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Competing orders in pyrochlore magnets from a Z2 spin liquid perspective
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The pyrochlore materials have long been predicted to harbor a quantum spin liquid, an intrinsic long-range-
entangled state supporting fractionalized excitations. Existing pyrochlore experiments, on the other hand, have
discovered several weakly ordered states and a tendency of close competition amongst them. Motivated by these
facts, we give a complete classification of spin-orbit-coupled Z2 spin-liquid states on the pyrochlore lattice by
using the projective symmetry group (PSG) approach for bosonic spinons. For each spin liquid, we construct
a mean-field Hamiltonian that can be used to describe phase transitions out of the spin liquid via spinon
condensation. Studying these phase transitions, we establish phase diagrams for our mean-field Hamiltonians
that link magnetic orders to specific spin liquids. In general, we find that seemingly unrelated magnetic orders
are intertwined with each other and that the conventional spin orders seen in the experiments are accompanied by
more exotic hidden orders. Our critical theories are categorized into z = 1 and z = 2 types, based on their spinon
dispersion and Hamiltonian diagonalizability, and are shown to give distinct signatures in the heat capacity
and the spin structure factor. This study provides a clear map of pyrochlore phases for future experiments and
variational Monte Carlo studies in pyrochlore materials.
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I. INTRODUCTION

Quantum spin liquids (QSLs) [1] are zero-temperature
phases of interacting spin systems which possess intrinsic
long-range entanglement and support nonlocal excitations
carrying fractionalized quantum numbers. Typically, they re-
spect all symmetries of the underlying lattice, i.e., they ex-
hibit a lack of conventional symmetry-breaking order. The
theoretical understanding of QSLs is largely in terms of emer-
gent gauge theory, which provides a convenient mathematical
framework to describe long-range entanglement, along with
the nonlocal nature of the fractionalized excitations.

In frustrated magnetic systems [2], QSL ground states may
control the physics even at (small) finite temperatures, as long
as energy dominates over entropy. For two-dimensional spin
liquids, this statement is purely asymptotic; at any nonzero
temperature T > 0, the putative QSL is adiabatically con-
nected to a high-temperature paramagnet. However, some
three-dimensional spin liquids, particularly the so-called Z2

states with Ising-like emergent gauge fields, are more robust,
and can persist in the form of a distinct low-temperature phase
up to a nonzero critical temperature.

While QSLs are extremely interesting from a concep-
tual perspective, it is far from obvious to realize them
in experimental materials or even realistic spin Hamilto-
nians. Traditionally, most studies considered spin-rotation-

invariant Heisenberg systems on geometrically frustrated two-
dimensional lattices. However, it has recently been recognized
that magnetic systems with strong spin-orbit coupling provide
a promising alternative avenue to QSLs [3–6]. In general,
these systems have a large number of magnetically anisotropic
terms, leading to exchange frustration as well as an extended
parameter space, and are thus expected to harbor QSL ground
states on a wide range of two- and three-dimensional lattices.

The most widely studied such three-dimensional structure
is the pyrochlore lattice, consisting of periodically arranged
corner-sharing tetrahedra. Experimentally, two large fami-
lies of materials, the pyrochlore spinels and the rare-earth
pyrochlores, provide vast real-world possibilities [7] to test
theoretical predictions on the pyrochlore lattice. In the 2000s,
it was predicted that certain antiferromagnetic pyrochlore
models could support a U(1) QSL phase [8] [the “U(1)” means
that the gauge field belongs to the Lie algebra of the U(1)
group and that the emergent charges are characterized by
integers related to the generating charge of U(1)], which is
a simulacrum of electromagnetic gauge theory in high-energy
physics. In 2011/2012, theoretical applications of this idea to
realistic models emerged, suggesting the presence of a U(1)
spin liquid in the so-called “quantum spin ice” pyrochlore ma-
terials [9,10]. So far, these predictions remain to be confirmed
in experiments, even though there are some promising recent
developments [11–19].
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Another thread recurring in the experimental study of rare-
earth pyrochlores is the close competition amongst several
weakly ordered states [20]. Several hints at this competition
are present in the family of Yb pyrochlores, Yb2B2O7, which
have a systematic structural evolution across the series B =
Ge, Ti, Pt, Sn. While the germanate orders antiferromagnet-
ically, the remaining members of the family have ferromag-
netic ground states, suggesting the close proximity of at least
these two phases. In each material, the specific heat is peaked
at a temperature of 2–4 K, while the maximum ordering
temperature is 0.6 K in the germanate and half or less than that
in the rest of the family. These findings indicate the onset of
strong spin correlations well above the ordering temperature,
but an inability of the system to decide upon its ground
state. The weak ferromagnetic ground state in Yb2Ti2O7 is
also famously mercurial, changing its character substantially
with sample variations [21]. Theoretically, a classical analysis
indeed finds close competition amongst several distinct phases
[22], but a quantum picture of this phase competition is not yet
available.

In this work, we combine the two threads of phase com-
petition and QSL physics by utilizing the connection of
symmetry to emergent gauge structure. This connection is
mathematically described by the projective symmetry group
(PSG), proposed by Wen in 2002 [23], which encapsulates
the fact that, in a QSL, the group operations of the physical
symmetry group are interleaved with those of the emergent
gauge group. The embedding of the physical symmetries into
the PSG can then lead to a unification of distinct symmetry-
breaking orders that are unrelated in classical physics. Such a
unified description of seemingly unrelated magnetic orders is
the main motivation behind the present study.

The PSG also offers a straightforward method to classify
QSLs in the presence of symmetry. Concretely, the PSG
specifies a distinct set of transformation rules for the emergent
matter and gauge fields in each QSL phase, corresponding to
a given PSG class. Employing the PSG method, an entire zoo
of QSLs has been found on the square [24], triangular [25],
kagome [26], honeycomb [27], star [28], and hyperkagome
[29] lattices, to give a few notable examples. Generally, these
QSLs can be connected to magnetically ordered states by
considering the condensation patterns that emerge when the
energy of a bosonic QSL excitation is brought to zero [30–32].

In this paper, we employ the PSG method to obtain a full
classification of QSLs with Z2 gauge structure on the py-
rochlore lattice using Schwinger bosons [33–39]. While stan-
dard parton constructions also allow U(1) and SU(2) gauge
structures, we consider the Z2 gauge structure for two reasons.
First, it is the simplest one: Quasiparticles in a Z2 QSL are
weakly interacting because the gauge field itself is gapped.
Second, it is also the richest one: A single U(1) PSG class
can be further split into several Z2 PSG classes if the gauge
symmetry is lowered from U(1) to Z2. We use Schwinger
bosons rather than Abrikosov fermions [40] to immediately
obtain a bosonic excitation, the elementary Schwinger boson
itself, that can condense at the phase transition out of the QSL.

As a result of our PSG analysis, we find 16 different Z2

QSLs on the pyrochlore lattice. We use a standard mean-field
description to study the 0-flux QSLs, in which translation
symmetry acts linearly (i.e., as in classical physics) on the

Schwinger bosons. The PSG method also allows us to de-
scribe phase transitions from these QSLs to magnetically or-
dered phases. Condensing the Schwinger bosons, we identify
15 different ordering patterns and call them “paraphases,”
since each of them actually unifies several distinct symmetry-
breaking orders. We find that, generically, these orders are
intertwined, necessarily appearing together at the phase tran-
sition out of the QSL, and that conventional spin orders are
in many cases accompanied by inversion-breaking “hidden”
orders.

The phase transitions corresponding to these 15 paraphases
fall into two dynamical classes of z = 1 and z = 2 quantum
criticality, exhibiting critical modes with linear and quadratic
dispersions, respectively. We uncover the mathematical struc-
ture discriminating between these two classes, related to
Hamiltonian diagonalizability, and derive their effective field
theories, along with their most important experimental sig-
natures. In particular, we use mean-field theory to compute
static and dynamic spin structure factors for each of the 15
paraphases. Finally, by comparing the magnetic orders asso-
ciated with each paraphase to those observed in experiments,
we identify a set of likely QSL phases that might be relevant
to real-world pyrochlore materials.

The rest of the paper is organized as follows. First, in
Sec. II, we summarize our main results on the different QSL
phases and the corresponding phase transitions out of them
(“paraphases”). In Sec. III, we employ the PSG method,
deriving the PSG classes, and constructing a mean-field theory
for each PSG class. In Sec. IV, we analyze the mean-field
theories of our QSL phases, describing phase transitions out
of them, and establishing the two dynamical classes with
critical exponents z = 1, 2. In Sec. V, we move on to the
experimental signatures of our phase transitions, describing
the heat capacity and the spin structure factors, and also
introducing the concept of intertwined and hidden orders.
Finally, in Sec. VI, we discuss our results and connect them to
existing experimental data. Detailed derivations and lengthy
formulas are given in the Appendices for reference.

II. MAIN RESULTS

From our PSG classification scheme, we find that there
are 16 different Z2 PSG classes of Schwinger bosons, cor-
responding to 16 inequivalent Z2 QSL phases, on the py-
rochlore lattice. Out of these 16 different QSLs, there are
eight 0-flux QSLs and eight π -flux QSLs. For each QSL,
we construct a general quadratic mean-field Hamiltonian for
the Schwinger bosons containing all onsite, nearest-neighbor
(NN), and next-nearest-neighbor (NNN) terms allowed by
symmetry. However, for simplicity, we focus on the 0-flux
QSLs and restrict the mean-field Hamiltonian to onsite and
NN terms. At such a NN level, two out of eight 0-flux
Hamiltonians have an enlarged U(1) gauge symmetry, and
we thus concentrate on the remaining six 0-flux Hamiltonians
with Z2 gauge symmetry.

In each of the six corresponding Z2 QSL phases, the
Schwinger bosons can be identified as elementary spinon
excitations carrying fractionalized quantum numbers. If the
chemical potential is tuned to its critical value, there is a
phase transition driven by the condensation of these bosonic
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TABLE I. Most important characteristics of the 15 critical “paraphases” corresponding to phase transitions between the six 0-flux
Z2 spin-liquid phases [labeled as 0-(nC6S nST1 nC6

)] and a rich variety of magnetically ordered phases. Each paraphase is labeled by the
condensation momenta (see Table IV for notation) where the spinons become gapless and condense at the phase transition. For each critical
theory, experimental signatures are given in terms of the dynamical critical exponent, the low-temperature behavior of the heat capacity, and the
low-energy features of the dynamic spin structure factor (see Fig. 4). For each magnetically ordered phase obtained by spinon condensation, it
is specified whether various orders are generically present (+) or absent (0), including conventional spin orders, such as all-in-all-out (AIAO)
order, XY antiferromagnetic (AFM) order [�2,3], ferromagnetic (FM) order, and Palmer-Chalker (PC) order [�4], as well as inversion-breaking
“hidden” orders.

Spin- Critical “paraphases” Magnetically ordered phases

liquid Condensation Dynamical Heat capacity: Spin orders Hidden

phases momenta exponent CV ∝ T x Dynamic spin structure factor AIAO AFM FM PC orders

0-(001)

� z = 2 x = 3
2 Gapless at � 0 0 + 0 +

Weak in the low-energy limit
L z = 2 x = 3

2 Gapless at � and X + + + + +
Weak in the low-energy limit

� z = 2 x = 1 Gapless along � → X and K → � → L → U Unclear at NN level +
Low-energy weight at all momenta

0-(010)
� z = 2 x = 3

2 Gapless at � 0 0 + + 0
Weak in the low-energy limit

� z = 1 x = 2 Gapless along � → X and K → � → L → U Unclear at NN level 0

0-(100)
� z = 2 x = 3

2 Gapless at � + + 0 0 0
Weak in the low-energy limit

� z = 1 x = 2 Gapless along � → X and K → � → L → U Unclear at NN level 0

0-(101)

� z = 2 x = 3
2 Gapless at � + + 0 0 +

Weak in the low-energy limit
W z = 1 x = 3 Gapless at �, X, and 2

3 K + + + + +
Singular in the low-energy limit

X z = 1 x = 3 Gapless at � and X + + 0 + +
Singular in the low-energy limit

0-(110)
� z = 1 x = 3 Gapless at � 0 + 0 0 0

Characteristic lower edge of the spectrum
� z = 1 x = 2 Gapless along � → X and K → � → L → U Unclear at NN level 0

0-(111)

� z = 2 x = 3
2 Gapless at � + + 0 0 +

Weak in the low-energy limit
W z = 1 x = 3 Gapless at �, X, and 2

3 K + + + + +
Singular in the low-energy limit

X z = 1 x = 3 Gapless at � and X + + + 0 +
Singular in the low-energy limit

spinons. Depending on the particular patterns of spinon con-
densation, we describe 15 different critical “paraphases” out
of the six QSL phases. The most important characteristics of
these paraphases, labeled by their parent QSL phases and the
condensation momenta of the spinons, are tabulated in Table I.

For each paraphase, the spinon spectrum is gapless at the
critical point by construction. The effective field theory of the
critical point is characterized by the low-energy spinon dis-
persion, ω ∼ kz, in terms of the dynamical critical exponent,
which is either z = 1 or z = 2. These two dynamical classes
give rise to distinct sets of experimental signatures. For a start,
the power-law exponent x of the low-temperature heat capac-
ity, CV ∼ T x, is determined by the dynamical exponent z and
the dimensionality of the condensation manifold, i.e., if the
spinons condense at points or along lines in the Brillouin zone
(BZ). Also, the dynamical exponent gives rise to universal
features in the static and dynamic spin structure factors, which
appear on top of more detailed characteristics specific to given
paraphases. In particular, when approaching zero energy, the

spectral weight in the dynamic structure factor vanishes for
z = 2 but diverges for z = 1; the divergence in the z = 1
case is also observable as a nonanalytic behavior in the static
structure factor.

To establish a connection between spinon condensation
and the resulting magnetic orders, restricted to zero momen-
tum for simplicity, we investigate the transformation rules
of the possible order parameters under the point group Oh

of the pyrochlore lattice. For each paraphase, we deter-
mine which magnetic orders generically appear, concentrating
in particular on the conventional spin orders seen in the
experiments: the all-in-all-out, antiferromagnetic, ferromag-
netic, and Palmer-Chalker orders. In doing so, we learn two
important general lessons on magnetic orders obtained by
spinon condensation. First, several distinct orders may be
intertwined, i.e., they necessarily accompany each other, even
though they are completely unrelated on the classical level.
Second, the conventional spin orders may emerge together
with more exotic inversion-breaking “hidden” orders.
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III. PROJECTIVE SYMMETRY GROUP

A. Lattice symmetries

We first introduce the symmetries of the pyrochlore lattice;
the convention and notation we establish here is used through-
out the rest of the paper. The pyrochlore lattice consists of four
FCC-type sublattices, which we label by μ = 0, 1, 2, 3. To
index the sites of the lattice, we use two coordinate systems:
the global cartesian coordinates (GCCs) and the sublattice-
indexed pyrochlore coordinates (SIPCs). The GCCs are the
standard frame coordinates for the FCC cube of edge length
a = 1. The SIPCs are spanned by the lattice vectors ê1, ê2,
and ê3, which are expressed in GCCs as

ê1 = 1
2 (0, 1, 1), (1a)

ê2 = 1
2 (1, 0, 1), (1b)

ê3 = 1
2 (1, 1, 0). (1c)

We define ε̂i = 1
2 êi (i = 1, 2, 3) to be the displacement vec-

tors of the μ = 1, 2, 3 sublattices from the μ = 0 sublattice,
where we understand ε̂0 = ê0 = 0. The relation between the
SIPCs and the GCCs is then

(r1, r2, r3)μ = �rμ = �r + ε̂μ SIPC

= 1
2 (r2 + r3, r3 + r1, r1 + r2) + 1

2 êμ. GCC

The space group of the pyrochlore lattice is the cubic
space group Fd3m (No. 227 [41]), minimally generated by
the translations T1, T2, and T3 along the lattice vectors ê1, ê2,
and ê3, a sixfold rotoreflection C6 around the [111] axis (i.e.,
around ê1 + ê2 + ê3), and a nonsymmorphic screw operation
S, which is the composition of a twofold rotation around
ê3 and a translation by ε̂3. These space-group generators
transform the SIPCs according to

T1 : (r1, r2, r3)μ → (r1 + 1, r2, r3)μ,

T2 : (r1, r2, r3)μ → (r1, r2 + 1, r3)μ,

T3 : (r1, r2, r3)μ → (r1, r2, r3 + 1)μ,

C6 : (r1, r2, r3)0 → (−r3,−r1,−r2)0,

(r1, r2, r3)1 → (−r3,−r1 − 1,−r2)2,

(r1, r2, r3)2 → (−r3,−r1,−r2 − 1)3,

(r1, r2, r3)3 → (−r3 − 1,−r1,−r2)1,

S : (r1, r2, r3)0 → (−r1,−r2, r1 + r2 + r3)3,

(r1, r2, r3)1 → (−r1 − 1,−r2, r1 + r2 + r3 + 1)1,

(r1, r2, r3)2 → (−r1,−r2 − 1, r1 + r2 + r3 + 1)2,

(r1, r2, r3)3 → (−r1,−r2, r1 + r2 + r3 + 1)0. (2)

Note that we can write the rotoreflection as C6 = IC3, where I
is an inversion with respect to the origin and C3 is a threefold
rotation around the [111] axis. We further have I = C

3
6 and

C3 = C
4
6, therefore the generators {I,C3} are equivalent to the

generator C6; we choose a single generator C6 to reduce the
number of generators and group relations.

The point group of the pyrochlore lattice, formally defined
as the quotient group of the space group and the group of pure
translations, is the cubic group Oh. This group is minimally

generated by C6 and S′, where S′ is a twofold rotation around
ê3, distinguished from the space-group generator S by the lack
of a subsequent translation along ε̂3. A detailed description of
the point-group structure is given in Appendix A.

In addition to the pyrochlore space-group symmetries,
time-reversal symmetry is also present in the pyrochlore mate-
rials. The corresponding time-reversal operation T commutes
with all space-group operations and satisfies T 2 = −1 when
acting on a half-integer spin state. The complete list of inde-
pendent group relations defining the symmetry group is then

TiTi+1T −1
i T −1

i+1 = 1, i = 1, 2, 3,

C
6
6 = 1,

S2T −1
3 = 1,

C6TiC
−1
6 Ti+1 = 1, i = 1, 2, 3,

STiS
−1T −1

3 Ti = 1, i = 1, 2,

ST3S−1T −1
3 = 1, (3)

(C6S)4 = 1,(
C

3
6S

)2 = 1,

T 2 = −1,

T OT −1O−1 = 1, O ∈ {T1, T2, T3,C6, S}.
The notation in Eq. (3) is understood as i + 3 ≡ i.

B. Projective symmetry group

In this subsection, we classify all possible Z2 quantum spin
liquids that are compatible with the symmetries of the py-
rochlore lattice. We first write the spins in terms of Schwinger
boson bilinears as

Ŝα
�rμ

= 1
2 b†

�rμ
σ αb�rμ

, α = x, y, z, (4)

where b�rμ
= (b�rμ,↑

b�rμ,↓), and σ x,y,z are the Pauli matrices (also

denoted by σ 1,2,3, respectively). Physically, the Schwinger
bosons b�rμ

describe the deconfined spinon excitations of the
quantum spin liquid and, on the mean-field level, they are
governed by a quadratic Hamiltonian, commonly known as
the mean-field ansatz.

It is important to emphasize that the transformation in
Eq. (4) is not faithful as it enlarges the local Hilbert space at
each site �rμ. Consequently, there is a local gauge redundancy
for the Schwinger bosons. Indeed, any site-dependent U(1)
phase transformation

G : b�rμ
→ eiφ(�rμ )b�rμ

(5)

leaves the spins Ŝα
�rμ

invariant. The physical Hilbert space can
in principle be retained by enforcing the constraint∑

σ=↑,↓
b†

�rμ,σ
b�rμ,σ

= 1 (6)

at each site �rμ of the lattice.
In a spin-orbit coupled system, under a space-group op-

eration O the spins also go through a rotation as O : Ŝα
�rμ

→
UOŜα

O(�rμ )U
†
O = 1

2 b†
O(�rμ )UOσαU †

ObO(�rμ ), where UO is the SU(2)
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rotation matrix associated with the operation O (when O is a
pure translation, the SU(2) matrix UO is just the identity ma-
trix). We therefore naïvely expect that the spinons transform
as

O : b�rμ
→ U †

ObO(�rμ ). (7)

However, due to the U(1) gauge redundancy, any operation
O is generally accompanied by a site-dependent U(1) phase
transformation

GO : b�rμ
→ eiφO (�rμ )b�rμ

, (8)

and the spinons thus actually transform as

Õ = GO ◦ O : b�rμ
→ eiφO[O(�rμ )]U †

ObO(�rμ ), (9)

where the symbol “◦” indicates that the gauge-enriched oper-
ation Õ is a composition of the pure symmetry operation O
and the gauge transformation GO.

Under a time reversal T of the system, the spins transform
as T : Ŝα

�rμ
→ K†UT Ŝα

�rμ
U †
T K, where UT = iσ 2, while K =

K† = K−1 applies complex conjugation to everything on its
right. Once again, combining the naïve transformation rule for
the spinons,

T : b�rμ
→ KU †

T b�rμ
, (10)

and the accompanying U(1) phase transformation,

GT : b�rμ
→ eiφT (�rμ )b�rμ

, (11)

the spinons are found to transform as

T̃ = GT ◦ T : b�rμ
→ eiφT (�rμ )KU †

T b�rμ
. (12)

Note that [K,UT ] = 0 because UT is real.
For a quantum spin liquid, the gauge-enriched operations

Õ and T̃ generate the symmetry group of the mean-field
ansatz, commonly known as the projective symmetry group

(PSG). To enumerate all quantum spin liquids, we need to
find all distinct PSG solutions, i.e., all gauge-inequivalent
solutions for the gauge transformations GO and GT that are
consistent with the symmetry group of the lattice, including
space-group symmetries and time-reversal symmetry. In par-
ticular, for each group relation [see Eq. (3)] taking the general
form of

O1 ◦ O2 ◦ · · · = 1, (13)

we consider the gauge-enriched group relation

Õ1 ◦ Õ2 ◦ · · · = (GO1 ◦ O1) ◦ (GO2 ◦ O2) ◦ · · · = G, (14)

where G is a pure gauge transformation, thus corresponding
to the identity operation for the spins. Being an element of the
PSG by definition, G is also an element of the invariant gauge
group (IGG), the group of all gauge transformations that leave
the mean-field ansatz invariant. In most cases, such gauge
transformations are exclusively “global” (i.e., site indepen-
dent), and the IGG is thus a subgroup of U(1), typically Z2 or
U(1), corresponding to Z2 and U(1) spin liquids, respectively.
Since we are interested in classifying Z2 spin liquids, we
consider IGG = Z2 in the following. The only two elements
of the IGG are then G = einπ with n = {0, 1}.

For any group relation in terms of exclusively space-group
operations, taking the form of Eq. (13), the gauge-enriched
group relation in Eq. (14) can be rewritten as

GO1 ◦ (
O1 ◦ GO2 ◦ O−1

1

)
◦ (

O1 ◦ O2 ◦ GO3 ◦ O−1
2 ◦ O−1

1

) ◦ · · · = G. (15)

Using the general conjugation rule

Oi ◦ GO j ◦ O−1
i : b�rμ

→ eiφO j [O−1
i (�rμ )]b�rμ

, (16)

following directly from Eqs. (7) and (8), this group relation
then becomes a pure phase equation:

φO1 (�rμ) + φO2

[
O−1

1 (�rμ)
] + φO3

{
O−1

2

[
O−1

1 (�rμ)
]} + · · · = nπ mod 2π. (17)

For group relations involving time reversal, special care must be taken due to the presence of the complex conjugation K. Using
the modified conjugation rule

T ◦ GO ◦ T −1 : b�rμ
→ KU †

T eiφO (�rμ )UT K†b�rμ
= e−iφO (�rμ )b�rμ

, (18)

the last group relation in Eq. (3) translates into

φT (�rμ) − φT [O−1(�rμ)] − 2φO(�rμ) = nπ mod 2π, (19)

while the penultimate group relation T 2 = −1 gives rise to
a trivial equation due to the cancellation between the phase
factors eiφT (�rμ ) and e−iφT (�rμ ).

The PSG classification is obtained by listing all group
relations and finding all solutions of the corresponding phase
equations [see Eqs. (17) and (19)] for the Z2 parameters n
as well as the phases φO(�rμ) and φT (�rμ). We emphasize
that distinct solutions, describing distinct spin liquids, must
be gauge inequivalent. Indeed, by means of a general gauge
transformation G [see Eq. (5)], the gauge-enriched group

relations in Eq. (14) can be rewritten as(
G ◦ GO1 ◦ O1 ◦ G−1

) ◦ (
G ◦ GO2 ◦ O2 ◦ G−1

) ◦ · · · = G,

(20)
transforming the phases φOi (�rμ) according to

φOi (�rμ) → φOi (�rμ) + φ(�rμ) − φ
[
O−1

i (�rμ)
]
, (21)

and thus indicating that two seemingly distinct solutions for
the phases might in fact be equivalent.

The detailed solution of the PSG equations is presented in
Appendix B. The PSG results for the phases are

φT1 (�rμ) = 0, (22a)

φT2 (�rμ) = n1πr1, (22b)

φT3 (�rμ) = n1π (r1 + r2), (22c)
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φT (�rμ) = 0, (22d)

φC6
(�rμ) =

[nC6

2
+ (n1 + nST1 )δμ=1,2,3

]
π

+n1δμ=2,3πr1 + n1δμ=2πr3

+n1(r1r2 + r1r3), (22e)

φS (�rμ) =
[

(−)δμ=1,2,3
n1 + nST1

2
+ δμ=2nC6S

]
π

+ (
n1δμ=1,2 − nST1

)
πr1 + (

n1δμ=2 − nST1

)
πr2

+ n1δμ=1,2πr3 − 1

2
n1π (r1 + r2)(r1 + r2 + 1),

(22f)

where n1, nC6S, nST1 , and nC6
are four Z2 parameters, each

being either 0 or 1. Therefore, we find that there are 16
gauge-inequivalent Z2 PSG classes, corresponding to distinct
Z2 quantum spin liquids, which we label by the notation
n1π -(nC6S nST1 nC6

). The four Z2 parameters have concrete
interpretations:

(i) The parameter n1 comes from the three PSG equations
corresponding to TiTi+1T −1

i T −1
i+1 = 1, which are required by

the PSG to share the same Z2 parameter. Physically, it quan-
tifies the Aharonov-Bohm (AB) phase a spinon accumulates
while moving on the closed edge of a plaquette, which is
traversed by such a sequence of translations. In the case of
n1 = 1 (n1 = 0), the AB phase is π (0), corresponding to a
π -flux (0-flux) spin liquid.

(ii) The parameter nC6
comes from the PSG equation cor-

responding to C
6
6 = 1. Physically, it describes the AB phase

a spinon accumulates after completing six subsequent sixfold
rotoreflections. Together with nST1 , it determines whether or
not the sixfold rotoreflection C6 acts projectively.

(iii) The parameter nST1 comes from the PSG equation
corresponding to ST1S−1T −1

3 T1 = 1. Physically, it describes
the AB phase a spinon accumulates after completing the
operation sequence ST1S−1T −1

3 T1. Together with n1 and nC6S
it determines whether or not the screw operation S acts
projectively.

(iv) The parameter nC6S comes from the PSG equation
corresponding to (C6S)4 = 1. Physically, it describes the AB
phase a spinon accumulates after completing the operation
sequence (C6S)4.

C. Construction of mean-field ansätze

We are now in the position to construct the mean-field
ansatz for each PSG class. The most general mean-field ansatz
for bosonic spinons can be written as

H =
∑
�rμ,�r′

ν

b†
�rμ

uh
�rμ,�r′

ν
b�r′

ν
+ b†

�rμ
up

�rμ,�r′
ν

(
b†

�r′
ν

)T + H.c., (23)

where uh
�rμ,�r′

ν
and up

�rμ,�r′
ν

are 2 × 2 matrices acting on spin space,
and the labels “h” and “p” indicate hopping and pairing terms,
respectively.

The PSG operators Õ and T̃ are the symmetry operators
of the Hamiltonian H , meaning Õ : H → H and T̃ : H →

H . Since the spinons transforms under Õ and T̃ according to
Eqs. (9) and (12), the matrices uh and up must transform as

G†
O[O(�rμ)]UOuh

�rμ,�r′
ν
U †
OGO[O(�r′

ν )] = uh
O(�rμ ),O(�r′

ν ), (24a)

G†
O[O(�rμ)]UOup

�rμ,�r′
ν
U T
OG†

O[O(�r′
ν )] = up

O(�rμ ),O(�r′
ν ) (24b)

for space-group elements O ∈ {T1, T2, T3,C6, S} and as

G†
T (�rμ)UT

(
uh

�rμ,�r′
ν

)∗
U †
T GT (�r′

ν ) = uh
�rμ,�r′

ν
, (25a)

G†
T (�rμ)UT

(
up

�rμ,�r′
ν

)∗
U T
T G†

T (�r′
ν ) = up

�rμ,�r′
ν

(25b)

for time reversal T . The respective SU(2) matrices are

UT1 = UT2 = UT3 = σ 0, UT = iσ 2,

UC6
= UC3 = e− i

2
2π
3

(1,1,1)√
3

·�σ
, US = e− i

2 π
(1,1,0)√

2
·�σ

,
(26)

where σ 0 = 12×2 is the identity matrix. Suppressing the site
indices for simplicity, we parametrize the matrices uh and up

in the general forms

uh = aσ 0 + i(bσ 1 + cσ 2 + dσ 3), (27a)

up = (a′σ 0 + i(b′σ 1 + c′σ 2 + d ′σ 3)) · iσ 2, (27b)

where a, b, c, d, a′, b′, c′, d ′ are all complex. The additional
factor iσ 2 appearing in up ensures that (a, b, c, d ) and
(a′, b′, c′, d ′) transform in the same way under the respective
unitary conjugations uh → UuhU † and up → UupU T for any
U ∈ SU(2). In both cases, the singlet parameters a and a′

transform as scalars, while the triplet parameters �b = (b, c, d )
and �b′ = (b′, c′, d ′) transform as SO(3) vectors. Indeed, any
SU(2) rotation leaves the singlet parameters invariant and per-
forms the corresponding SO(3) rotation on the triplet vectors:
�b → R�b and �b′ → R�b′. For the generators C6 and S, these
SO(3) rotations are

RC6 =
⎛⎝ 1

1
1

⎞⎠, RS =
⎛⎝ 1

1
−1

⎞⎠, (28)

while the translations T1,2,3 correspond to trivial SO(3) rota-
tions: RT1,2,3 = 13×3.

To reduce the number of parameters in the mean-field
ansatz, we first consider the effect of time reversal. Substi-
tuting Eq. (27) into Eq. (25), and taking GT (�rμ) = 1 from
Eq. (22d), we obtain (a, b, c, d ) = (a∗, b∗, c∗, d∗) as well
as (a′, b′, c′, d ′) = (a′∗, b′∗, c′∗, d ′∗) and deduce that all eight
parameters of uh and up are real.

Turning to space-group symmetries and using Eq. (24), we
can then establish relations between the respective parameters
of uh

�rμ,�r′
ν

and up
�rμ,�r′

ν
that correspond to different bonds 〈�rμ, �r′

ν〉 of
the lattice. In fact, the entire mean-field ansatz in Eq. (23) can
be constructed up to next-nearest-neighbor level by specifying
the eight real parameters for each of the following three
representative bonds:

(i) onsite “bond” �00 → �00:

uh
�00,�00

= ασ 0 + i(βσ 1 + γ σ 2 + δσ 3),

up
�00,�00

= (α′σ 0 + i(β ′σ 1 + γ ′σ 2 + δ′σ 3)) · iσ 2, (29)
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TABLE II. Independent mean-field parameters and constraints for the sixteen PSG classes. The parameters not mentioned in this table are
enforced to be zero by the constraints. The mean-field Hamiltonians for some PSG classes appear to be U(1) on the NN level, as indicated by
the comment “U(1) at NN,” but recover their Z2 character upon including NNN terms. Note that a nonzero onsite chemical potential μ = α is
allowed in all PSG classes.

Class Independent nonzero parameters Constraints

n1π -(nC6SnST1 nC6
) Onsite NN NNN Onsite NN NNN Note

0-(000) μ a, c A, B, D, B′ c = −d B = C, B′ = −C′ U(1) at NN
0-(001) μ a, c, b′ A, B, D, B′ c = −d , B = C, B′ = −C′

0-(010) μ, ν a, c, b′ A, B, D, A′, B′, D′ β ′ = δ′ = γ ′ ≡ ν c = −d , B = C, B′ = C′

0-(011) μ, a, c A, B, D, A′, B′, D′ c = −d , B = C, B′ = C′ U(1) at NN
0-(100) μ, b, c′ A, B, D, B′ c′ = d ′, B = C, B′ = −C′

0-(101) μ, b, a′, c′ A, B, D, B′ c′ = −d ′, B = C, B′ = −C′

0-(110) μ, ν b, a′, c′ A, B, D, A′, B′, D′ β ′ = δ′ = γ ′ ≡ ν c′ = −d ′, B = C, B′ = C′

0-(111) μ, b, c′ A, B, D, A′, B′, D′ c′ = d ′, B = C, B′ = C′

π -(000) μ, ν a, c, b′ B, B′ β ′ = δ′ = γ ′ = ν c = −d B = −C, B′ = −C′

π -(001) μ a, c B, B′ c = −d B = −C, B′ = −C′ U(1) at NN
π -(010) μ a, c B, A′, B′, D′ c = −d B = −C, B′ = C′

π -(011) μ, a, c, b′ B, A′, B′, D′ c = −d B = −C, B′ = C′

π -(100) μ, ν b, a′, c′ B, B′ β ′ = δ′ = γ ′ = ν c′ = −d ′ B = −C, B′ = −C′ U(1) at NN
π -(101) μ, b, c′ B, B′ c′ = d ′ B = −C, B′ = −C′

π -(110) μ b, c′ B, A′, B′, D′ c′ = d ′ B = −C, B′ = C′

π -(111) μ, b, a′, c′ B, A′, B′, D′ c′ = −d ′ B = −C, B′ = C′

(ii) nearest-neighbor (NN) bond �00 → �01:

uh
�00,�01

= aσ 0 + i(bσ 1 + cσ 2 + dσ 3),

up
�00,�01

= (a′σ 0 + i(b′σ 1 + c′σ 2 + d ′σ 3)) · iσ 2, (30)

(iii) next-nearest-neighbor (NNN) bond �01 → �02 − ê2:

uh
�01,�02−ê2

= Aσ 0 + i(Bσ 1 + Cσ 2 + Dσ 3),

up
�01,�02−ê2

= (A′σ 0 + i(B′σ 1 + C′σ 2 + D′σ 3)) · iσ 2. (31)

D. Nontrivial parameter constraints

When constructing the entire mean-field ansatz from the
representative bonds in Eqs. (29)–(31), the significance of
using Eq. (24) is twofold. On one hand, most space-group
elements map the representative bonds onto different bonds,
thereby determining the matrices uh

�rμ,�r′
ν

and up
�rμ,�r′

ν
for all

symmetry-related bonds. On the other hand, some space-
group elements map the representative bonds onto themselves,
thereby leading to nontrivial constraints on the original 24
parameters.

For simplicity, we first concentrate on the 0-flux PSG
classes. Since translation is trivial [see Eqs. (22a)–(22c)], we
can restrict our attention to a single unit cell, within which
bonds are mapped onto each other by elements of the point
group. Since the point group Oh consists of 48 elements,
and there are four onsite, 12 NN, and 24 NNN bonds within
a single unit cell, which can be viewed as three orbits in
the point group, the orbit-stabilizer theorem [42] implies that
the onsite, NN, and NNN representative bonds are mapped
onto themselves by 12, 4, and 2 point-group elements, re-
spectively. When a bond is mapped onto itself by such a
point-group element, nontrivial constraints are obtained on the

parameters by comparing the new and the old expressions for
uh

�rμ,�r′
ν

and up
�rμ,�r′

ν
. These constraints are solved in Appendix D.

In Table II, we present the nonzero parameters of the
mean-field ansatz for each of the eight 0-flux and each of
the eight π -flux PSG classes up to NNN level, along with
any constraints between the parameters. From these nonzero
parameters, the entire mean-field ansatz can be constructed
via Eq. (24). Note that some of the mean-field ansätze in
Table II have an enlarged U(1) gauge symmetry at the NN
level which only breaks down to Z2 when nonzero NNN terms
are included.

IV. ANALYSIS OF THE MEAN-FIELD ANSÄTZE

The previous section explains how the method of PSG
can be used to obtain classes of 0-flux and π -flux mean-field
ansätze, which describe distinct phases of Z2 quantum spin
liquids on the mean-field level. In this section, we focus
on the 0-flux mean-field ansätze and study their physical
properties in great detail. Since our main goal is to explore
the relationship between spin liquids and magnetic orders
adjacent to them, we primarily concentrate on the critical
field theories and the condensation patterns (i.e., the resulting
magnetic orders).

In each mean-field ansatz, we neglect the NNN terms for
simplicity, restricting our attention to onsite and NN terms.
Since we are interested in Z2 spin liquids, and two out of
eight 0-flux mean-field ansätze have U(1) gauge symmetry at
the NN level, we only consider the remaining six mean-field
ansätze in the rest of the paper.

A. Symmetry properties

The PSG method is rooted in symmetry analysis, and
it is important to understand how the PSG governs the
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symmetry of the mean-field Hamiltonians. By means of a
Fourier transformation, a general translation-invariant 0-flux
mean-field Hamiltonian of the form of Eq. (23) can be written
in momentum space as

H =
∑
�k∈BZ

B†
�kH(�k)B�k, (32)

where B�k = (b�k,0
, b�k,1

, b�k,2
, b�k,3

, b†
−�k,0

, b†
−�k,1

, b†
−�k,2

, b†
−�k,3

)
T

is a 16-component vector of operators. The matrix H(�k) has
the standard Bogoliubov form

H(�k) =
(

Uh(�k) Up(�k)

U †
p (�k) U T

h (−�k)

)
, (33)

where Uh(�k) = U †
h (�k) and Up(�k) = U T

p (−�k), corresponding
to hopping and pairing terms, respectively.

The Hamiltonian matrix H(�k) combines momenta ±�k and
thus assigns a full set of physical degrees of freedom to only
half of the BZ. This redundancy in the description leads to
an effective charge-conjugation “symmetry,” corresponding to
the matrix-level constraint

U −1
C H∗(�k)UC = H(−�k), (34)

where we define UC = σ 1 ⊗ 18×8. The antiunitary charge-
conjugation operator is then given by UCK, where K denotes
complex conjugation.

Considering physical symmetries, time reversal T gives
rise to an analogous matrix-level constraint

U −1
T H∗(�k)UT = H(−�k), (35)

where we define UT = 18×8 ⊗ (iσ 2). Correspondingly, the
antiunitary time-reversal operator is UT K. Note that time
reversal acts nonprojectively in all PSG classes because we
use gauge freedom to fix φT (�rμ) = 0.

In contrast, inversion I = C
3
6 acts projectively on the

spinons and generates the matrix-level constraint

U −1
I (�k)H(�k)UI (�k) = H(−�k), (36)

where UI (�k) = (σ 3)nC6 ⊗ (UJ · I2(�k)) ⊗ σ 0, in terms of the
4 × 4 diagonal form-factor matrix

I (�k) = Diag(1, ei�k·ε̂1 , ei�k·ε̂2 , ei�k·ε̂3 ), (37)

and the diagonal matrix UJ = Diag((−1)nST1 , 1, 1, 1).
The symmetries C, T , and I result in important general

spectral features. First, the symmetry I ◦ T guarantees that
each energy level is doubly degenerate, according to Kramers
theorem. Second, the symmetry I ◦ C leads to an additional
double degeneracy for any non-zero-energy level, which is
connected to the redundant description in Eqs. (32) and (33).
The two symmetries together thus result in a generic fourfold
degeneracy at each energy level E > 0 shared by momenta
±�k. Note that the degeneracy may be smaller or larger at
special time-reversal-invariant momenta (�k = −�k) because
there are half as many physical degrees of freedom but, on
the other hand, pure point-group symmetries (e.g., inversion)
may lead to additional degeneracy.

The degeneracy of zero-energy levels is more subtle as it
may be affected by the diagonalizability of the Hamiltonian

matrix H(�k). Since the low-energy physics is the main focus
of our study, this issue will be addressed in a separate section
(see Sec. IV D).

B. Condensation domains: A “phase diagram” for paraphases

The use of bosonic mean-field Hamiltonians, obtained
from the spinon decomposition in Eq. (4), facilitates the study
of phase transitions between spin liquids and magnetically
ordered phases. Indeed, by lowering the chemical potential μ,
there is a critical chemical potential μc at which the bosonic
spinons undergo Bose-Einstein condensation at some critical
momenta �kc and the system thus develops magnetic order.

For the mean-field Hamiltonian in each PSG class, the
critical chemical potential μc is a function of the mean-field
parameters (see Table XI in Appendix E for details). While
the value of μc changes continuously with the mean-field
parameters, and this variation of μc is thus locally analytic,
it globally separates into domains across which the variation
of μc is nonanalytic. These domains of analyticity of μc are
reminiscent of the domains of analyticity of the free energy,
which define phases in thermodynamics. However, the anal-
ogy is not perfect as each such domain may give rise to several
true phases on crossing the phase transition into magnetic
order (i.e., when taking μ < μc). We therefore coin the word
paraphases to describe the distinct domains of analyticity of
μc. Restated, each paraphase is a connected region of phase
space in which the unstable manifold of condensation modes
varies smoothly.

Following this logic, the six mean-field Hamiltonians
are further divided into 15 paraphases (see Fig. 1). The
analytical expressions for the paraphase boundaries are
given in Table III, while the distinct critical momenta �kc =
�, L,�, X, W characterizing the various paraphases are ex-
plained in Table IV. Finally, the distinct expressions for
the critical chemical potentials μc in the 15 paraphases are
specified in Appendix E.

Note that, for the PSG classes with nST1 = 1, the PSG result
for the screw operation S depends on the spatial coordinates,
and it is convenient to shift the entire BZ by the translation
�k → �k − π (1, 1, 1). Such a shift of the BZ can be thought
of as a gauge transformation of the spinons, which does not
modify any physical quantities on the spin level. This shift
is assumed throughout the paper and is already taken into
account when specifying the condensation momenta in Fig. 1.

Note also that the region � supports a one-dimensional
manifold of condensation momenta. Since the only physical
symmetries are discrete space-group and time-reversal sym-
metries, this ground-state continuum must be accidental, i.e.,
the result of restricting the mean-field Hamiltonians to NN
level. Indeed, when including infinitesimal NNN parameters,
we see that the condensation regions are reduced from � to
either � or L.

C. Critical spectra

The critical spectra of the 15 paraphases, corresponding
to μ = μc in each case, are shown in Fig. 4, along with the
associated dynamical spin structure factors, obtained on the
mean-field level. Generically, each of these spectra consists
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FIG. 1. Condensation “phase diagrams” for the NN mean-field ansätze of the six 0-flux PSG classes 0-(001), 0-(010), 0-(100), 0-(101),
0-(110), and 0-(111). The complete phase diagram at NN level is 1D for classes 0-(100) and 0-(111), 2D for classes 0-(001) and 0-(101), and
3D for classes 0-(010) and 0-(110). The parameters (ψ, θ, φ) are related to the mean-field parameters according to Table V. For the classes
0-(010) and 0-(110), only a 2D slice with ψ = 0 is shown. The slices for other values of ψ share the same qualitative behavior as the ψ = 0
slice, e.g., they also consist of two phases � and �.

of four bands, which is consistent with the fourfold degener-
acy of each band. While certain spectra have distinguishing
features, not all paraphases can be fully distinguished by
their spectra, as some spectral characteristics are shared by
multiple paraphases. Among other features, several spectra
show a quasi-mirror-reflection symmetry (in terms of energy)
between two bands, which accounts for certain high-energy
features in the dynamic spin structure factor (see Sec. V B).

Most importantly, however, the critical paraphases can be
divided into two classes, characterized by linear and quadratic
dispersions at low energies. In terms of the dynamical critical
exponent z, defined by ω ∼ |k − kc|z and specified for each
paraphase in Table I, these two classes are labeled by z = 1
and z = 2, respectively. As we later show, paraphases with

z = 1 and z = 2 correspond to different critical field theories,
which determine the critical exponents of various physical
observables, such as the heat capacity and the magnetic sus-
ceptibility, and thus lead to distinct experimental signatures.

D. Hamiltonian diagonalizability

From a technical point of view, the distinction between
z = 1 and z = 2 theories becomes evident when we try to
diagonalize the Hamiltonian matrix in Eq. (33). In general,
we seek a change of basis for the bosonic operators,

B�k = V (�k)B̃�k, (38)

TABLE III. Paraphase boundaries of the NN ansätze.

Class Adjacency Paraphase boundary

0-(001) � vs L 2ac + c2 − b′2 = 0
� vs L 2a2 + ac − b′2 = 0 for c > a and ac − 4c2 + b′2 = 0 for c < a
� vs � 2a + c = b′ = 0

0-(010) � vs �
√

4(a − c)2 + 3(ν − b′)2 = −2a − 4c + √
3|ν + b′|

0-(100) � vs �
√

2b = ±c′

0-(101) � vs W −2b2 + 3c′2 + 2c′a′ + a′2 = 0, b > 0
X vs W −2b2 + 3c′2 + 2c′a′ + a′2 = 0, b < 0

0-(110) � vs �
√

(ν + a′ − 2c′)2 + 2(ν − a′)2 = 4b + √
3|ν + a′ + 2c′|

0-(111) � vs W
√

2b = ±c′

X vs W b = ±√
2c′
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TABLE IV. Possible sets of condensation momenta.

Label Description

� (0,0,0)

L π (δ1, δ2, δ3), where δ1, δ2, δ3 ∈ {1,−1}
� k(δ1, δ2, δ3), where k ∈ [−π, π ] and δ1, δ2, δ3 ∈ {1, −1}
X X1 = 2π (1, 0, 0), X2 = 2π (0, 1, 0), X3 = 2π (0, 0, 1)

W π (2,±1, 0) and all permutations of the three components

such that the Hamiltonian in Eq. (32) is of the form

H =
∑
�k∈BZ

B̃†
�k�(�k)B̃�k, (39)

where �(�k) = V †(�k)H(�k)V (�k) is a 16 × 16 diagonal matrix,
and V (�k) ∈ SU(8, 8) satisfies

V (�k)JV †(�k) = J, J = σ 3 ⊗ 18×8, (40)

ensuring that this change of basis is a canonical transforma-
tion. The matrices �(�k) and V (�k) can be found by solving the
generalized eigenvalue problem

JH(�k)a�k,i = λ�k,ia�k,i, (41)

where the eigenvalues λ�k,i give the diagonal elements of the

matrix J�(�k) and the eigenvectors a�k,i form the columns of

the matrix V (�k). However, since JH(�k) is not necessarily
Hermitian (or even normal), it is not guaranteed that such a
matrix V (�k) actually exists.

In particular, it may happen at the critical chemical poten-
tial μ = μc that there are not enough independent eigenvec-
tors for the zero eigenvalues λ�kc

= 0. Physically, this scenario
means that we cannot diagonalize our critical Hamiltonian by
a canonical transformation of bosonic creation and annihila-
tion operators, and instead we must decompose our complex
operators B�k according to

B�k = 1√
2

(X̂�k + iP̂�k ), (42)

where X̂�k and P̂�k are 16-dimensional vectors of real operators,
analogous to the position and momentum operators in first
quantization. In terms of these new operators, the analog for

the change of basis in Eq. (38) is(
X̂�k
P̂�k

)
= W (�k)

(
Ŷ�k
Q̂�k

)
, (43)

where the 32 × 32 matrix W (�k) satisfies

W (�k)EW T (�k) = E, E = iσ 2 ⊗ 116×16. (44)

Using this canonical change of basis, the Hamiltonian can
then be brought to the diagonal form

H =
∑
�k,i

α�k,iŷ
2
�k,i

+ β�k,iq̂
2
�k,i

, (45)

where ŷ�k,i and q̂�k,i are the components of Ŷ�k and Q̂�k , respec-
tively, and the new eigenvalues are related to the original
ones by

λ2
�k,i

= α�k,iβ�k,i. (46)

Importantly, however, unlike the original method of diago-
nalization, B�k → B̃�k , which may fail if JH(�k) is a defective
matrix, the alternative method of diagonalization, (X̂�k, P̂�k ) →
(Ŷ�k, Q̂�k ), always works.

For any zero mode i at a critical momentum �kc, we have
α�kc,i

β�kc,i
= 0 from Eq. (46). The diagonalizability of the crit-

ical Hamiltonian H(�kc) is then determined by the following
simple criterion:

(i) if α�kc,i
= β�kc,i

= 0, the Hamiltonian can be diago-
nalized in the original basis of creation and annihilation
operators;

(ii) otherwise, either α�kc,i
= 0, β�kc,i

�= 0 or α�kc,i
�=

0, β�kc,i
= 0; the Hamiltonian is not diagonalizable in

any creation-annihilation-operator basis, meaning that the
SU(8,8) transformation is singular.

To understand how these two scenarios for the diagonaliz-
ability lead to theories of z = 2 and z = 1 types, respectively,
we now switch to the language of path integrals and consider
the critical low-energy actions.

E. Effective low-energy theories

Our phase transitions from spin liquids to magnetic orders,
driven by a change in the chemical potential μ, are prototypes
of quantum critical points (QCPs). At such a QCP, one can
write down an effective theory in terms of the low-energy
degrees of freedom. We assume a single condensing eigen-
mode obtained from the Hamiltonian H(�kc), denoted by b̃�kc

.

TABLE V. Parametrization of the NN mean-field ansätze using generalized spherical coordinates (ψ, θ, φ) for the phase diagram in Fig. 1.

Independent nonzero parameters up to NN terms
Class and parameterized by

0-(001) (a, c, b′) = (sin θ cos φ, sin θ sin φ, cos θ )
0-(010) (ν, a, c, b′) = (cos ψ, sin ψ sin θ cos φ, sin ψ sin θ sin φ, sin ψ cos θ )
0-(100) (b, c′) = (cos φ, sin φ)
0-(101) (b, a′, c′) = (cos θ, sin θ cos φ, sin θ sin φ)
0-(110) (ν, b, a′, c′) = (cos ψ, sin ψ cos θ, sin ψ sin θ cos φ, sin ψ sin θ sin φ)
0-(111) (b, c′) = (cos φ, sin φ)
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Including spatial fluctuations, we promote this eigenmode to
a field φ(τ, �x) and consider the imaginary-time action S =∫
L d3xdτ . If the Hamiltonian is diagonalizable, the critical

Lagrangian becomes

L = φ(∂τ − μi j∂i∂ j )φ, (47)

describing a massless field φ at the QCP. The corresponding
action is invariant under the rescaling

τ → τe−l , x → xe−l/2, φ → φe3l/4, (48)

from which we can immediately deduce that the dynamical
critical exponent is z = 2.

However, the mass of φ should be generally considered as a
tensor of real fields χ and π , which are the real and imaginary
components of φ, such that

φ = χ + iπ. (49)

In the Hamiltonian language, these two components cor-
respond to the “position” and “momentum” operators in
Eq. (42). Consequently, if the Hamiltonian is not diagonal-
izable, only one of these components is massless at the QCP.
Assuming without loss of generality that χ is massive and π

is massless, the critical Lagrangian becomes

L = 2iχ∂τπ + r2χ2 − πνi j∂i∂ jπ. (50)

By integrating out the massive field χ and rescaling the
massless field as π → rπ , we finally obtain

Leff = π
(
∂2
τ − ν̃i j∂i∂ j

)
π. (51)

This effective action is invariant under the rescaling

τ → τe−l , x → xe−l , π → πel , (52)

from which we can immediately deduce that the dynamical
critical exponent is z = 1.

These two distinct QCPs, characterized by critical expo-
nents z = 2 and z = 1, respectively, are reminiscent of the
QCPs governing phase transitions from quantum paramagnets
to XY antiferromagnets [43]. If such a transition is induced by
an external magnetic field, the QCP is described by the z = 2
critical theory in Eq. (47), while if the transition is induced
by pressure and is thus time-reversal symmetric, the QCP is
described by the z = 1 critical theory in Eq. (51).

F. Spin condensation: Order patterns

We are now ready to describe the spin orders obtained
by condensing the spinons in each of the 15 critical para-
phases. When the chemical potential μ reaches its critical
value μc, certain spinons b̃�kc

at critical momenta �kc condense

and thereby acquire macroscopic occupation numbers 〈̃b�kc
〉.

We can then use these 〈̃b�kc
〉 as order parameters and detect

spin orders by looking at order parameter bilinears, which,
according to the spinon decomposition in Eq. (4), recover spin
expectation values.

So far, several types of orders have been successfully
identified in pyrochlore materials, most of which do not break
translation symmetry. These zero-momentum orders corre-
spond to representations of the point group Oh and can thus be
analyzed by the standard representation theory of groups. We

will defer such an effort to the next section. In this subsection,
we select several paraphases with definite ordering signatures
and explicitly calculate the spin expectation values via con-
densing spinons. This way, we capture a limited set of orders,
which correspond to irreducible representations (irreps) of the
tetrahedral group Td (see Appendix C) and show that all such
orders can be obtained from at least one of the six Z2 spin liq-
uids. We mainly restrict ourselves to NN terms in the spinon
Hamiltonian but include NNN terms whenever necessary.

One must bear in mind that the simplified irrep analysis
on these explicit spin-condensation orders may be incomplete.
For example, we will find from such an analysis that pure all-
in-all-out order may be obtained in the paraphase 0-(100)�,
while a full representation-theory analysis in Sec. V C leads to
Table VIII, which indicates that all-in-all-out order is always
intertwined with some hidden orders (i.e., it can never appear
alone). Still, the naïve spin-condensation analysis in this sub-
section is a good starting point to build some insight into how
the six spin liquids are physically distinct from each other.

1. All-in-all-out order

We consider the paraphase 0-(100)� but also remark that
the paraphases 0-(101)� and 0-(111)� give similar results.
At the critical chemical potential μc, the zero-energy sub-
space is twofold degenerate. The zero-energy eigenvectors are
obtained from Eq. (41) and are given by the time-reversal
partners a and UT a∗. After condensing these two modes,
the corresponding operators b̃1,2 acquire macroscopic occu-
pation numbers 〈̃bi〉 = rieiφi , with i = 1, 2, implying 〈B�kc

〉 =∑
i=1,2 airieiφi at the critical momentum �kc = �. In terms

of the 12-component vector S = (�S0, �S1, �S2, �S3) of the spin
components on the four sublattices, we have, up to a global
coefficient,

S = rSr + cos(φ1 − φ2)Sc + sin(φ1 − φ2)Ss, (53)

where r = (r2
1 − r2

2 )/(2r1r2), and Sr,c,s are three equimodular
and mutually orthogonal vectors (see Appendix F for detail).
Using the basis for the irreducible representations of Td (see
Appendix C), it can be shown that this paraphase generically
supports two orders: the all-in-all-out order and the AFM or-
der. One can obtain pure all-in-all-out order [see Fig. 2(a) for
illustration] by setting particular values for the condensation
parameters r1,2 and φ1,2.

2. XY antiferromagnetic order

The paraphase 0-(110)� has a nondiagonalizable critical
Hamiltonian, because H has four zero-energy eigenvalues,
but the nullspace of JH is only two dimensional, spanned by
the time-reversal partners a and UT a∗. We therefore switch
to the position-momentum representation (x̂, p̂), according to
Eq. (42). The critical Hamiltonian is then diagonalized by a
basis change (x̂, p̂) → (ŷ, q̂) and takes the low-energy form

H = q̂2
1 + q̂2

2 + 0 · ŷ2
1 + 0 · ŷ2

2, (54)

which contains two gapless modes ŷ1 and ŷ2. To minimize
the energy, we must have 〈q̂i〉 = 0 and, due to the uncertainty
principle, ŷi must fluctuate maximally. In terms of yi = 〈ŷi〉,
we then find 〈B�kc

〉 = by1 + UT by2 at �kc = � for some vector
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(a) (b) (c) (d)

FIG. 2. Typical spin order for (a) the paraphases 0-(100)�, 0-(101)�, and 0-(111)� (all-in all-out order), (b) the paraphase 0-(110)� (the
XY order), (c) the paraphase 0-(001)� (ferrimagnetic order), and (d) the paraphase 0-(101)X (the Palmer-Chalker order).

b determined by a, and the final result for spin configuration
becomes

S ∝ (C,−S2,−S1,C, S2, S1,−C,−S2, S1,−C, S2,−S1),

S1 = sin
( π

12
− θ

)
, S2 = sin

(π

4
+ θ

)
,

C = cos
( π

12
+ θ

)
, (55)

where cos θ = y2
1 − y2

2 and sin θ = y1y2/2. This spin configu-
ration, shown in Fig. 2(b), corresponds to the “XY” order of
the irrep E obtained in Eq. (39) of Ref. [22] after a redefinition
θ → θ − π

12 .

3. Ferromagnetic order: collinear and noncollinear

For the paraphase 0-(001)�, all pairing terms vanish at the
� point at the NN level and, solving the hopping part at μc,
we find that the zero-energy subspace is spanned by the time-
reversal partners a and UT a∗. There are two cases depending
on the expression for μ in terms of the mean field parameters.
When μ = −6a, all four spins point in the same direction,
which is the collinear FM order. When μ = 2a − 8c, the spin
vector S follows Eq. (53), where Sr,c,s are three equimodular
and mutually orthogonal vectors (see Appendix F for detail).
A typical spin configuration of such ferrimagnetic nature is
shown in Fig. 2(c).

4. Palmer-Chalker order

The paraphase 0-(101)X has a nondiagonalizable critical
Hamiltonian, because H has eight zero-energy eigenvalues,
but the nullspace of JH is only four dimensional. Switching
to the (x̂, p̂) representation and diagonalizing the Hamiltonian
via the basis change (x̂, p̂) → (ŷ, q̂), we find that there are
four gapless modes ŷ1,2,3,4 for each of the three critical mo-
menta �kc = X1,2,3. The expression for 〈B�kc

〉 thus contains 12
real parameters: the expectation values of the maximally fluc-
tuating modes ŷ1,2,3,4 at each critical momentum. Although
most choices of these condensation parameters give an order
with an enlarged unit cell, some special cases respect trans-
lation symmetry. For instance, if condensation is restricted to
X 1, the spin configuration, shown in Fig. 2(d), corresponds to
a Palmer-Chalker order, transforming under the irrep T2.

5. Nonuniform spinon condensations and partial orders

The spin expectation values �S0,1,2,3 for the paraphase
0-(010)� have different amplitudes on different sublattices,
invalidating the irrep analysis that presupposed classically
ordered states of fixed-length spins. There is no a priori
reason to rule out such a nonuniform spin-amplitude state. It
does, however, correspond to a more “exotic” ordered phase
in which the spin is more ordered on some sublattices than
others. This type of partially ordered state has been proposed
in the material Gd2Ti2O7 [44,45] and in various theoretical
models.

6. Spinon line orders

The line orders � appearing in classes 0-(001), 0-(010),
0-(100), and 0-(110) have accidental degeneracies, higher
than demanded by the lattice symmetry. This extra degeneracy
is an artifact of the restriction to NN ansätze and should
reduce to discrete condensation momenta in the presence of
further-neighbor terms. If we include infinitesimal NNN terms
to the mean-field ansatz, using Table II, we indeed see that
line condensation along � shrinks to point condensation at
either � or L. However, if we increase these NNN terms,
the condensation points are shifted away from these high-
symmetry points.

Due to the large NNN parameter space, we were unable
to exhaustively study the effect of NNN terms on the NN
mean-field ansatz. However, for some purposes, the NN level
ansätze may be adequate. For example, as we explore in the
next section, the line minima contribute to substantial low-
energy continua in the dynamical spin structure factor. This
feature should persist at intermediate energies when small
NNN terms are included.

7. Multispinon condensation orders

Spinon condensation at multiple critical momenta, in the
paraphases 0-(001)L, 0-(101)X/W, and 0-(111)X/W, allows
for richer physics and is often accompanied by an enlargement
of the unit cell. As an example, we look at the paraphase 0-
(001)L: There are two independent zero-energy modes at each
critical momentum L, and the four inequivalent L momenta
thus give rise to an eight-dimensional zero-energy subspace.
The 16-component zero-energy modes at these critical mo-
menta have a complicated expression and do not form a
representation of Td, thereby leading to nonuniform spinon
condensation, as discussed above. Indeed, if condensation is
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TABLE VI. Power-law exponents of the low-energy spinon den-
sity of states and the corresponding low-temperature heat capacity
for critical theories of dynamical exponents z = 1, 2 where spinons
condense at points or along lines.

Condensation Dynamical Density of states: Heat capacity:
manifold exponent g(ε) ∝ εα CV ∝ T x

Point(s)
z = 2 α = 1

2 x = 3
2

z = 1 α = 2 x = 3

Line(s)
z = 2 α = 0 x = 1
z = 1 α = 1 x = 2

restricted to one of the four inequivalent L momenta, we find
that three of the four sublattices have the same spin amplitude,
while the fourth sublattice has a different one.

V. EXPERIMENTAL SIGNATURES

A. Critical behavior of the heat capacity

For each critical paraphase, the low-temperature heat ca-
pacity is expected to follow a power law whose exponent
is determined by the low-energy spinon density of states in
the critical theory. Indeed, depending on the dynamical expo-
nent z and the spinon condensation manifold (i.e., if spinons
condense at points or along lines), this low-energy density
of states follows different power laws g(ε) ∼ εα , where the
possible values of α are listed in Table VI. The thermal energy
due to spinon excitations at temperature T is then given by

E ∼
∫

dε g(ε)
ε

exp(ε/T ) − 1
∝ T 2+α, (56)

and the heat capacity takes the form

CV = dE

dT
∝ T 1+α. (57)

We remark that line condensation is not stable against generic
perturbations, corresponding to further-neighbor terms in the
mean-field ansatz. Consequently, at the lowest temperatures,
we expect that the line-condensation paraphases are governed
by the same exponents as their point-condensation counter-
parts. Nevertheless, if the NN mean-field ansatz is a good first
approximation, there is an intermediate temperature range in
which the approximate line condensation in such paraphases
becomes manifest and therefore the line-condensation expo-
nents in Table VI are experimentally observable.

B. Critical spin structure factors

In this subsection, we present the most direct signatures of
our critical points between magnetic orders and their parent
spin liquids by computing both the static and the dynamic spin
structure factors for the 15 paraphases. While our calculation
is based on mean-field theory, it still serves as a reference
point for classifying the possible spinon spectra in pyrochlore
magnets.

The static structure factor (SSF) is defined as the spa-
tial Fourier transform of the equal-time spin-spin correlation

function,

S ( �q) = 1

N

∑
�rμ,�r′

ν ,α

〈
Ŝα

�rμ
Ŝα

�r′
ν

〉
ei �q·(�rμ−�r′

ν ), (58)

where α = x, y, z. We calculate this quantity using the critical
mean-field ansätze in Sec. IV. Writing the 16 × 16 matrix
V (�k) in Eq. (38) as

V (�k) =
(

V11(�k) V12(�k)
V21(�k) V22(�k)

)
, (59)

where the 8 × 8 blocks generally satisfy

V ∗
11(�k) = V22(−�k), V ∗

12(�k) = V21(−�k) (60)

due to charge-conjugation “symmetry,” the SSF becomes (see
Appendix G for a detailed derivation)

S ( �q) = 1

2N

∑
�k,α

Tr[U α (�k, �q)(U α (�k, �q))†] (61)

in terms of the auxiliary 8 × 8 matrices

U α (�k, �q) = W α (�k, �q) + (W α (−�k + �q, �q))T ,

W α (�k, �q) = V †
12(�k)(I ( �q) ⊗ σα )V11(�k − �q), (62)

where I ( �q) is the 4 × 4 diagonal form-factor matrix defined
in Eq. (37). The resulting SSFs for representative points in
each of the 15 paraphases are plotted in Fig. 3 for chemical
potentials μ = μc + 10−δ , where δ = 1, 2, . . . , 9, and μc is
the critical value given in Appendix E. When numerically
computing the SSF, we ensure convergence by taking a
momentum-space grid that does not contain any condensation
momenta �kc.

For chemical potentials well above the critical value μc,
the SSFs of the 15 paraphases (not shown here) can be
partitioned into two classes, depending on the sum of the Z2

parameters nC6S + nST1 + nC6
characterizing the parent spin

liquid. Plotted along the high-symmetry path in the BZ, the
SSFs of the nC6S + nST1 + nC6

= odd paraphases and those of
the nC6S + nST1 + nC6

= even paraphases resemble each other
after an appropriate reflection in energy. This relation between
the two classes qualitatively survives as the chemical poten-
tial approaches its critical value (see Fig. 3). For example,
depending on the sum nC6S + nST1 + nC6

being even or odd,
the SSF has either a valley or a peak at the � point. The
distinction between the two behaviors can be traced back
to Eqs. (61) and (62). Since the SSF is the squared trace
norm of the matrix U α , which in turn is the sum of two
matrices W α , there is a cross term from the product of the two
matrices W α , physically corresponding to the spinon pairing
channel 〈b†

�k1,μσ1
b†

�k3,νσ3
〉〈b�k1−�q,μσ2

b�k3+�q,νσ4
〉 (see Appendix G),

and we numerically find this cross term to be negative for
the nC6S + nST1 + nC6

= even paraphases and positive for the
nC6S + nST1 + nC6

= odd paraphases. Nevertheless, a deeper
understanding of this connection to nC6S + nST1 + nC6

remains
to be found.

Also, there are general differences between the SSFs of
the paraphases governed by z = 1 and z = 2 critical theories,
respectively. For most of the z = 1 paraphases, as the chemi-
cal potential approaches its critical value, the SSF becomes a

075125-13



LIU, HALÁSZ, AND BALENTS PHYSICAL REVIEW B 100, 075125 (2019)
S

(001)Γ, (θ, φ) = (π
3 ,

11π
12 ) L, (θ, φ) = (π

6 ,
2π
3 ) (001)Λ, (θ, φ) = (5π

12 ,
π
3) (010)Γ, (ψ, θ, φ) = (π

3 ,
π
3 ,

5π
12) (010)Λ, (ψ, θ, φ) = (5π

6 , 7π
12 ,

5π
3 )

S

(100)Γ, φ = 5π
6 Λ, φ = π

3 (101)Γ, (θ, φ) = (11π
12 , 5π

6 ) (101)W, (θ, φ) = (π
3 ,

7π
6 ) (101)X, (θ, φ) = (π

6 ,
5π
6 )

Γ X WK Γ LUW LKUX

S

(110)Γ, (ψ, θ, φ) = (5π
12 ,

5π
12 ,

π
3)

Γ X WK Γ LUW LKUX

Λ, (ψ, θ, φ) = (5π
12 ,

5π
12 ,

2π
3 )

Γ X WK Γ LUW LKUX

(111)Γ, φ = π
6

Γ X WK Γ LUW LKUX

(111)W, φ = 2π
3

Γ X WK Γ LUW LKUX

(111)X, φ = 11π
12

Δμ = 10 Δμ = 10 Δμ = 10 Δμ = 10 Δμ = 10 Δμ = 10 Δμ = 10 Δμ = 10 Δμ = 10

FIG. 3. Static spin structure factors for representative points in each of the 15 paraphases along the high-symmetry path in the Brillouin
zone. The chemical potential μ is above the critical condensation value by �μ = 10−1, 10−2, ..., 10−9 (in arbitrary units). The vertical axis is
the spectral weight S normalized by the maximum intensity of the �μ = 10−9 line along the path. In each paraphase, denoted by its PSG class
and condensation momenta, the representative point is specified by the mean-field parameters.

nondifferentiable function at certain momenta �q. This feature
is clearly observable in Fig. 3 for the paraphases 0-(010)�,
0-(100)�, 0-(101)W, 0-(111)W, 0-(111)X at the � point and
for the paraphases 0-(101)W, 0-(101)X, 0-(111)W, 0-(111)X
at the X point. However, not all z = 1 paraphases conform to
this rule; the SSFs of the paraphases 0-(110)� and 0-(110)�
do not reveal any singular behavior along the high-symmetry
path in the BZ. Instead, they resemble the SSFs of z = 2
paraphases, which are smooth across the entire BZ.

To understand these features, we consider the dynamic
structure factor (DSF), which provides further information on

the dynamics of spinons. This quantity is defined as the spatial
and temporal Fourier transform of the spin-spin correlation
function,

S (ω, �q) = 1

2πN

∫ ∞

−∞
dt

∑
�rμ,�r′

ν ,α

〈
Ŝα

�rμ
(t )Ŝα

�r′
ν

〉
ei(ωt+�q·(�rμ−�rν )),

(63)

and, using the mean-field ansätze in Sec. IV, it takes the
general form (see Appendix G for a detailed derivation)

S (ω, �q) = 1

N

∑
μ,ν

ei �q·(ε̂μ−ε̂ν )
∑

σ1,σ2,σ3,σ4,α

(σα )σ1,σ2 (σα )σ3,σ4

∑
ρ1,ρ2

∑
τ1,τ2

∑
�k

δ
(
ω − λ−�k,ρ1τ1

− λ�k−�q,ρ2τ2

)
× [

(V12(�k))∗μσ1,ρ1τ1
(V11(�k − �q))μσ2,ρ2τ2

(V11(−�k))∗νσ3,ρ1τ1
(V12(−�k + �q))νσ4,ρ2τ2

+ (V12(�k))∗μσ1,ρ1τ1
(V11(�k − �q))μσ2,ρ2τ2

(V11(�k − �q))∗νσ3,ρ2τ2
(V12(�k))νσ4,ρ1τ1

]
. (64)

The critical (μ = μc) DSFs and the corresponding spinon
spectra are plotted in Fig. 4 for representative points in each
of the 15 paraphases.

Focusing on universal low-energy features, we first ob-
serve that each DSF has characteristic points or regions
where it is gapless (i.e., finite at small ω). Since the DSF
describes spin dynamics, and each spin is decomposed into
two spinons, the DSF is gapless at momenta �q that are ap-
propriate sums of spinon condensation momenta �kc such that
�q = �kc,1 + �kc,2. Consequently, we can establish a one-to-one
correspondence between the potential spinon condensation
momenta described in Table IV and the gapless points or
regions of the DSF plotted in Fig. 4; see Table VII for this
correspondence.

We also notice that the DSF has different low-energy be-
havior in the paraphases governed by z = 1 and z = 2 critical

theories, respectively. For the z = 1 paraphases 0-(010)�,
0-(100)�, 0-(101)W, 0-(111)W, and 0-(111)X, the weight
of the low-energy DSF is concentrated around zero energy,
while for the z = 2 paraphases 0-(001)�, 0-(100)�, 0-(101)�,
and 0-(111)�, the low-energy DSF gradually vanishes as the
energy is decreased to zero.

These low-energy features in the DSF can be understood
from a scaling analysis of the critical field theories in Eqs. (47)
and (51). The DSF is the expectation value of a four-point
correlation function in the condensation fields; using Wick’s
theorem, this expectation value can be written as the convolu-
tion of two Green’s functions,

Sz(ω, �q) ∼
∫

d3�kdω′ Gz(ω′, �k)Gz(ω − ω′, �q − �k), (65)
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FIG. 4. Dynamic spin structure factors (gray) and spinon spectra (red) for representative points in each of the 15 paraphases along the
high-symmetry path in the Brillouin zone. The vertical axis is the energy ω in arbitrary units, while the gray scale is the quartic root of the
spectral weight (power is chosen such that maximum resolution is ensured), 4

√
S , normalized by its maximum intensity along the path. The

chemical potential μ is 10−9 above the critical condensation value. In each paraphase, denoted by its PSG class and condensation momenta,
the representative point is specified by the mean-field parameters.

where Gz(ω, �k) are labeled by the dynamical critical expo-
nents z of corresponding field theories:

G1(ω, �k) = 1

ω2 + μi jkik j
,

(66)
G2(ω, �k) = 1

ω + ν̃i jkik j
.

Inserting Gz(ω, �k) into Eq. (65), and evaluating the integrals
over ω′ and �k, we obtain the scaling behaviors

Sz=1(ω, �q) ∼ log(ω) f1(q/ω),
(67)

Sz=2(ω, �q) ∼ √
ω f2(

√
q/ω),

where f1 and f2 are some general functions. At the momentum
with gapless DSF, corresponding to �q = 0, the DSF at ω → 0
thus diverges in the z = 1 case and vanishes in the z = 2
case. This result qualitatively explains the low-energy DSF
features described above. Furthermore, it elucidates why the
SSFs of the z = 1 paraphases have singularities at specific

TABLE VII. One-to-one correspondence between the potential
set of momenta at which the spinons condense at the critical point
and the set of momenta at which the corresponding dynamic structure
factor is gapless along the high-symmetry path in Fig. 4; these set of
momenta can be points A or sections A → B between two points A
and B.

Spinon condensation Gapless points or regions in
momenta dynamic structure factor

� �

L �, X
X �, X
W �, X, 2

3 K
� � → X, K → � → L → U

momenta, which precisely coincide with the gapless momenta
of the corresponding DSFs. We stress again that there are
z = 1 paraphases, for example, 0-(110)�, which have SSFs
and DSFs following z = 2 behavior. Such a discrepancy may
occur if a coefficient in the critical theory accidentally van-
ishes for the NN mean-field ansatz.

Finally, we remark that the DSFs of several paraphases
have high-energy points exhibiting large spectral weights
at the � point. In fact, whenever such points exist, there
is a quasi-mirror-reflection symmetry (in terms of energy)
between two spinon bands, such that the two band energies
satisfy λ�k,1 + λ�k,2 = E for all momenta �k. Due to this “sym-
metry,” these two bands can contribute strongly at the � point
close to energy E , resulting in an increased spectral weight as
well as a Dirac-like texture. However, we emphasize that the
high-energy part of the DSF depends on specific details and is
not to be taken too seriously; only the low-energy part of the
DSF captures the universal physics in the given paraphase.

C. General order parameters: Hidden and intertwined orders

The naïve spin-condensation analysis of magnetic orders
in Sec. IV F is far from complete as it presumes that any
zero-momentum order transforms under a representation of Td

and thus ignores the possibility of hidden orders transforming
under inversion-odd representations of the full pyrochlore
point group Oh = Td × Ci, where Ci is the Z2 group consisting
of inversion and identity. One simple example of such a
hidden order is the alternating expansion and contraction of
tetrahedra realized in the “breathing” pyrochlores [46–48].
In this subsection, we analyze zero-momentum orders more
comprehensively by identifying all possible order parameters
in terms of the condensing spinon fields and constructing the
most general Ginzburg-Landau (GL) theory that is compatible
with the point group Oh of the pyrochlore lattice. Such an
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TABLE VIII. Analysis of the zero-momentum ( �K = 0) order parameters for the paraphases characterized by single-point and multi-point
condensation (i.e., excluding line condensation). For each paraphase, the complex (φ) or real (χ ) condensation fields are specified; the
zero-momentum order parameters are then bilinears of these fields with total momentum �K = 0 and transform under various irreducible
representations of the point group Oh. For some paraphases, distinct order parameters are intertwined such that they must appear together at
condensation; for each paraphase characterized by single-point condensation, the order parameters are arranged into classes C (marked by
curly brackets) such that there must be at least one nonzero order parameter from each class C. The number of quadratic scalars in terms of
the order parameters is also specified; if there is only one such scalar, all order parameters are in different classes and hence are maximally
intertwined.

Real dimension of Decomposition into Number of scalars General intertwining between
Paraphase Condensation order-parameter irreducible representations quadratic in order irreducible representations

fields space at �K = 0 (i.e., distinct orders) parameters C1 ⊕ · · · ⊕ Cq

0-(001)� φ1,2 10 A1g ⊕ T1g ⊕ 2T2u 1 {A1g} ⊕ {T1g} ⊕ {T2u}
0-(001)L φ1−8 40 A1g ⊕ A2g ⊕ Eg ⊕ 2T1g ⊕ 2T2g

(2 per �kc) ⊕2A1u ⊕ 2Eu ⊕ 2T1u ⊕ 4T2u

0-(010)� φ1,2 10 A1g ⊕ T1g ⊕ 2T2g 1 {A1g} ⊕ {T1g} ⊕ {T2g}
0-(100)� φ1,2 10 A1g ⊕ 3A2g ⊕ 3Eg 6 {A1g} ⊕ {A2g} ⊕ {Eg}
0-(101)� φ1,2 10 A1g ⊕ A2g ⊕ Eg ⊕ 2A1u ⊕ 2Eu 4 {A1g} ⊕ {A2g, Eg} ⊕ {A1u, Eu}
0-(101)W χ1−24 48 2A1g ⊕ A2g ⊕ 3Eg ⊕ T1g

(8 per ±�kc) ⊕2T2g ⊕ 2A1u ⊕ A2u

⊕3Eu ⊕ 3T1u ⊕ 4T2u

0-(101)X χ1−12 30 A1g ⊕ 2A2g ⊕ 3Eg ⊕ T2g ⊕ 2A1u

(4 per �kc) ⊕A2u ⊕ 3Eu ⊕ T1u ⊕ 2T2u

0-(110)� χ1,2 3 A1g ⊕ Eg 1 {A1g} ⊕ {Eg}
0-(111)� φ1,2 10 A1g ⊕ A2g ⊕ Eg ⊕ 2A2u ⊕ 2Eu 4 {A1g} ⊕ {A2g, Eg} ⊕ {A2u, Eu}
0-(111)W χ1−24 48 A1g ⊕ 2A2g ⊕ 3Eg ⊕ 2T1g

(8 per ±�kc) ⊕T2g ⊕ A1u ⊕ 2A2u

⊕3Eu ⊕ 4T1u ⊕ 3T2u

0-(111)X χ1−12 30 2A1g ⊕ A2g ⊕ 3Eg ⊕ T1g ⊕ A1u

(4 per �kc) ⊕2A2u ⊕ 3Eu ⊕ 2T1u ⊕ T2u

analysis has been previously done for several problems build-
ing on the PSG framework [30,49,50].

When the spinons condense at the critical point, certain
bosonic modes at the condensation momenta �kc become
macroscopically occupied, and the expectation values of their
bosonic operators thus become classical condensation fields.
For the z = 2 critical points, the condensation fields φn are
complex, while for the z = 1 critical points, the condensation
fields χn are real. Importantly, these fields themselves are
not valid order parameters as they carry a Z2 gauge charge
and transform projectively under the point group. Indeed,
the projective transformation rules of φn and χn under the
generators of the point group can be explicitly obtained from
the corresponding transformation rules of the original bosonic
operators b�kc,μ

(see also Appendix F):

I : b�k,μ
→ (−1)nST1 δμ=0 ei�k·êμb−�k,μ

, (68a)

C3 : b�k,μ
→ U †

C3
b(kz,kx,ky ),C3(μ), (68b)

S : b�k,μ
→ (−1)δμ=3nST1 +δμ=2nC6S ei�k·êμ · U †

S b(ky,kx,−kz ),S(μ),

(68c)

where C3(μ) = 0, 2, 3, 1 and S(μ) = 3, 1, 2, 0 for the respec-
tive sublattices μ = 0, 1, 2, 3. The simplest possible order
parameters are then the bilinears of the condensation fields,
corresponding to total momentum �K = 0, which are gauge

invariant and transform as linear, generically reducible, rep-
resentations of the point group. For each paraphase, the irrep
decomposition of this reducible representation is given in
Table VIII. We now discuss the physical implications of this
decomposition.

The scalar irrep A1g corresponds to a quadratic invariant,
i.e., a “mass” term in the GL theory, which drives the phase
transition between the spin-liquid phase and the magnetically
ordered phase. For almost all paraphases, it appears only once
in the reducible representation, which indicates that all com-
ponents of the condensation occur together by symmetry. The
bilinear term transforming under the scalar irrep is

∑
n χ2

n ,
where we decompose any complex fields into real fields as
φn = χ2n−1 + iχ2n. The effective GL theory governing the
phase transition is then

L =
∑

n

(∇χn)2 + r
∑

n

χ2
n + O(χ4). (69)

When A1g appears more than once in the reducible represen-
tation [for the paraphases 0-(101)W and 0-(111)X], it signals
an accidental degeneracy, which should be lifted when going
beyond the NN level.

The remaining irreps, denoted by standard labels, cor-
respond to various order parameters that describe distinct
scenarios of symmetry breaking (see Table IX). Irreps with the
subscript “g” are even under inversion and correspond to the
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TABLE IX. Irreducible representations of the point group Oh and
the corresponding symmetry-breaking orders. For some representa-
tions, simple examples of order parameters are provided in terms of
the spins �Si at sites i, where �ri is the vector from site i to the center
of the nearest “up” tetrahedron, �ni, j is the vector from site i to site
j, and λi, j = ±1 for bonds 〈i, j〉 in “up” and “down” tetrahedra,
respectively. Note that the scalar representation A1g does not break
any symmetries and hence does not correspond to any order.

Standard name of Simple example of order
Irrep Dim. corresponding order parameter in terms of spins

A1g 1 (N/A) 1
A2g 1 All-in-all-out

∑
i �ri · �Si

Eg 2 XY antiferromagnet
T1g 3 Ferromagnet

∑
i
�Si

T2g 3 Palmer-Chalker
∑

i �ri × �Si

A1u 1
∑

〈i, j〉 λi, j (�Si · �Sj )
A2u 1

∑
〈i, j〉 �ni, j · (�Si × �Sj )

Eu 2
T1u 3

∑
〈i, j〉(�ri × �ni, j ) × (�Si × �Sj )

T2u 3
∑

〈i, j〉 �ni, j × (�Si × �Sj )

conventional spin orders discussed in Ref. [22]. The single-
spin order parameters of such spin orders are straightforward
to detect with neutron scattering. In contrast, irreps with
the subscript “u” are odd under inversion and correspond to
more unconventional hidden orders. The order parameters of
these inversion-breaking orders always contain multiple spin
operators and are thus harder to detect [51]. However, in our
case, they are also accompanied by a spontaneous breaking of
inversion symmetry, which may be observed as a “breathing”
distortion of the pyrochlore lattice.

Table VIII indicates that one paraphase can give rise to
several distinct order parameters. In general, the presence
or absence of a given order parameter is determined by the
particular form of the GL theory governing the phase transi-
tion. However, for some paraphases, we can argue that several
distinct orders are intertwined in the sense that they always
accompany one another, regardless of the GL parameters. This
highly nontrivial result emerges because the magnetically
ordered phases are obtained by condensing fractionalized
excitations (spinons) that transform projectively under sym-
metries.

To analyze the general intertwining between distinct or-
ders for a given paraphase, we form an orthogonal basis for
the (real) order parameters {�R,1, · · · , �R,NR} that transform
under each distinct irrep R. Note that NR is the product
of the irrep dimension and the multiplicity of the irrep in
the reducible representation. Since each symmetry acts on
the vector (�R,1, · · · , �R,NR ) by an orthogonal matrix, the
quadratic term WR = ∑NR

j=1 �2
R, j must be a scalar transforming

under A1g. This scalar can be interpreted as the “weight” of the
given irrep; since it is a function of the condensation fields χn,
it may vanish for some special configurations of these fields,
indicating the absence of the corresponding order. In contrast,
the total weight of all irreps,

W0 =
∑

R

WR =
∑

R

NR∑
j=1

�2
R, j ∝

(∑
n

χ2
n

)2

, (70)

is nonzero for all field configurations, indicating that at least
one order must always be present.

For each paraphase, however, the irreps R may be parti-
tioned into classes C1 ⊕ · · · ⊕ Cq (see Table VIII) such that
the total weight of each class C = {R1, · · · , RNC }, containing
some nontrivial subset of all irreps, is proportional to the total
weight of all irreps,

WC =
∑
R∈C

WR =
∑
R∈C

NR∑
j=1

�2
R, j ∝ W0, (71)

and is thus nonzero for all configurations of the condensation
fields. Consequently, at least one order from each class C must
always be present, regardless of the GL parameters. In the
most extreme scenario, when each irrep forms its own class,
such that WR ∝ W0 for all irreps R, the orders are maximally
intertwined, i.e., all of them must appear together. For certain
paraphases, one can argue for this scenario by counting all
possible quadratic scalars that can be formed from the order
parameters or, equivalently, all possible fourth-order scalars
that can be formed from the condensation fields. There is
always at least one such scalar, (

∑
n χ2

n )2; however, if there
is only one such scalar, it is clear that the weight WR of each
irrep R must be proportional to this scalar, and all orders must
therefore be simultaneously present.

While we do not analyze the general intertwining between
distinct orders in all paraphases, we observe from the particu-
lar examples studied (see Table VIII) that the presence of in-
tertwined orders is a common feature of magnetically ordered
phases obtained by spinon condensation on the pyrochlore
lattice. In particular, for parent spin liquids with nC6

= 1,
where inversion symmetry acts projectively on the spinons,
we generically anticipate the (already intertwined) spin orders
to be also accompanied by inversion-breaking hidden orders.

VI. DISCUSSION

A. Summary

In this paper, we gave a complete classification of spin-
orbit-coupled Z2 spin liquids on the pyrochlore lattice by
using the PSG method for Schwinger bosons. We studied
the mean-field Hamiltonians of the six 0-flux spin liquids
at the NN level and examined the critical field theories
that describe phase transitions to ordered phases via spinon
condensation. We found two crucially different classes of
critical field theories, characterized by dynamical exponents
z = 1 and z = 2, respectively, which have distinct properties
ranging from Hamiltonian diagonalizability to experimental
observables. Moreover, we investigated the zero-momentum
orders obtained from spinon condensation, both by a naïve
spin-condensation analysis and by the representation theory of
the full pyrochlore point group Oh. We found that seemingly
unrelated orders are generically intertwined with each other
and that conventional spin orders are often accompanied by
more exotic inversion-breaking “hidden” orders. Finally, we
calculated several physical observables for our critical the-
ories, including the heat capacity, as well as the static and
dynamic spin structure factors, which may be compared with
experimental data.
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B. Possible implications

Many pyrochlore materials have been experimentally con-
firmed to possess one of the spin orders discussed in this
paper. For example, Yb2Pt2O7 has ferromagnetic order [52],
while Nd2Zr2O7 possesses all-in-all-out order [53]. Since all
of these spin orders can appear as a result of spinon condensa-
tion from one of our Z2 spin liquids, one can contemplate the
possibility that some of these materials are proximate to such
a spin liquid.

As a particular example, one may consider Er2Ti2O7,
which is confirmed to have a �2 antiferromagnetic ground
state. The �2 ground state is selected from the �5 irrep,
containing both �2 and �3 states, as a result of order-by-
disorder mechanism, possibly aided by virtual crystal-field
effects [54–58]. This �2 ground state is quite stable, which
suggests that, if it is obtained from an instability of a spin
liquid, such an instability should uniquely prefer Eg order.
Consulting Table VIII, we see that the paraphase � of the
PSG class 0-(110) has a single nontrivial irrep Eg, which is
not intertwined with any other orders. Hence, if Er2Ti2O7 is
proximate to a spin liquid, a natural candidate for its parent
spin liquid is the one corresponding to the PSG class 0-(110).

One motivation of this paper was to understand the puz-
zling experiments on Yb2B2O7, where B = Ge, Ti, Sn.
These three compounds have distinct ground states: The Ge
compound is antiferromagnetic [59], while the Ti [60] and
Sn [61] compounds are ferromagnetic, at least when any
order can be clearly identified. The Ti compound is also
sensitive to disorder. Despite the disparate ground states,
inelastic neutron scattering gives very similar spectra for all
three materials [62], consisting of continuum weight over the
entire Brillouin zone down to the lowest energies resolvable in
the measurements. This observation suggests that the relevant
excitations are characteristic of some common underlying
structure, which is distinct from the usual spin waves tied to
the individual ordered states. The approach in this paper gives
one possible explanation: the excitations may be the spinons
of a parent spin-liquid state.

To identify a potential parent spin liquid, we seek a PSG
class from which both antiferromagnetic and ferromagnetic
orders can be obtained through the same condensation para-
phase. It is clear from Table I that such classes exist; the
classes 0-(001), 0-(101), and 0-(111) all satisfy this criterion.
Therefore, the proximity to a spin liquid corresponding to
either of these classes can potentially explain the observed
excitation spectra. Looking at the dynamic spin structure
factors in Fig. 4, we indeed see that many of the critical
structure factors in these classes [e.g., 0-(001)L, 0-(101)W,
and 0-(111)X] have a large scattering continuum over the
entire Brillouin zone down to a very small fraction of the
spin-excitation bandwidth. It would be interesting to attempt
a more quantitative comparison with the experimental data,
which would require, at the very least, a careful consideration
of effects beyond mean-field theory.

If the scattering continua in the Yb pyrochlores are reflec-
tions of a parent spin liquid, it also suggests that hidden order
may be present in these materials [62]. Indeed, from the last
column of Table I, we see that the paraphases 0-(001), 0-(101),
and 0-(111) all include hidden orders breaking inversion

symmetry. Searching for such inversion-breaking orders may
be an incisive test of the physical picture presented in this
paper; if such an order is identified, a full characterization may
be assisted by the associated order parameters in Table IX. We
note that hidden order may also participate in the specific-heat
anomalies of the Yb pyrochlores [62].

C. Future directions

The present paper explored the physics of proximity to
a broad class of quantum spin liquids on the pyrochlore
lattice. Nevertheless, several assumptions in the analysis could
be modified or relaxed in future work. We focused on Z2

spin liquids and used the framework of bosonic spinons; it
would be interesting to consider U (1) spin liquids and explore
fermionic spinons as well. The fermionic approach does not,
however, provide a simple mean-field way to study magnetic
instabilities, which is straightforward with bosonic spinons by
condensing them.

In addition, the PSG results may be further exploited even
within the framework of bosonic spinons. We concentrated
on the 0-flux NN mean-field Hamiltonians for simplicity,
assuming that NNN terms do not qualitatively change our
results. This assumption, however, is not necessarily true; in
certain cases, a NNN term one tenth as strong as a NN term
can already change the condensation momenta. Moreover, the
π -flux PSG classes may exhibit interesting physics of their
own. These PSG classes have a fourfold enlarged unit cell due
to nontrivial translational PSG along the ê2 and ê3 directions,
which leads to a 64 × 64 mean-field Hamiltonian in terms
of the parameters in Table II. Multispinon condensation may
further enlarge the magnetic unit cell. In turn, this enlargement
results in a complex spinon spectrum that probably requires a
more computational approach.

We also presumed that the full symmetry group of the
pyrochlore lattice is preserved at the level of the spin Hamilto-
nian. Previous works have discussed, in other lattice systems,
a family of chiral spin liquids, which break time reversal sym-
metry along with some space-group symmetries [37,63,64]. In
the context of the pyrochlore lattice, Ref. [38] has considered
a chiral spin liquid with broken time-reversal and inversion
symmetries, which is beyond the PSG classification in this
work. Furthermore, there is a large family of “breathing”
pyrochlore materials [46–48] that explicitly break inversion
symmetry (Fd3m → F43m) by expansion and contraction
of alternating tetrahedra. One material from this family,
Ba3Yb2Zn5O11, was reported to remain disordered down to
0.38 K [47], and a gauge mean-field theory, distinct from
the spinon approach in this paper, predicts that this material
may experience a non-symmetry-breaking transition between
a paramagnet and a quantum spin ice [65]. It would be
interesting to see how this material (and the phase transition
predicted for it) fits into a pyrochlore PSG classification.

Finally, the PSG method can be connected to the energetics
of realistic spin Hamiltonians. Indeed, our mean-field spinon
states can in principle be used as variational wave functions,
as can their so far unexplored fermionic counterparts. Cal-
culating variational energies for these wave functions would
require a major effort in variational Monte Carlo in three
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dimensions; it is well beyond the present work but is quite
worthwhile to explore.
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APPENDIX A: POINT-GROUP STRUCTURE

The space group Fd3m belongs to the cubic crystal system
with point group Oh. The point group Oh has order 48 and
is the symmetry group of a pyrochlore primitive cell—a pair
of corner sharing tetrahedra. It has a direct product structure
Oh

∼= S4 × Z2, which can be understood as following.
We label the seven vertices by μ±, where μ = 0, 1, 2, 3

is the sublattice index and “+” (“−”) denotes the upper
(lower) tetrahedon (where 0+ = 0− is the shared corner),
then the symmetry operations in Oh are permutations over
two sets {0, 1, 2, 3} and {+,−}. The generators include a
threefold rotation C3 = (123), a screw operation (modding
out translations) S = (03)(+−), and an inversion I = (+−),
written in terms of the cycle notation for permutations. We
also define the operation � = S ◦ I = (03) for future conve-
nience. (We can also define C6 = C3 ◦ I to reduce the number
of generators, since equivalently C3 = C

4
6 and I = C

3
6.) The

inversion I is the generator of the Z2 group, therefore we can
write Oh

∼= S4 ∪ (I ◦ S4), where I ◦ S4 is the coset of S4 left
composed by I . The subgroup S4 corresponds exactly to the
tetrahedron group, Td. The 24 elements of the group S4 � Td

are generated by � and C3 as (where it is understood 4 ≡ 0)

(1) = C3 ◦ C3 ◦ C3, (A1a)

(12) = � ◦ C3 ◦ � ◦ C−1
3 ◦ � ◦ C3, (A1b)

(13) = � ◦ C3 ◦ � ◦ C−1
3 ◦ �, (A1c)

(14) = � ◦ C3 ◦ � ◦ C−1
3

◦� ◦ C−1
3 ◦ � ◦ C3 ◦ � ◦ C3, (A1d)

(23) = � ◦ C3 ◦ � ◦ C−1
3 ◦ � ◦ C−1

3 , (A1e)

(24) = C3 ◦ � ◦ C−1
3 ◦ � ◦ C−1

3 ◦ �, (A1f)

(34) = �, (A1g)

(123) = C3, (A1h)

(132) = C−1
3 , (A1i)

(124) = � ◦ C3 ◦ �, (A1j)

(142) = � ◦ C−1
3 ◦ �, (A1k)

(134) = � ◦ C3 ◦ � ◦ C−1
3 , (A1l)

(143) = � ◦ C3 ◦ � ◦ C−1
3 ◦ � ◦ C3 ◦ � ◦ C−1

3 , (A1m)

(234) = C−1
3 ◦ � ◦ C3 ◦ � ◦ C−1

3 ◦ � ◦ C3 ◦ �, (A1n)
(243) = C−1

3 ◦ � ◦ C3 ◦ �, (A1o)

(1243) = � ◦ C3, (A1p)

(14)(23) = � ◦ C3 ◦ � ◦ C3, (A1q)

(1342) = � ◦ C3 ◦ � ◦ C3 ◦ � ◦ C3, (A1r)

(1234) = C3 ◦ �, (A1s)

(13)(24) = C3 ◦ � ◦ C3 ◦ �, (A1t)

(1432) = C3 ◦ � ◦ C3 ◦ � ◦ C3 ◦ �, (A1u)

(1324) = C3 ◦ � ◦ C3, (A1v)

(12)(34) = C3 ◦ � ◦ C−1
3 ◦ � ◦ C3, (A1w)

(1423) = C3 ◦ � ◦ C−1
3 ◦ � ◦ C−1

3 ◦ � ◦ C3. (A1x)

Equations (A1) will be useful in determining the mean field
ansätze parameter constraints for the PSG classes.

APPENDIX B: SOLVING PSG EQUATIONS

The space group part of the PSG equations is(
GTi Ti

)(
GTi+1 Ti+1

)(
GTi Ti

)−1(
GTi+1 Ti+1

)−1 ∈ Z2, (B1a)(
GC6

C6
)6 ∈ Z2, (B1b)

(GSS)2
(
GT3 T3

)−1 ∈ Z2, (B1c)(
GC6

C6
)(

GTi Ti
)(

GC6
C6

)−1(
GTi+1 Ti+1

) ∈ Z2, (B1d)

(GSS)
(
GTi Ti

)
(GSS)−1

(
GT3 T3

)−1(
GTi Ti

) ∈ Z2, (B1e)

(GSS)
(
GT3 T3

)
(GSS)−1

(
GT3 T3

)−1 ∈ Z2, (B1f)[(
GC6

C6
)
(GSS)

]4 ∈ Z2, (B1g)[(
GC6

C6
)3

(GSS)
]2 ∈ Z2. (B1h)

The corresponding phase equations are

φTi (�rμ) + φTi+1

[
T −1

i (�rμ)
] − φTi

[
T −1

i+1(�rμ)
] − φTi+1 (�rμ) = niπ, (B2a)

φC6
(�rμ) + φC6

[
C

−1
6 (�rμ)

] + φC6

[
C

−2
6 (�rμ)

] + φC6

[
C

−3
6 (�rμ)

] + φC6

[
C

−4
6 (�rμ)

] + φC6

[
C

−5
6 (�rμ)

] = nC6
π, (B2b)

φS (�rμ) + φS[S−1(�rμ)] − φT3 (�rμ) = nSπ, (B2c)

φC6
(�rμ) + φTi

[
C

−1
6 (�rμ)

] − φC6
[Ti+1(�rμ)] + φTi+1 [Ti+1(�rμ)] = nC6Ti

π, (B2d)

φS (�rμ) + φTi [S
−1(�rμ)] − φS

[
T −1

3 Ti(�rμ)
] − φT3 [Ti(�rμ)] + φTi [Ti(�rμ)] = nSTiπ, (B2e)

φS (�rμ) + φT3 [S−1(�rμ)] − φS
[
T −1

3 (�rμ)
] − φT3 (�rμ) = nST3π, (B2f)
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φC6
(�rμ) + φS

[
C

−1
6 (�rμ)

] + φC6
[(C6S)−1(�rμ)] + φS[(C6SC6)−1(�rμ)] + φC6

[(C6SC6S)−1(�rμ)]

+φS[(C6SC6SC6)−1(�rμ)] + φC6
[(C6SC6SC6S)−1(�rμ)] + φS[(C6SC6SC6SC6)−1(�rμ)] = nC6Sπ, (B2g)

φC6
(�rμ) + φC6

[
C

−1
6 (�rμ)

] + φC6

[
C

−2
6 (�rμ)

] + φS
[
C

−3
6 (�rμ)

] + φC6

[(
C

3
6S

)−1
(�rμ)

]
+φC6

[(
C

3
6SC6

)−1
(�rμ)

] + φC6

[(
C

3
6SC

2
6

)−1
(�rμ)

] + φS[S(�rμ)] = nSC6
π. (B2h)

where both Eq. (B2a) and Eq. (B2d) stand for three equations i = 1, 2, 3, and Eq. (B2e) stands for two equations i = 1, 2.
First we solve Eq. (B2a). Due to gauge freedom of second type, we can use a gauge transformation to achieve

φT1 (r1, r2, r3)μ = φT2 (0, r2, r3)μ = φT3 (0, 0, r3) = 0. Then Eq. (B2a) gives

φT1 (�rμ) = 0, φT2 (�rμ) = n1πr1,

φT3 (�rμ) = n3πr1 + n2πr2 (mod 2π ).
(B3)

Using Eq. (B3) to solve Eq. (B2d)

φC6
(r1, r2, r3)μ − φC6

(r1, r2 + 1, r3)μ + n1πr1 = nC6T1
π, (B4a)

φC6
(r1, r2, r3)μ − n1π (r2 + δμ=2) − φC6

(r1, r2, r3 + 1)μ + n3πr1 + n2πr2 = nC6T2
π, (B4b)

φC6
(r1, r2, r3)μ − n3π (r2 + δμ=2) − n2π (r3 + δμ=3) − φC6

(r1 + 1, r2, r3)μ = nC6T3
π (B4c)

we get n1 = n2 = n3, and

φC6
(�rμ) = φC6

(�0μ) + (
nC6T3

+ n1δμ=2,3
)
πr1

+ nC6T1
πr2 + (

nC6T2
+ n1δμ=2

)
πr3

+ n1π (r1r2 + r1r3).

(B5)

Then using Eq. (B3) to solve Eq. (B2e) and (B2f), we get

φS (�rμ) = φS (�0μ) + (
nST3 + n1δμ=1,2 − nST1

)
πr1

+ (
nST3 + n1δμ=2 − nST2

)
πr2

+ (
nST3 + n1δμ=1,2

)
πr3

− 1
2 n1π (r1 + r2)(r1 + r2 + 1). (B6)

Using Eqs. (B3), (B5), and (B6) to solve Eq. (B2g) and
Eq. (B2h) we get

3∑
μ=0

φC6
(�0μ) + φS (�0μ) =

(
nC6S +

3∑
i=1

nC6Ti

)
π, (B7)

and

nST3 +
3∑

i=1

nC6Ti
= 0, (B8a)

3φC6
(�00) +

3∑
j=1

φC6
(�0 j )

+φS (�00) + φS (�03) =
⎛⎝nSC6

+
3∑

j=2

nC6Tj

⎞⎠π, (B8b)

2φS (�0i ) + 2
3∑

j=1

φC6
(�0 j ) = nSC6

π, i = 1, 2. (B8c)

Then, from Eq. (B2b) we get

6φC6
(�00) = nC6

π, (B9a)

2
3∑

j=1

φC6
(�0 j ) +

3∑
i=1

nC6Ti
π = nC6

π, (B9b)

and Eq. (B2c) gives

nST3 = 0 (B10)

and

φS (�00) + φS (�03) = nSπ, (B11a)

2φS (�01) + (n1 + nST1 )π = nSπ, (B11b)

2φS (�02) + (n1 + nST2 )π = nSπ. (B11c)

Equations (B8a) and (B10) further imply that

nC6T1
+ nC6T2

+ nC6T3
= 0. (B12)

This completes solving the interunit cell part of the space
group PSG equations. We can use some of the remaining
gauge freedom to simplify results. In order to use the IGG
freedom we notice that Eqs. (B1c), (B1d), and (B1e) have
operators that appear an odd number of times. According to
our analysis in the main text, we can set nS = 0, and two
out of the three parameters nCTi

to be zero, which together
with Eq. (B12) means that nC6T1

= nC6T2
= nC6T3

= 0. The
independent Z2 parameters at this point are

n1, nC6
, nST1 , nST2 , nC6S, nSC6

. (B13)

Then we add time reversal operation. From

(GT T )(GOO)(GT T )−1(GOO)−1 ∈ Z2 (B14)

where O ∈ {T1, T2, T3,C6, S}, we get

φT (�rμ) − φT
[
T −1

i (�rμ)
] − 2φTi (�rμ) = nT Tiπ, (B15a)

φT (�rμ) − φT
[
C

−1
6 (�rμ)

] − 2φC6
(�rμ) = nT C6

π, (B15b)

φT (�rμ) − φT [S−1(�rμ)] − 2φS (�rμ) = nT Sπ, (B15c)
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where Eq. (B15a) stands for three equations i = 1, 2, 3. From
Eq. (B15a) we get

φT (�rμ) = φT (�0μ) + π

3∑
i=1

nT Ti ri. (B16)

From Eq. (B15b) we get nT T1 = nT T2 = nT T3 ≡ nT T , and

2φC6
(�00) = nT C6

π, (B17a)

φT (�0i ) − φT (�0i−1)

+nT T π − 2φC6
(�0i ) = nT C6

π, i = 1, 2, 3, (B17b)

therefore nT C6
+ nT T = nC6

. Finally Eq. (B15c) gives nT T =
0, nST1 = nST2 = nT S − n1, and

φT (�00) − φT (�03) − 2φS (�00) = (n1 + nST1 )π. (B18)

Lastly the equation T 2 = −1 gives no constraint.
Now we have solved all the interunit cell part of the PSG

equations. The intraunit cell part gives

2φC6
(�00) = nC6

π, (B19a)

2
3∑

j=1

φC6
(�0 j ) = nC6

π, (B19b)

φS (�00) + φS (�03) = 0, (B19c)

2φS (�0i ) + (n1 + nST1 )π = 0, i = 1, 2, (B19d)

3∑
μ=0

φC6
(�0μ) + φS (�0μ) = nC6Sπ, (B19e)

3φC6
(�00) +

3∑
j=1

φC6
(�0 j ) = nSC6

π, (B19f)

2
3∑

j=1

φC6
(�0 j ) + 2φS (�0i ) = nSC6

π, i = 1, 2, (B19g)

φT (�0i ) − φT (�0i−1)

−2φC6
(�0i ) = nC6

π, i = 1, 2, 3, (B19h)

φT (�00) − φT (�03) − 2φS (�00) = (n1 + nST1 )π. (B19i)

Then we use the gauge freedom of second type. Note under
gauge transformation

φ(�rμ) = φμ, μ = 0, 1, 2, 3, (B20)

we have φO(�rμ) → φO(�rμ) + φ(�rμ) − φ[O−1(�r)μ], where
φ is an arbitrary U (1) phase, we have φC6

(�0)0 → φC6
(�0)0,

φC6
(�0)i → φC6

(�0)i + φi − φi+1, φS (�0)0 → φS (�0)0 + φ0 − φ3,

φS (�0)1,2 → φS (�0)1,2, φS (�0)3 → φS (�0)3 + φ3 − φ0, and
φT (�0)μ → φT (�0)μ + 2φμ. Then, we can choose the value of
φμ to fix

φT (�0μ) = 0, (B21)

and

φC6
(�0μ) =

(nC6

2
+ pμ

)
π, (B22a)

TABLE X. Correspondence between orders, irreps and basis of
irreps.

Irrep Basis Orders

A2 S1 all in-all out
E S2, S3 �2 and �3

T1,A S4, S5, S6 collinear FM
T1,B S7, S8, S9 noncollinear FM
T2 S10, S11, S12 Palmer-Chalker

φS (�00) = −φS (�03) =
(

n1 + nST1

2
+ m0

)
π, (B22b)

φS (�01,2) =
(

−n1 + nST1

2
+ m1,2

)
π, (B22c)

where pμ, m0, and m1,2 are all Z2 parameters.
Note we still have a discrete gauge freedom: We can choose

a particular sublattice ν and define gauge transformation

φ(�rμ) = πδμ,ν, (B23)

then Eq. (B21) is preserved but the relative phase of φC6
can

be changed. By choosing ν = 1, 2, 3 we can use gauge (B23)
to fix p1 = p2 = p3 ≡ p. Furthermore, we can use the global
Z2 freedom for φC6

(�rμ) and φS (�rμ) to fix p0 = 0 and m1 = 0.
Then, let ν = 0, 3, we can use gauge (B23) to fix m0 = 0. By
checking Eqs. (B19), we have nSC6

= nC6
+ n1 + nST1 , p =

n1 + nST1 and m2 = nC6S . The final solution is presented in
Eq. (22).

APPENDIX C: BASIS FOR IRREPS OF Td

This Appendix gives the representation analysis result for
the spins S on a single tetrahedron, which can be equally
applied to pyrochlore lattices with a � point order. The twelve-
component spin S form a 12-dimensional representation of the
tetrahedon group Td. The group Td has irreducible representa-
tion (irrep)A1, A2, E , T1, T2. S can be decomposed into irreps
A2, E , T1,A, T1,B, and T2. The corresponding basis and orders
are listed in Table X. This is simply a reproduction of Table III
in Ref. [22]. The basis is

S1 = 1

2
√

3
(1, 1, 1, 1,−1,−1,−1, 1,−1,−1,−1, 1),

S2 = 1

2
√

6
(−2, 1, 1,−2,−1,−1, 2, 1,−1, 2,−1, 1),

S3 = 1

2
√

2
(0,−1, 1, 0, 1,−1, 0,−1,−1, 0, 1, 1),

S4 = 1

2
(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),

S5 = 1

2
(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0),

S6 = 1

2
(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1),

S7 = − 1

2
√

2
(0, 1, 1, 0,−1,−1, 0,−1, 1, 0, 1,−1),

S8 = − 1

2
√

2
(1, 0, 1,−1, 0, 1,−1, 0,−1, 1, 0,−1),
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S9 = − 1

2
√

2
(1, 1, 0,−1, 1, 0, 1,−1, 0,−1,−1, 0),

S10 = 1

2
√

2
(0,−1, 1, 0, 1,−1, 0, 1, 1, 0,−1,−1),

S11 = 1

2
√

2
(1, 0,−1,−1, 0,−1,−1, 0, 1, 1, 0, 1),

S12 = 1

2
√

2
(−1, 1, 0, 1, 1, 0,−1,−1, 0, 1,−1, 0). (C1)

APPENDIX D: DERIVATION OF THE MEAN-FIELD
HAMILTONIANS

In this section we present the solution of mean field con-
straints from PSG classes, up to NNN level. For the on-site
bond �00 → �00, the 12 group elements that map the bond back
are

(1), (12), (13), (23), (123), (13), (+−), (12)(+−),

(13)(+−), (23)(+−), (123)(+−), (13)(+−),

which give constraints

(α, β, γ , δ) = (α,−γ ,−β,−δ)

= (α,−δ,−γ ,−β )

= (α,−β,−δ,−γ )

= (α, δ, β, γ )

= (α, γ , δ, β ),

(0, β ′, γ ′, δ′) = (−1)n1+nST1 (0,−γ ′,−β ′,−δ′)

= (−1)n1+nST1 (0,−δ′,−γ ′,−β ′)

= (−1)n1+nST1 (0,−β ′,−δ′,−γ ′)

= (0, δ′, β ′, γ ′)

= (0, γ ′, δ′, β ′)

= (−1)nC6 (0, β ′, γ ′, δ′)

= (−1)n1+nST1 +nC6 (0,−γ ′,−β ′,−δ′)

= (−1)n1+nST1 +nC6 (0,−δ′,−γ ′,−β ′)

= (−1)n1+nST1 +nC6 (0,−β ′,−δ′,−γ ′)

= (−1)nC6 (0, δ′, β ′, γ ′)

= (−1)nC6 (0, γ ′, δ′, β ′). (D1)

The only allowed onsite hopping term is α which is simply
the chemical potential μ. The allowed pairing terms are
β ′ = γ ′ = δ′ ≡ ν when and only when (n1 + nST1 , nC6

) =
(1, 0). Note the singlet pairing term is not allowed, α′ = 0,
due to hermiticity.

Consider the case for the NN bond �00 → �01. The four
group elements that map the bond back are [see Appendix A
for details]

(1), (14), (23), (14)(23),

using Eqs. (A1), (24), (26), and (30), we get constraints

(a, b, c, d ) = (−1)nC6S (a,−b, c, d )

= (a, b,−d,−c)
= (−1)nC6S (a,−b,−d,−c), (D2a)

(a′, b′, c′, d ′) = (−1)nC6S (−a′, b′,−c′,−d ′)

= (−1)n1+nST1 +nC6 (−a′,−b′, d ′, c′)

= (−1)n1+nST1 +nC6
+nC6S (a′,−b′,−d ′,−c′),

(D2b)

we get
(i) nC6S = 0: b = 0, c = −d, a, c free independent; a′ =

c′ = d ′ = 0, we have
(a) n1 + nST1 = nC6

: no NN pairing term allowed;
(b) n1 + nST1 = nC6

+ 1: b′ free.
(ii) nC6S = 1: a = c = d = 0, b free; b′ = 0, and

(a) n1 + nST1 = nC6
: a′ = 0, c′ = d ′, c′ free;

(b) n1 + nST1 = nC6
+ 1: c′ = −d ′, a′, c′ free indepen-

dent.
For the NNN bond �01 → �02 − ê2, it can be checked that

only the identity (1) and the element (12)(+−) = S ◦ C3 ◦ S ◦
C−1

3 ◦ S ◦ C3 map the bond back, which gives

(A, B,C, D) = (−1)n1 (A,C, B, D), (D3a)

(A′, B′,C′, D′) = (−1)1+nST1 (A′,C′, B′, D′). (D3b)

Therefore for hopping
(i) n1 = 0: B = C, A, B, D free independent;
(ii) n1 = 1: A = D = 0, B = −C, B free,

and for pairing
(i) nST1 = 0: A′ = D′ = 0, B′ = −C′, B′ free;
(ii) nST1 = 1: B′ = C′, A′, B′, D′ free independent.

These results are listed in Table II.

APPENDIX E: CRITICAL CHEMICAL POTENTIAL μ

The critical chemical potential μc for the 15 paraphases is
listed in Table XI.

APPENDIX F: CONDENSATION RESULTS

The three vectors Sr, Sc, and Ss for the paraphase 0-(100)�, mentioned in Eq. (53), are

Sr = (0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0,−1), (F1a)

Sc = (−1, 0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0), (F1b)

Ss = (0,−1, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0). (F1c)
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TABLE XI. Critical chemical potential μc for the 15 paraphases.

Paraphase Critical μc

0-(001)� μc = max{−6a, 2a − 8c}
0-(001)L Largest root of μ3 + 2(a + 2c)μ2 − 4(2a2 − 4ac + 2c2 + 3b′2)μ − 24b′2(a + 2c) = 0
0-(001)� μc = 2a + 4c
0-(010)� μc = 2(a + 2c +

√
4(a − c)2 + 3(ν − b′)2)

0-(010)� μc = 2(−a − 2c + √
3|ν + b′|)

0-(100)� μc = −6b
0-(100)� μc = 2b + 4

√
2|c′|

0-(101)� μc = −6b
0-(101)W Largest root of μ4 − 8(b2 + 2a′2 + 4c′2 )μ2 + 64(2a′ + c′)bc′μ − 64a′c′(b2 + 3c′2) + 16(b2 − 3c′2 )2 − 32b2a′2 + 48a′4 = 0
0-(101)X μc = 2b + 2

√
2|a′ − c′|

0-(110)� μc = 6b + 2
√

3|ν + a′ + 2c′|
0-(110)� μc = −2b + 2

√
(ν + a′ − 2c′)2 + 2(ν − a′)2

0-(111)� μc = 6b

0-(111)W μc = max {±√
2w + √

2
√

2b2 ∓ 4
√

2bw + 7w2}
0-(111)X μc = −2b + 2

√
6|c′|

The three vectors Sr, Sc, and Ss for the paraphase 0-(001)�, mentioned in Sec. IV F 3, are

Sr = (4, 4, 7,−8,−4,−1,−4,−8,−1, 0, 0, 9), (F2a)

Sc = (1,−8, 4, 1,−4, 8,−7, 4,−4, 9, 0, 0), (F2b)

Ss = (−8, 1, 4, 4,−7,−4,−4, 1, 8, 0, 9, 0). (F2c)

In writing down the Ginzburg-Landau theory for the paraphase 0-(010)�, the transformation rules of φ1, φ2, φ1, φ2 are

C6 :

⎛⎜⎜⎝
φ1

φ2

φ1

φ2

⎞⎟⎟⎠ →

⎛⎜⎜⎜⎜⎜⎝
( 1

6 − i
6 )((1+2i)δ+(1−i)�)

δ

( 1
6 + i

6 )(δ+�)
δ

− ( 1
2 − i

2 )ζ
δ

0

− ( 1
6 − i

6 )(δ+�)
δ

( 1
6 + i

6 )((1−2i)δ+(1+i)�)
δ

0 − ( 1
2 + i

2 )ζ
δ

− ( 1
2 + i

2 )ζ
δ

0 ( 1
6 + i

6 )((1−2i)δ+(1+i)�)
δ

( 1
6 − i

6 )(δ+�)
δ

0 − ( 1
2 − i

2 )ζ
δ

− ( 1
6 + i

6 )(δ+�)
δ

( 1
6 − i

6 )((1+2i)δ+(1−i)�)
δ

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

φ1

φ2

φ1

φ2

⎞⎟⎟⎠, (F3)

S :

⎛⎜⎜⎝
φ1

φ2

φ1

φ2

⎞⎟⎟⎠ →

⎛⎜⎜⎜⎜⎝
1√
2

− 1√
2

0 0

− 1√
2

− 1√
2

0 0

0 0 1√
2

− 1√
2

0 0 − 1√
2

− 1√
2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

φ1

φ2

φ1

φ2

⎞⎟⎟⎠, (F4)

where the definition of δ,� and ζ has been given in Sec. IV F. We see that in this case the fields transform to their complex
conjugates under Oh.

The only quartic term invariant under Oh is

� = [
4(|φ1|2 + |φ2|2) + (

(−1 + i)φ2
1 − (1 + i)φ2

2 − iφ1φ2 + c.c.
)]2

. (F5)

In writing down the Ginzburg-Landau theory for the paraphase 0-(100)�, the transformation rules of φ1,2 under C6 and S are
recorded by the following matrices:

U (100)�
C6

= 1

2

(
1 − i 1 − i

−1 − i 1 + i

)
, U (100)�

S = 1√
2

(
0 −1 − i

1 − i 0

)
. (F6)

There are six quartic terms that are invariant under Oh. Three of them can be written as �2
i , where

�1 = |φ1|2 + |φ2|2,

�2 = 1

2

(|φ1|2 − |φ2|2
) +

(
1 + 3i

4
φ2

1 + 1 − 2i

2
φ1φ2 + 1 − i

2
φ1φ

∗
2 + 3 − i

4
φ2

2 + c.c.

)
,

�3 = |φ1|2 − |φ2|2 +
(

φ2
1

2
− 1 + i

2
φ1φ2 + (1 − i)φ1φ

∗
2 − i

2
φ2

2 + c.c

)
.

(F7)
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In writing down the Ginzburg-Landau theory for the paraphase 0-(101)�, the transformation rules of φ1,2 under C6 and S are
recorded by the following matrices:

Ũ (101)�
C6

= iU (100)�
C6

, Ũ (101)�
S = U (100)�

S . (F8)

the extra factor of i for C6 is due to nC6
= 1.

In writing down the Ginzburg-Landau theory for the paraphase 0-(110)�, the transformation rules of χ1,2 under C6 and S are
recorded by the following matrices:

U (110)�
C6

=
(

1
2 −

√
3

2√
3

2
1
2

)
, U (110)�

S =

⎛⎜⎝
√

3
2√

3+3
−

√
6+ 3√

2√
3+3

−
√

6+ 3√
2√

3+3
−

√
3
2√

3+3

⎞⎟⎠. (F9)

the only quadratic and quartic order parameter are the trivial one: (χ2
1 + χ2

2 )i, i = 1, 2. At sextic order, there are two terms
allowed: (

χ2
1 + χ2

2

)3
, 1

3 (χ1 − χ2)χ2
(
3χ2

1 − χ2
2

)(
χ2

1 + 4χ1χ2 + χ2
2

)
. (F10)

In writing down the Ginzburg-Landau theory for the paraphase 0-(111)�, the transformation rules of φ1,2 under C6 and S are
recorded by the following matrices:

U
(111)�
C6

= 1

2

(
1 − i −1 + i

−1 − i −1 − i

)
, U

(111)�
S = 1√

2

(
0 −1 − i

−1 + i 0

)
. (F11)

APPENDIX G: STRUCTURE FACTOR

We present the calculation of the static and dynamic structure factors. Importantly, we must distinguish the phase factors
in the above two expressions: The ei �q·(�rμ−�r′

ν ) in structure factor Sα is global, namely �rμ = �r + ε̂μ, which keeps track of the
relative displacement between sublattices, and this comes from the definition of structor factor. The phase factor in Fourier
transformation, on the other hand, must agree with the convention we choose in Fourier transforming the Hamiltonian into
�k space: remember that Block Hamiltonian sets the displacement between sublattices to zero, therefore we must also set the
displacement between sublattices to zero in the Fourier transforms, i.e., �rμ = �r.

Sα ( �q) = 1

N3

∑
�rμ,�r′

ν

∑
�k1,�k2,�k3,�k4

ei �q·(�rμ−�r′
ν )ei(�k2−�k1 )·�rμei(�k4−�k3 )·�r′

ν

∑
σ1,σ2,σ3,σ4

(σα )σ1,σ2 (σα )σ3,σ4

〈
b†

�k1,μσ1
b�k2,μσ2

b†
�k3,νσ3

b�k4,νσ4

〉
= 1

N

∑
�k1,�k3

∑
μ,ν

ei �q·(ε̂μ−ε̂ν )
∑

σ1,σ2,σ3,σ4

(σα )σ1,σ2 (σα )σ3,σ4

〈
b†

�k1,μσ1
b�k1−�q,μσ2

b†
�k3,νσ3

b�k3+�q,νσ4

〉
. (G1)

From Eq. (59) we write

b�k,μσ
=

3∑
ρ=0

∑
τ=↑,↓

(V11(�k))μσ,ρτ b̃�k,ρτ
+ (V12(�k))μσ,ρτ b̃†

−�k,ρτ
, (G2)

one can show using Wick’s theorem that

〈b†
�k1,μσ1

b�k1−�q,μσ2
b†

�k3,νσ3
b�k3+�q,νσ4

〉 =
∑
ρ1,ρ2

∑
τ1,τ2

δ�k1,−�k3
(V12(�k1))∗μσ1,ρ1τ1

(V11(�k1 − �q))μσ2,ρ2τ2
(V11(−�k1))∗νσ3,ρ1τ1

(V12(−�k1 + �q))νσ4,ρ2τ2

+ δ�k1,�k3+�q(V12(�k1))∗μσ1,ρ1τ1
(V11(�k1 − �q))μσ2,ρ2τ2

(V11(�k1 − �q))∗νσ3,ρ2τ2
(V12(�k1))νσ4,ρ1τ1

+ δ �q,�0(V12(�k1))∗μσ1,ρ1τ1
(V12(�k1))μσ2,ρ1τ1

(V12(�k3))∗νσ3,ρ2τ2
(V12(�k3))νσ4,ρ2τ2

, (G3)

where the first, second, and third terms come from the channels 〈b†
�k1,μσ1

b†
�k3,νσ3

〉〈b�k1−�q,μσ2
b�k3+�q,νσ4

〉, 〈b†
�k1,μσ1

b�k3+�q,νσ4
〉

〈b†
�k3,νσ3

b�k1−�q,μσ2
〉, and 〈b†

�k1,μσ1
b�k1−�q,μσ2

〉〈b†
�k3,νσ3

b�k3+�q,νσ4
〉, respectively. In the expression for structure factors the third term
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becomes 〈Ŝα
�rμ

〉 and vanishes due to time reversal symmetry. Therefore

Sα ( �q) = 1

N

∑
μ,ν

ei �q·(ε̂μ−ε̂ν )
∑

σ1,σ2,σ3,σ4

(σα )σ1,σ2 (σα )σ3,σ4 ·
∑
ρ1,ρ2

∑
τ1,τ2

∑
�k1

[
(V12(�k1))∗μσ1,ρ1τ1

(V11(�k1 − �q))μσ2,ρ2τ2
(V11

× (−�k1))∗νσ3,ρ1τ1
(V12(−�k1 + �q))νσ4,ρ2τ2

+ (V12(�k1))∗μσ1,ρ1τ1
(V11(�k1 − �q))μσ2,ρ2τ2

(V11(�k1 − �q))∗νσ3,ρ2τ2
(V12(�k1))νσ4,ρ1τ1

]
= 1

N

∑
μ,ν

ei �q·(ε̂μ−ε̂ν )
∑
ρ1,ρ2

∑
τ1,τ2

∑
�k1

[
(V †

12(�k1))ρ1τ1,μσ α (V11(�k1 − �q))μ,ρ2τ2
(V †

11(−�k1))ρ1τ1,νσ
α (V12(−�k1 + �q))ν,ρ2τ2

+ (V †
12(�k1))ρ1τ1,μσ α (V11(�k1 − �q))μ,ρ2τ2

(V †
11(�k1 − �q))ρ2τ2,νσ

α (V12(�k1))ν,ρ1τ1

]
= 1

N

∑
ρ1,ρ2

∑
τ1,τ2

∑
�k1

[
(V †

12(�k1))ρ1τ1,:(I ( �q) ⊗ σα )(V11(�k1 − �q)):,ρ2τ2
(V †

11(−�k1))ρ1τ1,:(I
∗( �q) ⊗ σα )(V12(−�k1 + �q)):,ρ2τ2

+ (V †
12(�k1))ρ1τ1,:(I ( �q) ⊗ σα )(V11(�k1 − �q)):,ρ2τ2

(V †
11(�k1 − �q))ρ2τ2,:(I

∗( �q) ⊗ σβ )(V12(�k1)):,ρ1τ1

]
= 1

N

∑
�k1

Tr
[
V †

12(�k1)(I ( �q) ⊗ σα )V11(�k1 − �q)(V †
21(�k1 − �q)(I∗( �q) ⊗ σα )T V22(�k1) + V †

11(�k1 − �q)(I4×4 ⊗ σα )V12(�k1))
]
, (G4)

where we have used Eq. (60) and defined I ( �q) as in Eq. (37). We used the notation “:” to denote that the corresponding rows
(columns) are retained in the matrix: For example, the notation (V †

12(�k1))
ρ1τ1,:

denotes the ρ1τ1- row of the matrix V †
12(�k1) (where

all columns in this row are retained), and the notation (V11(�k1 − �q)):,ρ2τ2
denotes the ρ2τ2 column of the matrix V11(�k1 − �q)

(where all rows in this column are retained).
Furthermore, define W α (�k, �q) = V †

12(�k1)(I ( �q) ⊗ σα )V11(�k1 − �q), we have

Sα ( �q) = 1

N

∑
�k1

Tr[W α (�k1, �q)(W α (−�k1 + �q, �q))∗ + W α (�k1, �q)(W α (�k1, �q))†]. (G5)

Notice that if we pick the four terms relevant for a given �k1 (we omit the α index for simplicity):

Tr[W (�k1, �q)W ∗(−�k1 + �q, �q) + W (�k1, �q)W †(�k1, �q)] + Tr[W (−�k1 + �q, �q)W ∗(�k1, �q) + W (−�k1 + �q, �q)W †(−�k1 + �q, �q)]

= Tr[W (�k1, �q)W ∗(−�k1 + �q, �q) + W (�k1, �q)W †(�k1, �q)] + Tr[(W (−�k1 + �q, �q)W ∗(�k1, �q) + W (−�k1 + �q, �q)W †(−�k1 + �q, �q))T ]

= Tr[W (�k1, �q)W ∗(−�k1 + �q, �q) + W (�k1, �q)W †(�k1, �q)] + Tr[W †(�k1, �q)W T (−�k1 + �q, �q) + W ∗(−�k1 + �q, �q)W T (−�k1 + �q, �q)]

= Tr[W (�k1, �q)W ∗(−�k1 + �q, �q) + W (�k1, �q)W †(�k1, �q)] + Tr[W T (−�k1 + �q, �q)W †(�k1, �q) + W T (−�k1 + �q, �q)W ∗(−�k1 + �q, �q)]

= Tr[(W (�k1, �q) + W T (−�k1 + �q, �q))(W (�k1, �q) + W T (−�k1 + �q, �q))†],
(G6)

therefore Eq. (G5) can be written as Eqs. (61) and (62) in the main text.
The dynamic structure factor is defined in Eq. (63). We have∑

�rμ,�r′
ν

〈
Ŝα

�rμ
(t )Ŝα

�r′
ν

〉
ei �q·(�rμ−�r′

ν ) =
∑
�k1,�k3

∑
μ,ν

ei �q·(ε̂μ−ε̂ν )
∑

σ1,σ2,σ3,σ4

(σα )σ1,σ2 (σα )σ3,σ4

〈
b†

�k1,μσ1
(t )b�k1−�q,μσ2

(t )b†
�k3,νσ3

b�k3+�q,νσ4

〉
, (G7)

in Heisenberg representation, b̃(t ) = eiHt b̃e−iHt = eiλ̃b†b̃t b̃e−iλ̃b†b̃t = b̃e−iλt , we have〈(̃
b†

i1
(t ) + b̃i1 (t )

)(̃
b†

i2
(t ) + b̃i2 (t )

)(̃
b†

i3
+ b̃i3

)(̃
b†

i4
+ b̃i4

)〉 = δi1,i2δi3,i4 + δi1,i3 e−i(λi1 +λi2 )t
(
δi2,i4 + δi1,i4δi2,i3

)
, (G8)

again we neglect the first term which vanishes in dynamical structure factor due to time reversal symmetry. So that〈
b†

�k1,μσ1
(t )b�k1−�q,μσ2

(t )b†
�k3,νσ3

b�k3+�q,νσ4

〉
=

∑
ρ1,ρ2,ρ3,ρ4

∑
τ1,τ2,τ3,τ4

(V12(�k1))∗μσ1,ρ1τ1
(V11(�k1 − �q))μσ2,ρ2τ2

(V11(�k3))∗νσ3,ρ3τ3
(V12(�k3 + �q))νσ4,ρ4τ4

·
〈̃
b−�k1,ρ1τ1

(t )̃b�k1−�q,ρ2τ2
(t )̃b†

�k3,ρ3τ3
b̃†

−(�k3+�q),ρ4τ4

〉
=

∑
ρ1,ρ2,ρ3,ρ4

∑
τ1,τ2,τ3,τ4

(V12(�k1))∗μσ1,ρ1τ1
(V11(�k1 − �q))μσ2,ρ2τ2

(V11(�k3))∗νσ3,ρ3τ3
(V12(�k3 + �q))νσ4,ρ4τ4

·

e−i(λ−�k1 ,ρ1τ1
+λ�k1−�q,ρ2τ2

)t(
δ(−�k1,ρ1τ1 ),(�k3,ρ3τ3 )δ(�k1−�q,ρ2τ2 ),(−(�k3+�q),ρ4τ4 ) + δ(−�k1,ρ1τ1 ),(−(�k3+�q),ρ4τ4 )δ(�k1−�q,ρ2τ2 ),(�k3,ρ3τ3 )

)
, (G9)
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plugging this equation into Eq. (G7) we obtain Eq. (64). We see that the dynamic structure factor simply “disperses” the static
structure factor according to the energy level of each matrix element of V †

12(�k1)(I ( �q) ⊗ σα )V11(�k1 − �q).
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