

0 0 Ir

⎞
⎟⎠,

(11)

where Kll , Kcc, and Krr describe the left electrode, central
device, and right electrode, respectively, and Klc/cl and Krc/cr

represent the couplings of the central device region with
the respective left and right electrodes. the left and right
electrodes are separated too far to have couplings. Here we
are only interested in the Green’s function of the central region

FIG. 1. Schematic illustration of two-probe device containing a
central device region contacting to the left and right electrodes. The
system is divided into different principle layers: ip � 0 for the left
electrode, 1 � ip � np for the central device region, and ip� np+ 1
for the right electrode.
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ga
cc, for which one can find the following equations:

Ka
ll g

a
lc + Ka

lcga
cc = 0, (12)

Ka
clg

a
lc + Ka

ccga
cc + Ka

crga
rc = Ic, (13)

Ka
rcga

cc + Ka
rrga

rc = 0. (14)

Eliminating ga
lc and ga

rc in the above equations leads to

ga
cc = {

Ka
cc − 
a

l − 
a
r

}−1
, (15)


a
l = Ka

clg
a,0
ll Ka

lc, (16)


a
r = Ka

crga,0
rr Ka

rc, (17)

ga,0
ll = Ka,−1

ll , (18)

ga,0
rr = Ka,−1

rr . (19)

Where the quantity 
a
l/r refers to the self-energies describing

the effects of the semi-infinite left/right electrode to the
central region, and ga,0

ll/rr is the Green’s functions of the
completely separated electrodes. With Eq. (15) we transform
the infinite nonperiodic two-probe device to a calculable
finite system with the self-energies describing the effects of
electrodes.

To make the calculation of ga
cc in Eq. (15) and related

quantities practical, we divide the two-probe system into a set
of principal layers (PLs) along the z axis [57]. As shown in
Fig. 1, the central device region contains PLs with the indices
ip = 1, 2, . . . , n − 1, n, while left and right electrodes contain
PLs ip = 0,−1, . . . ,−∞ and ip = n + 1, n + 2, . . . ,+∞,
respectively. The size of each principle layer is chosen in such

a way that only the nearest-neighbor PLs are coupled, namely
the element of kink matrix Kip,ip+m = 0 for any m � 2. As
a result, the kink matrix becomes tridiagonal, allowing us to
apply recursive technique to calculate ga

cc in Eq. (15).
With the tridiagonal feature of K matrix in multilayer struc-

tures, 
a
l/r in Eqs. (16) and (17) have the explicit form [58]


a
l = Ka

clg
a,0
ll Ka

lc =

⎛
⎜⎜⎝


a
l,11 0 · · ·
0 0 · · ·
...

...
. . .

⎞
⎟⎟⎠, (20)


a
r = Ka

crga,0
rr Ka

rc =

⎛
⎜⎜⎝

. . .
...

...

· · · 0 0

· · · 0 
a
r,NN

⎞
⎟⎟⎠. (21)

Only (11) and (NN ) on-layer blocks are nonzero for the self-
energies 
a

l and 
a
r , respectively, which can be obtained from


a
l,11 = Ka

1,0ga,0
ll,00Ka

0,1, (22)


a
r,NN = Ka

N,N+1ga,0
rr,N+1N+1Ka

N+1,N , (23)

in which ga,0
ll,00 and ga,0

rr,N+1N+1 are the surface Green’s func-
tions of the left and right electrodes, respectively [58]. We
implement an efficient method called the renormalization-
decimation technique to iteratively solve the surface Green’s
function to obtain the blocks 
a

l,11 and 
a
r,NN .

After obtaining the electrode self-energies 
a
l and 
a

r ,
the Green’s function of central device region, namely gcc in
Eq. (15), can be calculated by inverting the tridiagonal matrix
as follows:

ga
cc =

⎛
⎜⎜⎜⎜⎜⎝

Ka
1,1 − 
a

l,11 Ka
1,2 0 0 0

Ka
2,1 Ka

2,2 Ka
2,3 0 0

...
...

. . .
. . .

. . .
. . .

0 0 Ka
n−1,n−2 Ka

n−1,n−1 Ka
n−1,n

0 0 0 Ka
n,n−1 Ka

n,n − 
a
r,nn

⎞
⎟⎟⎟⎟⎟⎠

−1

. (24)

We will omit the subscript cc in the rest of the paper for
simplicity (and will put it back if necessary). We adopt the
recursive Green’s function technique to efficiently calculate
the layer-diagonal and off-diagonal blocks [59]. First, in the
recursive technique, the layer-diagonal blocks can be given
for any intermediate layers i in the form

ga
ii = [

Ki,i − 
l
i − 
r

i

]−1
(1 � i � n), (25)

where 
l
i and 
r

i are also called self-energies describing the
coupling of the ith layer with the respective left and right sides
of the of system. The self-energies 
l

i and 
r
i both can be

calculated independently in a recursive way by starting from
the first and nth principle layers of the central device region.
By starting from the first-principle layer (left side), namely by
setting 
l

1 = 
l,11, we have


l
i = Ka

i,i−1

[
Ka

i−1,i−1 − 
l
i−1

]−1
Ka

i−1,i, (26)

for i changing from 2 to n. Moreover, by setting 
r
n = 
r,nn,

we calculate 
r
i with


r
i = Ka

i,i+1

[
Ka

i+1,i+1 − 
r
i+1

]−1
Ka

i+1,i, (27)

for i changing from n − 1 to 1.
Once the layer-diagonal block of the Green’s function, i.e.,

ga
ii, is found, with the recursive technique, the off-diagonal

block of the Green’s function can also be straightforwardly
derived as follows:

ga
i j = −[

Ka
i,i − 
r

i

]−1
Ka

i,i−1ga
i−1, j (i > j), (28)

ga
i j = −[

Ka
i,i − 
l

i

]−1
Ka

i,i+1ga
i+1, j (i < j). (29)

The above results are general for calculating the inversion of
the tridiagonal matrix, providing important convenience for
simulating the layered structures.
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Due to the periodicity in the x-y plane of the two-probe
device, we can apply two-dimensional (2D) lattice Fourier
transformation to the kink matrix so that

Ka
pB,p′B′ (ε, k‖) =

∑
T‖

eik‖T‖Ka
pB,p′B′+T‖ (ε) (30)

in which k‖ is the wave vector in the 2D Brillouin zone, and
(pB + T‖) denotes the lattice vector. Here p is the index of the
principle layer, B denotes the basis vector inside pth principle
layer, and T‖ is a two-dimensional translational vector.

Then the Green’s function for each k‖ is obtained by

ga(ε, k‖) = Ka,−1(ε, k‖), (31)

of which all the block elements are calculated by applying
the recursive method in Eqs. (25)–(29). Therefore, the on-
site matrix elements of the Green’s function and normalized
Green’s function can be evaluated by integrating over the 2D
Brillouin zone

ga
pB,pB(ε) = 1

�BZ

∫
ga

pB,pB(ε, k‖)dk‖, (32)

GpB,pB(ε) = 1

�BZ

p+1∑
p′=p−1

∑
p′B′

∫
ga

pB,p′B′ (ε, k‖)

× K̇a
p′B′,pB(ε, k‖)dk‖, (33)

where �BZ is the area of the 2D BZ and K̇a is also tridiagonal
matrix.

IV. COHERENT POTENTIAL APPROXIMATION IN EMTO
FOR DISORDERED MATERIALS

Coherent potential approximation (CPA) has been a well-
established method to do disorder average for systems with
substitutional disorders [15,16]. The main idea of CPA is to
self-consistently construct an effective medium with trans-
lational invariance to give the averaged Green’s function
of a disordered system, from which the averaged physical
quantities can be derived. CPA has already been successfully
implemented in the EMTO method by Vitos et al. to study the
properties of bulk systems, such as alloys [41,42,48,49,52,53].
In this section we apply the CPA to calculate the averaged
Green’s function of the disordered two-probe electronic de-
vice within the EMTO method. Here we only consider the
ordered or perfect electrodes, so that the self-energies 
a

l/r
in Eqs. (20) and (21) are independent of the disorders in
the central device region. As a result, in Eq. (15) for ga

cc,
only the atomic function Da

R(ε) is disordered, depending on
the randomly distributed atoms on the lattice sites, while the
slope matrix is disorder independent. We thus can introduce
an effective atomic function Da

c = ∑
R Da

R to describe the
coherent medium that gives the averaged Green’s function ḡa

cc,
namely

ḡa
cc = {

ac
[
Sa

cc − Da
c

] − 
a
l − 
a

r

}−1
. (34)

Then, the Green’s function ga of a specific disorder configu-
ration can be given by the following Dyson equation:

ga = ḡa + ḡa�ga, (35)

where the deviation function � = ∑
R �R and �R =

aRl [−Da
R + Da

R]. By defining T -matrix T = �(1 − ḡa�)−1,
the above equation changes to

ga = ḡa + ḡaT ḡa, (36)

where T accounts for the total effect of disorder scatterings.
By taking disorder average to the above equation, one finds
the CPA condition 〈T 〉 = 0 to self-consistently solve the
effective medium. However, T contains all the complexity of a
disordered system, making the problem generally intractable.
Further approximation is thus required to solve the CPA
equation. To do so, one can rewrite T = ∑

R TR, and TR =
tR(1 + ḡ

∑
R′ TR′ ) where the single-site scattering matrix tR is

defined as tR = �R(1 − ḡa�R)−1 [15,16]. Then the widely
used single-site approximation (SSA) can be introduced by
neglecting all nonlocal correlation of disorder scattering and
local environment effects. The CPA condition 〈T 〉 = 0 is
reduced to a single-site equation

〈
tQ
R

〉 =
∑

Q

cQ
R tQ

R = 0, (37)

where cQ
R is the concentration of element Q on site R. With

above single-site CPA condition, the single-site function Da
R

for the effective atom on each site can be efficiently solved to
obtain the total coherent medium by Da = ∑

R Da
R. However,

for stable solution of CPA, instead of solving Eq. (37) di-
rectly, we adopted the method of using the coherent interactor
[21,34,60,61]. After the CPA self-consistency is achieved,
we obtain the averaged and conditionally averaged GFs [62],
namely ḡ and ḡQ, to calculate the related physical quantities
including electron density, density of state and transmission
coefficient, etc. Furthermore, for the conditionally averaged
normalized Green’s function, we have in general

ḠQ
R,R(z) =

∑
R′

ḡa,Q
R,R′ (z)K̇a,Q

R′,R

= −ḡa,Q
R,RaRḊa,Q

R +
∑

R′
aR′

(
ḡa

R,R′ + ḡa
R,RtQ

R ḡa
R,R′

)
Ṡa

R′,R.

(38)

Here we used the relations

K̇a,Q
R′L′,RL = aRl

(
Ṡa

R′L′,RL − Ḋa,Q
R′l ′ δR′,RδL′,L

)
, (39)

ḡa,Q
R,R′ = [

ḡa + ḡatQ
R ḡa

]
R,R′ . (40)

For a two-probe system with atomic disorder, the condi-
tionally averaged Green’s functions can be obtained with the
lattice Fourier transformation

ḠQ
pB,pB = −ḡa,Q

pB,pBapBḊa,Q
pB

+ 1

�BZ

p+1∑
p′=p−1

∑
p′B′

∫
ḡa

pB,p′B′ (k‖)ap′B′ Ṡa
p′B′,pB(k‖)dk‖

+ ḡa
pB,pBtQ

pB

∑
p′B′

∫
ḡa

pB,p′B′ (k‖)ap′B′ Ṡa
p′B′,pB(k‖)dk‖.

(41)

where ḡa,Q
pB,pB = {[−Da,Q

pB − �a
pB]−1}.
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V. ELECTRON TRANSPORT:
TRANSMISSION COEFFICIENT

To study the quantum transport properties of an electronic
device, here we apply the EMTO method to calculate the
transmission coefficient which directly gives the conductance
and current flow of the device [58,63]. As known, the trans-
mission coefficient for a two-probe device in Fig. 1 can be
written in the following form within EMTO:

T (E ) = Tr
[
ga,R

cc a
l ga,A

cc a
r

]
, (42)

in which the quantities ga,R
cc and ga,A

cc are the respective re-
tarded and advanced Green’s function of the central device
region [see Eq. (15)], and the quantities a

l/r are the linewidth
function characterizing the couplings between the respec-
tive left/right electrodes and the central device region [58].
Note that the form of the transmission formula is generally
valid for a different basis set, including the orthonormal and
nonorthonormal bases [20,24]. Here the linewidth function
is given by a

l/r = i(
a,A
l/r − 
a,R

l/r ) where 
a,R/A are the
retarded and advanced self-energies [see Eqs. (20)–(23)].

For a specific and ordered device, the calculation of the
transmission coefficient is straightforward with Eq. (42) in
combination with lattice Fourier transformation. However,
for realistic devices, understanding the influences of the in-
evitable disordered defects or dopants is critical for the devel-
opment of science and technology. The simulation of a disor-
dered nanoelectronic device requires the computation of the
configurationally averaged transmission coefficient. To do so,
we need to calculate the disorder average of the transmission
operator, namely 〈ga,Ra

l ga,Aa
r 〉, which involves the average

of two-Green’s-function correlators. Here, to simplify the for-
mulation, we only consider the ordered or perfect electrodes,
resulting in the disorder independent linewidth functions.
However, the effects of disorders in the electrode materials
can be studied by introducing the disorders into the electrode
buffer layers that are contained in the central device region.

To proceed for the disordered devices, we can apply the re-
lations ga,R/A = ḡa,R/A + ḡa,R/AT R/Aḡa,R/A and 〈T R/A〉 =
0 to obtain the averaged two-Green’s-function correlator as
follows:〈

ga,Ra
l ga,A〉 = ḡa,Ra

l ḡa,A + ḡa,R�NVCḡa,A, (43)

where the “NVC” stands for nonequilibrium vertex correc-
tion [2,63–65] and the vertex correction term is defined as
�NVC = ∑

R,R′ 〈T R
R ḡa,Ra

l ḡa,AT A
R′ 〉 which contains the effects

of multiple scattering of disorders. This kind of correlations
are accounted for in the NVC. However, it is impossible to
obtain an exact solution of this term. For practical simula-
tion, SSA is usually adopted. Applying the SSA, we have
〈T R

R ḡa,Ra
l ḡa,AT A

R′ 〉 = 0 if R′ �= R [66]. Then, �NVC can be
written as a site-diagonal matrix [2,63–65]

�NVC =
∑

R

�NVC,R =
∑

R

〈
T R

R ḡa,Ra
l ḡa,AT A

R

〉
. (44)

Substituting TR into Eq. (44), we obtain a self-consistent
equation for the single-site quantity �NVC [2,63,66],

�NVC,R = 〈
tRR ḡa,Ra

l ḡa,AtAR
〉

+
∑
R′ �=R

〈
tRR ḡa,R�NVC,R′ ḡa,AtAR

〉
. (45)

Once obtaining the �NVC, the averaged transmission function
can be calculated by Eqs. (43) and (42). Since the translational
invariance is retained after configurational average, we can
apply the lattice Fourier transformation to the transmission
coefficient as T (E ) = 1

N‖

∑
k‖ T (E , k‖) where T (E , k‖) is the

k‖-resolved transmission coefficient given by

T (E , k‖) = Tr[ḡa,R(k‖)a
l (k‖)ḡa,A(k‖)a

r (k‖)]

+ Tr[ḡa,R(k‖)�NVCḡa,A(k‖)a
r (k‖)], (46)

where �NVC is independent of k‖ because it is site diagonal.
The first term is contributed by the coherent transport, in
which the electron transports through the central device region
by conserving the momentum k‖. The second term is the
vertex correction part, including the contribution of transport
through interchannel scatterings of disorders, namely diffu-
sive transport. Besides the calculation of the transmission
coefficient, in combination with our recently reported gener-
alized nonequilibrium vertex correction method, the quantum
transport shot noise and transmission fluctuation can be cal-
culated with the EMTO to further analyze the statistics of the
disordered nanoelectronics [38,63].

VI. ELECTRONIC STRUCTURE SELF-CONSISTENCY

By here, Green’s function method within the EMTO has
been established. In the following, we start to introduce the
quantities required for self-consistency of electronic-structure
calculation, including electron density, effective muffin tin
potential, density of state, etc.

A. Electron density

The full electron density can be divided into the con-
tributions from each Wigner-Seitz (WS) cell, i.e., n(r) =∑

R nR(rR). Inside each WS cell, we expand nR(rR) using a
set of spherical harmonics

n̄Q
R (rR) =

∑
L

n̄Q
RL(rR)YL(r̂R), (47)

where

n̄Q
RL(rR) =

∫
n̄Q

R (rR)YL(r̂R)dr̂R. (48)

In practice, a L truncation in Eq. (47) is applied, which
makes the summation finite. By considering Eq. (2) and the
associated kink cancellation condition, the orthogonality of
the spherical harmonics and the residue theorem, one can
obtain, within each potential spheres,

n̄Q
RL(rR) = − 1

π

∑
L′L′′

∫ εF

0
CLL′L′′φ

a,Q
Rl ′ (ε, rR)

× Im ḡa,Q
RL′,RL′′ (ε + i0+)φa,Q

Rl ′′ (ε, rR)dε. (49)

An important thing should be noticed here is that the normal-
ization function in φa,Q may contain nonphysical poles [42].
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The remedy is by introducing the correction terms

ḡa,Q
RL′,RL(z) → ḡa,Q

RL′,RL(z)

+ δL′L

aRl Ḋ
a,Q
Rl (z)

⎛
⎝ Ḋa,Q

Rl (z)

Da,Q
Rl (z)

−
∑
εD

Rl

1

z − ε
D,Q
Rl

⎞
⎠,

(50)

where εD
Rl is the energy when Da

Rl = 0. Also, to avoid the
rapid oscillation along the real axis due to the real poles, we
adopt the residue theorem and perform the energy integral
on a half-circle contour in the upper complex plane which
cuts the real axis at Fermi level and below the bottom of the
valence bands. In addition, the Fermi energy of the two-probe
device is set to the bulk value of electrodes since we study
electronic structure and transport in the limit of equilibrium in
the present implementation.

B. Effective potential

In the present implementation of EMTO for device-
material simulation, we adopted the spherical cell approxima-
tion (SCA) to calculate the overlapping muffin tin potential
in Eq. (1) [39]. As an important consequence of SCA, the
effective potential V Q

R (rR) for atom Q at site R in Eq. (1) can be
given in terms of the spherically averaged charge density, e.g.,
n̄Q

R0(rR). In our two-probe device calculations, Vmtz is fixed
to the average value of Vmtz in left and right electrodes (we
find the electronic structure of central region is actually very
insensitive to the used value of Vmtz, i.e., Fe/MgO/Fe MTJs).
In SCA, the effective spherical potential V Q

R (rR) consists of
the contributions from the intracell and intercell interactions
[67], namely

V Q
R (rR) = V Q,I

R (rR) + V SCA,M (R). (51)

The intracell potential reads

V Q,I
R (rR) = −2ZQ

R

r
+ 8π

1

rR

∫ rR

0
r′

R
2n̄Q

R0(r′
R)dr′

R

+ 8π

∫ sR

rR

r′
Rn̄Q

R0(r′
R)dr′

R + v
Q
xc,R(rR), (52)

which contains the nuclei potential in the first term, Hartree
potential from electrons inside the potential sphere in the
second and third terms, and the exchange-correlation potential
v

Q
xc,R(rR) in the fourth term. The intercell contribution V SCA,M

R
accounts for the electrostatic interaction of charges from
outside of the potential sphere, usually called Madelung po-
tential. For a bulk system on a lattice with a three-dimensional
(3D) periodic boundary condition, the intercell electrostatic
field is known as [21]

V SCA,M
bulk (r) =

∑
B,L

χ3
L (r − B)qSCA

BL , (53)

in which χ3
L produced by the Lth multipole moments on a

3D lattice can be calculated with the 3D Ewald technique
[68], and qSCA

BL is the Lth multipole moment on the site B
in the unit cell and is calculated within SCA (for disordered
system, the disorder averaged value should be used, i.e.,
qSCA

BL = ∑
Q cQ

B qSCA,Q
BL ) [39,42].

Different from the bulk system, the two-probe device con-
sidered in Fig. 1 features the nonperiodicity in the transport
z direction, and periodicity in the x-y plane for each prin-
ciple layer ranging from ip = −∞ to +∞. However, due
to the long-range behavior of electrostatic interaction, the
contribution of the two semi-infinite electrodes to the central
device region is difficult to calculate by direct summation. To
provide a general solution to the electrostatics of the infinite
two-probe device, we transform the device to an equivalent
electrostatic system with finite size and well defined boundary
conditions in the transport z direction, while maintaining
the periodic boundary condition in the x-y plane. The finite
system includes the principle layers ranging from ip = 1 to
np. The two boundaries are defined at the surface planes of
the two semi-infinite electrodes (denoted as z = z1 in the layer
ip = 0 and z = z2 in the layer ip = np + 1) and boundary
conditions of the potential are set to the bulk results, i.e.,
V SCA,M

bulk in Eq. (53), of the respective left and right electrodes.
For such a multilayer structure, the electrostatic field can be
expressed in the form, as derived in the Appendix,

V SCA,M
two probe(r) =

np∑
p=1

∑
pB,L

χ2
L (r − pB)qSCA

pBL + Vb(r), (54)

in which χ2
L is the potential produced by the unit Lth multipole

moment on a 2D lattice, and can be calculated with the 2D
Ewald technique [69–71]. In Eq. (54) the first term is con-
tributed by the multipole moments inside the central device
region, and the second term Vb(r) is a required correction to
satisfy the boundary conditions at the plane z = z1 and z2. The
potential Vb(r) fulfills the Poisson equation of a finite vacuum
system with the boundary conditions. With Eq. (54) the two-
probe devices with electrodes of complex materials can be
simulated from first principles. In our present implementation,
we only consider contribution of the multipole moments l � 1,
namely monopole and dipoles, in our calculation of bulk
materials and two-probe devices.

C. Density of states

The density of states (DOS) is given by the imaginary part
of the conditionally averaged normalized Green’s function,
i.e.,

D̄Q(ε) = − 1

π

∑
RL

Im ḠQ
RL(ε). (55)

Similarly, the nonphysical poles should be removed by the
following correction [42]:

ḠQ
RL(ε + i0+) → ḠQ

RL(ε + i0+)

− Ḋa,Q
Rl (ε)

Da,Q
Rl (ε)

+
∑
εD

Rl

1

ε − ε
D,Q
Rl

. (56)

VII. NUMERICAL RESULTS

We have implemented the EMTO based KSDFT into a
first-principles nanoelectronic device simulation package, in-
cluding a bulk-material solver and two-probe device simula-
tor. In this section we present the numerical results to test the
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accuracy of our implementation for calculating both the two-
probe devices and bulk materials. We calculate the electronic
structure of monolayer MoS2 and black phosphorus with the
bulk solver, and calculate the electronic structure and spin-
dependent transport property of the Fe/MgO/Fe magnetic
tunneling junctions (MTJs) with the device simulator. The
DOS results for different systems calculated are compared
with the PAW results by using VASP [12]. For the MTJs
we study spin-dependent tunneling in both the perfect and
disordered devices, and demonstrate the important effects of
interfacial disorders on the device functionality. In bulk and
two-probe electronic-structure calculations, to ensure the con-
vergence, we use 20 energy points for complex energy contour
with the Gaussian quadrature method, and 32 × 32 uniform k
meshes for two-dimensional BZ. (note that monolayer MoS2

and black phosphorus are 2D systems). A local spin den-
sity approximation (LSDA) exchange-correlation functional
[72] is employed in our calculations. For the calculation of
transmission coefficient, a 200 × 200 k mesh is adopted to
obtain converged spin-dependent conductance. To reach the
self-consistency, the Anderson mixing approach is utilized for
mixing the muffin tin potential in each iteration [73,74].

A. Bulk: 2D monolayer MoS2 and black phosphorus

Before investigating the two-probe system, we study the
electronic structures of 2D materials to demonstrate the accu-
racy of the EMTO based bulk solver for systems with low
symmetry. Here we calculate the density of states (DOS)
for monolayer MoS2 and black phosphorus which are rep-
resentative 2D materials (see the Supplemental Material for
computation details [75]). In Fig. 2 the results of the EMTO
method and PAW method (with VASP) are presented for com-
parison. For monolayer MoS2 shown in Fig. 2(a), It is clear
that, within a wide range of energy, the DOS of the EMTO
method matches very well with the PAW result, i.e., all major
DOS peaks of the PAW result are reproduced well by the
EMTO method. It is also found that the band gap of MoS2

with EMTO and PAW methods are very close, although it is
significantly underestimated with LDA. Compared to MoS2

geometrical structure, black phosphorus’ structure is more
irregular, presenting an important challenge for the muffin
tin potential approximation and spherical cell approximation.
However, the EMTO results for monolayer black phosphorus,
as shown in Fig. 2(b), present overall good agreement with
the PAW result, especially for the energies in the range from
−4.0 to 2.0 eV. Compared to the good matching of PAW and

FIG. 2. Total DOS of (a) monolayer MoS2 and (b) monolayer
black phosphorus. Black and red lines represent results of PAW and
EMTO methods, respectively.

EMTO results in the whole energy range calculated for mono-
layer MoS2, the EMTO and PAW results for the monolayer
black phosphorus present a noticeable but small shift in the
low energy, while maintaining the same features. It should
be mentioned that the EMTO method, with the advantages
of overlapping potential sphere and equal-footing treatments
of atomic and interstitial regions, features higher accuracy
and thus more applicability than the TB-LMTO method. By
considering the differences between different methods, the
slight deviations between EMTO and PAW results in DOS
are acceptable for both the monolayer MoS2 and black phos-
phorus. Therefore, we can see the EMTO method can provide
an important approach with good accuracy for studying the
electronic structure of materials with surfaces/interfaces and
low symmetry, providing an important basis for implementing
EMTO for simulating electronic devices, in which the inter-
faces are important.

B. Two-probe device: Fe/MgO/Fe magnetic tunneling junction

For the electronic device simulation, we study the
Fe/MgO/Fe MTJs with insulating MgO layers sandwiched
by two semi-infinite Fe ferromagnetic electrodes. MgO based
MTJ, as a spintronic device, possesses important applications
in magnetic sensor [76,77], magnetic random access memory
[78,79], etc. MTJ with MgO barrier features strong spin-
filtering effect, giving rise to the giant tunnel magnetoresis-
tance (TMR) ratio (even above 1000%) defined as (RAP −
RP )/RP, in which RAP and RP refer to the junction resis-
tances for the respective antiparallel (APC) and parallel (PC)
alignment of the magnetic moments in the two ferromagnetic
electrodes [80]. We self-consistently calculate the central
device region containing 7 atomic monolayers of MgO and 11
monolayers of Fe as buffer layer on both sides. The electrode
Fe is self-consistently calculated with the EMTO based bulk
solver (for the computational details, see the Supplemental
Material [75]). Because of the closed packed bcc lattice of Fe
bulk with high symmetry, the EMTO method can provide very
accurate description of the ferromagnetic electrode material
Fe. In Fig. 3 we present the EMTO results for the DOS of
central device region in PC, and compare with the PAW results
[which is obtained by calculating a periodic structure with a
unit cell (8 MLs)Fe/(7 MLs)MgO/(9 MLs)Fe].

Figure 3(a) presents the total DOS for the system including
7 MLs MgO and 17 MLs Fe. It is easy to find that the result of
the two-probe EMTO method is in very good agreement with
the PAW result for the energy ranging from −20.0 to 3.0 eV.
This important agreement for both spin channels illustrates the
high accuracy of the EMTO method for describing different
materials and their interfaces in an electronic device. It is
clear that, compared to PAW calculation, the EMTO method
provides almost the same energy level alignment between
Fe and MgO in the MTJ, which is important for the cal-
culating the electron transport from one electrode Fe to the
other through the barrier MgO. Furthermore, because of the
important effects of interfaces on the device functionality, we
investigate the DOS for the interfacial Fe and MgO atoms in
Figs. 3(b) and 3(c), respectively. It is evident that the two-
probe EMTO DOSs for both interfacial Fe and MgO atoms
match very well with the PAW results (the small deviation
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FIG. 3. (a) Total DOS of Fe/MgO/Fe two-probe system and
partial DOS of interfacial (b) Fe and (c) MgO atoms. Spin up/down
components are indicated by red/black and green/blue colors for
results of PAW and EMTO methods, respectively. Here the total DOS
is calculated for the central (8 MLs)Fe/(7 MLs)MgO/(9 MLs)Fe.

is negligible), providing an important capability for device-
material simulation. For example, for minority spin channel
of interfacial Fe atom, as shown in Fig. 3(b), the resonant
peak at the Fermi level by PAW, arising from the interfacial
state, can be very well reproduced by the EMTO method.
Therefore, we can see the EMTO method can provide an
accurate description of the electronic structure of the interface
between two distinct materials Fe/MgO. In spite of the good
accuracy in the electronic structure of device materials, it
should be mentioned, due to the use of spherical potential
and charge density and SCA in the present implementation
of EMTO method, the total energy is not accurate enough for
structural relaxation of the electronic device.

C. Spin dependent tunneling in ordered
and disordered Fe/MgO/Fe MTJs

Based on the electronic structure with good accuracy, we
further study transport properties of perfect and disordered
Fe/MgO/Fe MTJs, demonstrating the important capability of
the two-probe EMTO device simulator. As shown in Fig. 4,
we calculate the k‖ resolved transmission coefficient T (k‖) in

FIG. 4. k‖ resolved transmission coefficient T (k‖) in two-
dimensional BZ for (a) spin-up, (b) spin-down channels of clean
Fe/MgO/Fe junction in PC, and (c) spin-up (or spin-down) channel
of the junction in APC. Here k‖ ∈ [− π

a , π

a ] × [− π

a , π

a ], where a is the
lattice constant in the plane perpendicular to the transport direction.
All results are in the base 10 logarithmic scale.

2D BZ at Fermi level for the two spin channels of perfect
MTJ in both PC and APC. For spin up channel in PC,
shown in Fig. 4(a), the transmission coefficient displays large
values around  point, i.e., the total conductance is mostly
contributed by transmission with small transverse momentum.
The reason for such transmission pattern is that a large number
of spin-up states from electrodes at  point can effectively
couple to the �1 band of MgO with the slowest decaying
rate [4,80]. For the spin-down channel of PC in Fig. 4(b), the
transmission around  point is greatly suppressed due to the
fact that there is almost no spin-down states around  point
and states with large transverse momentum cannot couple to
the �1 band in MgO due to the coherent transport in the
perfect device. However, small areas with high transmission
coefficient (hot spots) emerge away from  point which arise
from the interface resonance, and dominate the transmission
of spin-down channel in PC [4,80]. The significant difference
between the patterns and magnitude of spin-up and spin-down
channels reflects the important spin-dependent tunneling
through MTJ. For APC, the spin-up and spin-down channels
share the same pattern of transmission coefficient due to the
left-right symmetry of the system, as shown in Fig. 4(c).
However, since there is no spin flip in the tunneling process
and a large mismatch of states in majority and minority spin
channels of the respective left and right electrodes, the total
transmission of APC are 1–2 order smaller than that of the PC
case, e.g., TAPC = 1.5 × 10−7 compared to TPC = 6.0 × 10−6.
As an important result, the MTJ present a giant TMR value as
large as 3900%, illustrating the important spin-filtering effect
of the junction. Our EMTO calculated results are consistent
with previous theoretical studies of perfect Fe/MgO/Fe MTJ.

Beyond calculating the perfect system, as an important
advantage, the Green’s function based EMTO method can
combine with CPA to realize first-principles analysis of disor-
der effects on the electron transport in the realistic electronic
devices. Here we consider disordered oxygen vacancies at left
and right Fe/MgO interfaces with the same concentration of
2%. Note that the device still has left-right symmetry after
disorder averaging. In the presence of disorder, the transmis-
sion can be divided into two parts: Coherent part and vertex
part. Coherent transport conserves the transverse momentum
same as the perfect device, while the vertex part accounts
for the diffusive transport through interchannel scattering.
k‖ resolved coherent and vertex parts of the transmission
coefficients are calculated for spin-up and spin-down channels
for the MTJ in PC and APC, as presented in Fig. 5. As
shown in Figs. 5(a)–5(d), the coherent parts for different spin
channels present patterns similar to results of perfect MTJ in
Fig. 4, while the interfacial disorder significantly decreases
the amplitudes of coherent transport as expected. The trans-
mission due to interchannel scattering (vertex part) is shown
in Figs. 5(e)–5(h) for the disordered MTJ. It is clear the vertex
parts present very diffusive patterns in all spin channels. For
example, for the spin-up channel in PC, compared to the low
transmission for k‖ away from  point, interfacial disorder
scattering can greatly enhance the transmission amplitude by
orders. By summing up the vertex and coherent parts, we find
the disordered interfacial oxygen vacancies can significantly
increase the total transmission of electron for all spin chan-
nels in APC, e.g., T̄↑(↓),APC = 2.60 × 10−6, compared to the

075134-9



ZHANG, YAN, ZHANG, AND KE PHYSICAL REVIEW B 100, 075134 (2019)

FIG. 5. k‖ resolved transmission coefficient T (k‖) in two-dimensional BZ for coherent and vertex parts of the spin-up and spin-down
channels in PC and APC, for Fe/MgO/Fe junction with 2% interfacial oxygen vacancies: (a)–(d) Coherent part and (e)–(h) vertex part. (a) and
(e) Spin-up and (b) and (f) spin-down channels in PC. (c) and (g) Spin-up and (d) and (h) spin-down channels in APC. All results are in the
base 10 logarithmic scale.

value of perfect MTJ T̄↑(↓),APC = 7.49 × 10−8. This important
enhancement in the transmission can be attributed to the fact
that interfacial disorder induced interchannel scattering can
effectively couple the electrode states of both spin channels,
other than the  state, to the slowly decaying �1 band in
MgO, to allow electrons to effectively tunnel though the MTJ
[4,80]. As an important consequence, in comparison with the
value 3900% of perfect MTJ, the TMR for the calculated
disordered MTJ is substantially reduced to 160%, presenting
important effects of interfacial oxygen vacancies on the device
merit of MTJ. The reduction of TMR due to interfacial
oxygen vacancies is in line with previous theoretical and
experimental results [4,81,82]. In addition, it is also worth
mentioning that, due to the symmetry, vertex parts, featuring
very different patterns, present the same total transmission
for spin-up and spin-down channels in APC, presenting an
important test on our implementation of the EMTO based
quantum transport simulation. The implementation of the two-
probe EMTO method provides an effective tool for calculating
the electronic-structure and electron-transport properties of
device materials.

VIII. CONCLUSIONS

In summary, we have implemented the EMTO based first-
principles method for simulating the electronic-structure and
electron-transport properties of electronic devices. For the
device simulation, we consider a material structure with
the central device region contacting with different semi-
infinite electrodes. Green’s function formalism is used to
transform the effects of semi-infinite electrodes into self-
energies, making the infinite system into a solvable finite
device. To efficiently calculate the Green’s function of the
finite device region, we apply the recursive technique for
multilayer structures. Moreover, to realize the simulation of

devices with atomic disorders, the coherent potential approx-
imation is combined in the implementation to handle the
disorder average. To obtain the disorder averaged transport
properties, the vertex correction is implemented to account
for the effects of multiple disorder scattering on the electron
transport. In the present implementation, the electrostatics
is treated within the spherical cell approximation, and the
Madelung potential is calculated for the finite central device
by enforcing boundary conditions of the electrode potential.
To test our implementation, we investigate the monolayer 2D-
material MoS2 and black phosphorus, and the spin-dependent
tunneling in the Fe/MgO/Fe magnetic tunneling junction. We
find the EMTO electronic structures of the calculated systems
agree well with the calculations of the projected augmented
wave method. The EMTO transport simulation produces the
important spin-filtering effect of the Fe/MgO/Fe junction
and the important influence of the interfacial disorders on
the spin-dependent tunneling, agreeing well with previous
theoretical and experimental studies. With the present EMTO
based simulation package, the effects of different materials,
interfaces, and disordered defects/impurities on the electron-
transport properties can be studied for electronic devices from
first principles. Future developments include the extensions
to nonequilibrium condition to realize the simulation of op-
erating devices, the combination with full charge density for
higher accuracy, etc.
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APPENDIX: SOLVING THE ELECTROSTATIC
POTENTIAL FOR A TWO-PROBE DEVICE SYSTEM

For the electrostatic problem of an infinite two-probe sys-
tem which is nonperiodic in transport z direction, we can
transform it to a system which is finite in z direction with
known boundary condition for the electrostatics. The finite
system has a periodic boundary condition in the x-y plane, and
the boundary values take the bulk electrostatic potential in the
bulk materials of the left and right electrodes at the respective
boundaries z = z1 and z2, namely

V SCA,M
twop (r)

∣∣∣
z=z1

= V SCA,M
bulk,left (x, y, z1),

(A1)
V SCA,M

twop (r)
∣∣∣
z=z2

= V SCA,M
bulk,right(x, y, z2).

For such a finite system with known boundary conditions,
the electrostatic potential is composed of two parts: one is
caused by charge distribution inside the system, and the
other is caused by the boundary condition of the potential in
electrodes. For the potential caused by charges, we have

V SCA,M
1 (r) =

NP∑
IP=1

∑
pB,L

χ2
L (r − pB)qSCA

pBL , (A2)

which is calculated by the 2D Ewald summation due to the
periodicity in x-y planes [83].

We then consider the potential due to boundary conditions,

Vb(r) = V SCA,M
twop (r) − V SCA,M

1 (r), (A3)

with well-defined boundary values Vb(r)|z=z1
and Vb(r)|z=z2

.
Furthermore, the potential Vb(r) should satisfy the following
Poisson’s equation:

∇2Vb(r) = 0, (A4)

with the periodic boundary condition in the x-y plane, the Vb

can be expanded as

Vb(r) =
∑

G

cG(z)eiGxx+iGyy. (A5)

To satisfying the above Poisson’s equation, we can find the
coefficients

cG�=0(z) = AGe
√

G2
x+G2

y z + BGe−
√

G2
x+G2

y z,

c0(z) = A0z + B0/ (A6)

For G �= 0, by applying the boundary conditions

cG(z1) = AGe
√

G2
x+G2

y z1 + BGe−
√

G2
x+G2

y z1 , (A7)

cG(z2) = AGe
√

G2
x+G2

y z2 + BGe−
√

G2
x+G2

y z2 , (A8)

we obtain

AG = cG(z1)e
√

G2
x+G2

y z1 − cG(z2)e
√

G2
x+G2

y z2

e2
√

G2
x+G2

y z1 − e2
√

G2
x+G2

y z2

, (A9)

BG = e
√

G2
x+G2

y (z1+z2 )(cG(z2)e
√

G2
x+G2

y z1 − cG(z1)e
√

G2
x+G2

y z2
)

e2
√

G2
x+G2

y z1 − e2
√

G2
x+G2

y z2

.

(A10)
In addition, for G = 0, with the boundary conditions

c0(z1) = A0z1 + B0, (A11)

c0(z2) = A0z2 + B0, (A12)

we then have

A0 = c0(z1) − c0(z2)

z1 − z2
, B0 = c0(z2)z1 − c0(z1)z2

z1 − z2
. (A13)

After obtaining Vb with the above formulation, we can find the
final electrostatic potential for the central device region due to
SCA charges, as presented in Eq. (54) for the self-consistent
electronic-structure calculations.
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