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Taming convergence in the determinant approach for x-ray excitation spectra
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A determinant formalism in combination with ab initio calculations was proposed recently and has paved
a way for simulating and interpreting x-ray excitation spectra in condensed-phase systems. The method
systematically takes into account many-electron effects in the Mahan-Noziéres-De Dominicis (MND) theory,
including core-level excitonic effects, the Fermi-edge singularity, shakeup excitations, and wave function
overlap effects such as the orthogonality catastrophe, all within a universal framework using many-electron
configurations. A heuristic search algorithm was introduced to search for the configurations that are important
for defining the x-ray spectral line shape, instead of enumerating them in a brute-force way. The algorithm
has proven to be efficient for calculating O K edges of transition metal oxides, which converge at the second
excitation order (denoted as f (n) with n = 2), i.e., the final-state configurations with two e-h pairs (with one hole
being the core hole). However, it remains unknown how the determinant x-ray spectra converge for general cases
and at which excitation order n should one stop the determinant calculation. Even with the heuristic algorithm,
the number of many-electron configurations still grows exponentially with the excitation order n. In this work
we prove two theorems that can indicate the order of magnitude of the contribution of the f (n) configurations,
so that one can estimate their contribution very quickly without actually calculating their amplitudes. The two
theorems are based on singular-value decomposition (SVD) analysis, a method that is widely used to quantify
entanglement between two quantum many-body systems. We examine the K edges of several metallic systems
with the determinant formalism up to f (5) to illustrate the usefulness of the theorems.
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I. INTRODUCTION

X-ray spectroscopy has become increasingly important for
providing insights into many problems in materials charac-
terization at microscopic scale [1–7], especially in recent
times when this area is propelled by the development of light
sources enabled by free-electron lasers [8–10]. We consider
resonant x-ray excitations, where a core electron of a specific
type of atom is promoted into orbitals localized on or near
that atomic site, revealing a wealth of information of local
chemical environment and electronic structure. The near-edge
part of an x-ray absorption spectrum, i.e., a few eVs above
onset, is of particular interest, indicating element-specific
details of band-edge electronic structure relevant to intriguing
physics and chemical processes [3]. The interpretation of x-
ray spectra, however, is often a nontrivial task that requires ac-
curate first-principles modeling of both atomic and electronic
structure of interest and their associated spectra [11–13].
While the structural properties of a wide range of materials
can be mostly captured by density-functional theory (DFT)
[14–18], predicting x-ray excited-state spectra in a reliable
and efficient manner presents a greater theoretical challenge.

There has been a broad spectrum of theoretical approaches
for simulating x-ray excitation spectra. At one extreme, exact
diagonalization [19–26] has been applied to rigorously solve
the many-electron Hamiltonian. This method represents the
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most accurate solutions and is most amendable for localized
x-ray excitations that occur within a few atomic orbitals, due
to the exponential growth of the many-electron Hilbert space.
Wannier down-folding is typically required for reducing the
size of the Hamiltonian [21,23] and the Coulomb interaction
is usually simplified as an on-site Hubbard U term. Similar
methodology is also employed in the quantum chemistry
community within the configuration interaction [27,28] and
other post-Hartree-Fock methods [29,30], in which realistic
Coulomb interactions and superposition of many-electron
configurations are considered explicitly in the calculation.
Likewise, increasing the size of the excited-state calculation
is hindered by the exponential barrier associated with the
size of the Hilbert space, although placing restrictions on
the active orbital space can mitigate the problem to some
extent [31–33]. Due to its rigor, this class of methods can
be used for systems with strong electron correlation, but
due to its computational inefficiency, it is limited to specific
cases such as small molecules [31,33] or clusters [26] and
3d metal L edges (dominated by localized atomic multiplet
effects) [21,25] so far.

At the other extreme, excited-state spectra of condensed
phases can be routinely obtained using ab initio methods
based on DFT and many-body perturbation theory (MBPT),
where electron correlation is treated with less rigor but higher
efficiency. There are two representative methods. One is the
Delta-self-consistent-field (�SCF) approach [1,11,34,35] that
treats the core hole as an external potential, and maps a many-
electron excited state to an empty orbital. Many-electron
response is taken into account by DFT electronic relaxation,
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and then the transition matrix elements are calculated using
Fermi’s golden rule. In previous formalisms, however, only
one-body orbitals are employed for final states, which does
not account for proper time ordering of the many-electron
processes in x-ray excitations [1,2], leading to possible fail-
ures in predicting the intensity of an absorption edge. The
other method is the core-level Bethe-Salpeter equation (BSE)
[36–38] within MBPT that utilizes the DFT ground state as
a zero-order approximation and incorporates many-electron
correlations in a perturbative manner. A subset of Feynman
diagrams generated by the direct and exchange kernels are
included to account for e-h interactions (excitonic effects).
and hence the correct time ordering is retained in this ap-
proach. Formulations akin to the BSE are also adopted in
linear-response of time-dependent DFT (TDDFT) [39–43], in
which exchange-correlation kernels substitute for an e-h inter-
action kernel, or in the corresponding real-time propagation
approaches [41,42]. There are many successful application
of the �SCF core-hole approach [11,34,35,44,45] and the
core-level BSE [1,38,46] in extended systems, and even in
molecules [34] where the Coulomb interaction is not well
screened.

A. Motivations and advantages of the determinant formalism

Following the philosophy of the post DFT methods, we re-
cently proposed a determinant formalism [1,2] for simulating
x-ray excitation spectra based on the one-body core-hole ap-
proach. In essence, we use an single determinant comprised of
Kohn-Sham (KS) orbitals of the unexcited system to approx-
imate the initial state, and a single determinant comprised of
KS orbitals of the core-excited system to approximate each x-
ray excited state. Typically, there is a basis-set transformation
of basis set between these two sets of KS orbitals. Transition
amplitudes between these determinants, when represented in
a common orbital basis, also take the form of determinants
of subsets of the orbital transformation matrix. This approach
currently describes all states as single determinants. It does
not involve configuration interactions among multiple many-
electron configurations.

The determinant formalism has three main advantages:
First, it provides an exact solution to all the many-electron
effects considered within the Mahan-Noziéres-De Dominicis
(MND) model [47–50], which is beyond the scope of e-h
attraction in the BSE. These effects include the power-law
edge singularity as considered by Mahan using Feynman
diagrams [50], and the many-body wave function overlap
effect considered by Anderson in the orthogonality catastro-
phe [51]. In a less dramatic manner, the latter often manifests
as shakeup effects [52–54], but not edge-rounding effects.
Shakeup effects refer to multielectron excitations evident at
higher absorption energies which are not explicitly repre-
sented in the single electron-hole pair projection of the BSE.

Second, the determinant formalism adopts many-electron
configurations in the calculation, and hence provides a con-
ceptually simple picture for understanding x-ray excited
states. In the x-ray final-state system, a many-body state is
simply a single determinant (single reference) of the occu-
pied KS orbitals. Each excited state is now mapped to its
composite orbitals. We denote the group of singles as f (1),

which comprises a core hole and an electron; the group of
doubles as f (2), which comprises an additional valence e-h
pair; and so forth. The n in f (n) can be understood as the order
of excitations. This enables a straightforward assignment of
absorption features to excited states, making the interpretation
of the spectrum simple.

Third, an alternative solution for solving the MND model
using DFT orbitals as input was introduced in Refs. [55–58],
and good agreement has been achieved in some carbon sys-
tems and metals. In this method, a time-dependent matrix
integral equation needs to be solved and matrix inversion is
required for each point on the discretized time axis. Then a
Fourier transformation is performed to obtain the spectrum.
The determinant approach we proposed only requires a one-
shot matrix inversion and no real-time evolution is involved. It
is physically more intuitive and computationally less complex.

Finally, although many-electron configurations are em-
ployed for condensed-phase systems with hundreds to thou-
sands of electrons in a supercell, the determinant calculation is
not at all intractable. We have developed a heuristic search al-
gorithm for finding the many-electron configurations that are
important for determining the x-ray spectra [2]. For transition
metal oxides (TMOs), it is found the x-ray absorption spectra
(XAS) can be well defined by just 105 configurations up to
the f (2) order (not their superposition and no diagonalization
of many-body Hamiltonian is needed), which are inexpensive
calculations given the current computational capability.

It is, however, unknown yet how expensive the determinant
calculations are in other systems apart from TMOs. It remains
unclear if f (n) configurations with n > 2 are important for
shaping the x-ray excitation spectra. Even with the heuristic
search algorithm [2] that truncates the number of many-
electron configurations, the number of meaningful f (n) config-
urations still tends to diverge exponentially with respect to the
shakeup order n. If one can estimate the spectral contributions
from the f (n) configurations before actually calculating them,
it will be of great benefit for saving computational resources.
In this work we propose a useful criterion for estimating the
contributions of f (n), which helps one to decide at what n
one should stop the determinant calculation. It is based on a
singular-value decomposition (SVD) analysis of the ζ matrix,
the auxiliary matrix used to obtain the determinant transition
amplitudes. An SVD analysis of the ζ matrix reflects how
the one-body basis set is rotated due to the perturbation of
the core hole, and how the final-state occupied manifold is
entangled with the initial state (typically the many-electron
ground state). Besides TMOs, we have chosen several metallic
systems such as Li and Cu metal and performed exhaustive
calculations up to n = 5 to test the convergence criterion in
this work.

B. Review of the determinant formalism

The central formula for calculating the x-ray absorption
amplitudes from the ground-state (initial state) |�i〉 to a
specific final state |� f 〉 is [1,2]

〈� f |O|�i〉 =
∑

c

(
A f

c

)∗〈ψc|o|ψh〉 (1)
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FIG. 1. (a) Graphical depicts of the x-ray initial-state and final-state system. Both of them are supercells. The final-state system contains
an core hole (h†) fixed to the excited atom, which is modeled by the corresponding core-hole pseudopotential. The supercell size should be
larger than 1 nm so that the spurious interactions among core-hole images in periodic supercells are truncated. (b) Illustrations of x-ray excited
states at different excitation order f (n), using a system with N = 3 valence electrons and M = 8 orbitals (core level excluded). Note that these
free-fermion configurations are defined in the final-state picture, not the initial-state one. f (1) configurations can be uniquely labeled by the
orbital c, f (2) by three orbitals c, c1, and v1, and f (3) by five orbitals c, c1, c2, v1, and v2.

in which the transition amplitude also takes a
determinantal form

A f
c = det

⎡
⎢⎢⎣

ξ f1,1 ξ f1,2 · · · ξ f1,N ξ f1,c

ξ f2,1 ξ f2,2 · · · ξ f2,N ξ f2,c
...

. . .
...

ξ fN+1,1 ξ fN+1,2 · · · ξ fN+1,N ξ fN+1,c

⎤
⎥⎥⎦ (2)

and ξi j = 〈ψ j |ψ̃i〉, where |ψ̃i〉’s are final-state orbitals, |ψ j〉’s
are initial-state orbitals, and N is the total number of valence
electrons (excluding the core level) in the initial state. There-
fore, the x-ray excited state has N + 1 valence electrons due
to excitation of the core level. An illustration of the initial and
final state is shown in Fig. 1(a). In the calculation, both initial
and final states are taken as supercells except that the core-
excited atom in the final state is described using a modified
pseudopotential. The perturbation from the core-excited atom
leads to a rotation of orbital basis set from {|ψ j〉} to {|ψ̃i〉}.

Alternatively, A f
c can be regarded as a single

“Slater determinant” of a set of final-state orbitals
(ψ̃ f1 , ψ̃ f2 , . . . , ψ̃ fN+1 ), expanded over the N + 1 initial-state
orbitals (ψ1, ψ2, . . . , ψN , ψc) [rather than (r1, r2, . . . , rN+1)].
The first N of these orbitals are the lowest N occupied orbitals,
and the last one ψc iterates over all the empty orbitals. The
numerical evidence on the completeness of the initial-state
basis set has been provided in previous work [2].

The first step we use to simplify the calculation is to move
the summation over c into the determinant expression:

A f ≡ 〈�i|O|� f 〉 = det A f ,

A f =

⎡
⎢⎢⎢⎣

ξ f1,1 ξ f1,2 · · · ξ f1,N
∑

c ξ f1,cw
∗
c

ξ f2,1 ξ f2,2 · · · ξ f2,N
∑

c ξ f2,cw
∗
c

...
. . .

...
ξ fN+1,1 ξ fN+1,2 · · · ξ fN+1,N

∑
c ξ fN+1,cw

∗
c

⎤
⎥⎥⎥⎦.

(3)

There are an enormous number of combinations of
( f1, f2, . . . , fN+1), representing possible final-state configura-
tions, but it is only meaningful to visit a small subset of this
space. The determinant amplitude A f is a significant num-
ber only when most of the indices ( f1, f2, . . . , fN+1) of the

occupied orbitals overlap significantly with the lowest-energy
configuration (1, 2, . . . , N + 1), because in most realistic ma-
terials, the core hole is well screened and the orthogonality
catastrophe does not occur. Therefore, ( f1, f2, . . . , fN+1) may
only differ from (1, 2, . . . , N + 1) by a few indices.

To simplify the notation, we may denote ( f1 = 1,

f2 = 2, . . . , fN = N, fN+1 = c) as a single or f (1)

configuration, ( f1 = 1, f2 = 2, . . . , fv1−1 = v1 − 1, fv1 =
v1 + 1, . . . , fN−1 = N, fN = c, fN+1 = c1) as a double or
f (2) configuration, and so forth. The concepts of f (n) are
illustrated in Fig. 1(b).

There is a one-to-one correspondence between the excited
states in the BSE and the f (1) configuration in the determinant
approach. In the core-level BSE, the excited states are labeled
by the orbitals in the system with a core hole. Correspond-
ingly, the f (1) configurations in the determinant approach are
also labeled by orbitals in the final-state system. However,
the interaction between the electrons and the core hole are
treated differently in the two approaches. In the BSE, screened
Coulomb interactions obtained via random phase approxi-
mation, whereas in the determinant approach, electron-core-
hole interactions are accounted for using exchange-correlation
functionals of proper flavor.

Each line of A f can be denoted as

ai = ξi,1 · · · ξi,N

∑
c

ξi,cw
∗
c . (4)

Next we can introduce the ζ matrix to calculate all the A f ’s in
an iterative manner. The ζ matrix is the linear transformation
from ai’s of the occupied orbitals (i � N plus aN+1) to the ai’s
of the empty orbitals (i > N)

⎡
⎢⎢⎣

aN+1

aN+2
...

aM

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 · · · 1
ζN+2,1 ζN+2,2 · · · ζN+2,N+1

...
...

...
ζM,1 ζM,2 · · · ζM,N+1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a1

a2
...

aN+1

⎤
⎥⎥⎦.

(5)

Rewriting the above matrix multiplication in a compact form,
we have Anew = ζAref, where (ζ)i j = ζN+i, j . Thus the ζ matrix
can be obtained from ζ = Anew(Aref )−1.
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With the auxiliary ζ matrix, we can quickly calculate the
determinants for many excited-state configurations without
repeatedly using the O(N3) determinant algorithm. Instead,
an O(1) algorithm can be used. Once the determinant for the
ground state Aref is obtained, the determinant of each excited
state can be computed by multiplying Aref by a prefactor.
The prefactor is a small determinant composed of the matrix
elements of the ζ matrix. For example, the amplitude of a
single ( f (1)), double ( f (2)), and triple ( f (3)) configuration can
be obtained respectively as

Ac = ζc,N Aref, Ac;c1,v1 = det

[
ζc,v1 ζc,N

ζc1,v1 ζc1,N

]
Aref,

Ac;c1,v1;c2,v2 = det

⎡
⎣ ζc,v2 ζc,v1 ζc,N

ζc1,v2 ζc1,v1 ζc1,N

ζc2,v2 ζc2,v1 ζc2,N

⎤
⎦Aref. (6)

These are the essential formulas to obtain the amplitudes
for the excited-state configuration with the O(1) updating
algorithm. A f (n) configuration corresponds to a n × n sub-
determinant of the ζ matrix.

Directly enumerating all such subdeterminants is a compu-
tationally expensive task. Also, it may not be necessary to do
so because the ζ matrix could be a sparse matrix. In previous
work [2] we have proposed a heuristic search algorithm for
quickly finding significant subdeterminants of a sparse matrix.
Our general search algorithm is not merely specific to the ζ

matrix for x-ray spectroscopic problems.
What was overlooked in the previous work, however, is that

the ζ matrix for x-ray excitations does have structures. It can
be seen that the ζ matrices for SiO2, TiO2, CrO2 all display
a vertical (horizontal) stripe pattern (Fig. 8(d) of Ref. [2]).
This stripe pattern can also be seen in other chosen examples,
which are discussed later in this work. These stripe patterns
imply a further simplification of the ζ matrix that it can be
approximately expressed as the Kronecker product of two
vectors:

ζi j ∼ aib j . (7)

If ζi j ∼ aib j strictly holds, then all the n × n subdetermi-
nants for n > 1 will be exactly zero and only the f (1) ampli-
tudes are nonvanishing. It is the deviation of ζi j from aib j that
determines the size of higher-order terms f (n) (n > 1). If one
can expand ζi j into just a few terms, then it is highly probable
that the size of higher-order terms can be quickly estimated.
In this regard, a singular-value decomposition (SVD) of the
ζ matrix is most relevant for this problem. SVD has been
widely used to analyze the entanglement structure between
two quantum many-body systems [60–62].

In the following discussion, we first provide and prove
two theorems that will give upper bounds on the size of the
f (n) terms, for a specific n, using SVD analysis for the ζ

matrix. The bounds will enable one to determine the con-
tribution of the f (n) terms to the x-ray excitation spectrum,
without explicitly calculating these terms. This will save a
substantial amount of computational cost and help one obtain
a meaningful x-ray excitation spectrum faster. Then we apply
the theorems to several small band-gap and metallic systems,
in which higher-order terms f (n) (n > 1) are expected to
contribute to the spectrum significantly. It is, however, found

that in none of the chosen systems, the contribution from f (n)

(n > 2) can significantly alter the spectral line shapes (more
precisely, the peak intensity ratios). In other words, the spectra
have already taken shape at the order of n = 2.

II. RESULTS AND DISCUSSION

A. Two theorems about subdeterminants

Theorem 1. Let D be the determinant of an n × n sub-
matrix that spans over rows i1, i2, . . . , in and columns
j1, j2, . . . , jn of an N × M matrix ζ. Suppose the singular-
value decomposition (SVD) of ζ is

ζi j =
∑

k

skak
i bk

j, (8)

where {sk} are the singular values of ζ, and ak
i (bk

j) is a
normalized vector for a given k. Then the determinant D can
be expanded as the summation

D =
∑

k1<k2<···<kn

sk1 sk2 · · · skn Da
[kμ]D

b
[kμ] (9)

in which Da
[kμ] (Db

[kμ]) is the determinant of the submatrix that
spans over rows i1, i2, . . . , in and columns k1, k2, . . . , kn of the
matrix ak

i (bk
j).

Proof. Without loss of generality, we may assume i1 =
j1 = 1, i2 = j2 = 2, . . . , in = jn = n. According to the def-
inition of the determinant, D can be expanded using the Levi-
Civita symbol:

D =
n∑

l1l2···ln=1

εl1l2···lnζ1l1ζ2l2 · · · ζnln . (10)

Inserting the SVD expression of the matrix element ζi j as in
Eq. (8) (examples of ζ can be found in Fig. 3),

D =
n∑

l1l2···ln=1

εl1l2···ln

⎛
⎝∑

k1

sk1 ak1
1 bk1

l1

⎞
⎠ · · ·

⎛
⎝∑

kn

skn akn
n bkn

ln

⎞
⎠

=
n∑

l1l2···ln=1

εl1l2···ln

⎡
⎣ ∑

k1k2···kn

sk1 sk2 · · · skn ak1
1 bk1

l1
· · · akn

n bkn
ln

⎤
⎦

=
∑

k1k2···kn

sk1sk2 · · · skn ak1
1 · · · akn

n

⎡
⎣ n∑

l1l2···ln=1

εl1l2···ln bk1
l1

· · · bkn
ln

⎤
⎦.

(11)

Note that the inner summation with respect to lν for a specific
{kμ} (μ, ν = 1, 2, . . . , n) gives rise to a determinant, which
can be denoted as

Db
[kμ] ≡

n∑
l1l2···ln=1

εl1l2···ln bk1
l1

· · · bkn
ln
. (12)

This determinant corresponds to the submatrix bk
l formed by

row 1, 2, . . . , n and column k1, k2, . . . , kn.
In the outer summation of Eq. (11), each index kμ can range

from 1 to the number of singular values. Db
[kμ] is nonzero only

when k1, k2, . . . , kn are not equal to each other, thus placing
constraints on values of kμ in the outer summation.
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Next, we may consider the case where the n values of kμ

are taken from 1, 2, . . . , n, without loss of generality. Note
that there is no ordering presumed in the outer summation
of kμ, therefore summing over all kμ’s will generate n!
permutations of 1, 2, . . . , n. For these n! permutations, the
corresponding Db

[kμ] will have the same absolute value, and
its ± sign depends on whether the permutation is odd or
even, due to the nature of determinant. If we enforce ordering
k1 < k2 < · · · < kn, we may use the Levi-Civita symbol to
represent the sign due to permutation:

D =
∑

k1k2···kn

sk1 sk2 · · · skn ak1
1 · · · akn

n Db
[kμ]

=
∑

k1<k2<···<kn

sk1 sk2 · · · skn
∑

l1l2···ln
al1

1 · · · aln
n εl1l2···ln Db

[kμ], (13)

where the tuple l1l2 · · · ln iterate over all permutation of k1 <

k2 < · · · < kn. Therefore,

D =
∑

k1<k2<···<kn

sk1 sk2 · · · skn Da
[kμ]D

b
[kμ]. (14)

Theorem 2. The absolute value of the determinant of an
n × n submatrix of ζ is bound by the product of its largest n
singular values provided by SVD

|Dn×n| �
∑

k1<k2<···<kn

sk1 sk2 · · · skn , (15)

where the singular values satisfy s1 � s2 � · · · � sn > 0.
Proof. We may start by proving the absolute value of

the determinant Da
[kμ] (Db

[kμ]) is bound by 1. Without loss of
generality, we may again assume i1 = 1, i2 = 2, . . . , in = n
and k1 = 1, k2 = 2, . . . , kn = n. According to its definition:

Da
[kμ] =

∣∣∣∣∣∣∣∣∣

a1
1 a1

2 · · · a1
n

a1
1 a2

2 · · · a2
n

...
...

. . .
...

an
1 an

2 · · · an
n

∣∣∣∣∣∣∣∣∣
. (16)

Each row of the above determinant is a vector ak
1×n =

(ak
1, ak

2, . . . , ak
n), which is a truncation of a full 1 × N vector

ak = (ai
1, ai

2, . . . , ai
N ). N is the first dimension of ζ and n �

N . Since the matrix ak
i is obtained from SVD of ζ, each of its

row vector is normalized to 1: |ak| = 1, and therefore:∣∣ak
1×n

∣∣ � 1. (17)

The geometric meaning of the determinant Da
[kμ] is the volume

of a parallelepiped spanned by n vectors ak , where k =
1, 2, . . . , n. Since the length of each of its edge |ak

1×n| � 1,
then the volume of the parallelepiped will be no larger than 1,
and thus |Da

[kμ]| � 1 (|Db
[kμ]| � 1).

Using the conclusion of theorem 1,

|Dn×n| �
∑

k1<k2<···<kn

∣∣sk1 sk2 · · · skn Da
[kμ]D

b
[kμ]

∣∣

�
∑

k1<k2<···<kn

sk1 sk2 · · · skn . (18)

Note that all the singular values of ζ are non-negative.

FIG. 2. Layered structures (side view) of RuO3 (a) and LiCoO2

(b). The unit cells are outlined by the thin black lines.

B. An analysis of ζ matrices with singular-value decomposition

We analyze several representative examples here to illus-
trate the usefulness of the two theorems for ζ matrices: A 1D
single-atom chain at half-filling, the C K edge of graphite,
the Cu K edge of copper, the Li K edge of lithium metal,
and the O K edge of rutile TiO2, CrO2, RuO3, and LiCoO2.
The crystal structures of RuO3, and LiCoO2 are shown in
Fig. 2. Both systems are layered structures that will allow
lithium insertion/removal, and are being studied as cathode
prototypes of rechargeable batteries. The chosen systems are
gapless except for TiO2 and LiCoO2, which have a DFT-PBE
band gap of 2.1 and 1.8 eV (with a Hubbard U value of 3.3 eV
on the Co atom), respectively.

The tight-binding model for the 1D chain reads

H = −t
N∑

j=1

(c†
j+1c j + c†

j c j+1), (19)

where a periodic boundary condition is employed and each
site has double occupancy. The above model is considered
as the initial-state Hamiltonian Hi. The core-hole potential
is assumed to act on a single site (the site at j = 0): Vc =
�V c†

0c0, thus the final-state Hamiltonian is Hf = Hi + Vc. It
can be solved that the 1p wave functions for Hi are

|kσ 〉 = 1√
N

N∑
j=0

eik j | jσ 〉, (20)

where k = 0, 1
N , . . . , N−1

N and σ = ↑,↓. We can define the
1p XAS matrix element as

〈kσ | j = 0, σ 〉 = 1√
N

, (21)

which serves to mimic 〈ψc|o|ψh〉 as in Eq. (1). Because we
have not introduced any actual real-space orbital in the 1D
tight-binding model, we use the projection onto the excited
site as the 1p transition amplitude.

In the actual calculation, we choose the number of sites
N = 200, the number of electrons Ne = 200 (half-filled), t =
1, a perturbation potential of �V = −100 at the excited site
to simulate the core hole effect (set to 100 for exaggeration).
We find the determinant spectrum barely changes after �V <

−100.
First, we plot the ζ matrices for the XAS (Li, C, O, and

Cu K edges) of six chosen systems in order to exemplify the
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FIG. 3. Heat-map plot of log10 |ζi j | of the XAS ζ matrices of several chosen systems for illustrating the cross-stripe pattern. If not plotted
in logarithm scale, the ζ matrices will appear to be sparse. The rows correspond to empty orbitals and the columns to occupied orbitals. The
number of occupied orbitals in the 1D chain, Li, TiO2, Cu, graphite, and CrO2 (the spin-up channel) supercell are 100, 64, 288, 352, 392, and
336, respectively, which determines the number of columns.

aforementioned stripe pattern. Once we have completed the
�SCF calculation for both the initial and final state, the ζ

matrices can be calculated using Eq. (5). Several ζ matrices
are shown in Fig. 3. Although the chosen systems are vastly
different in terms of crystal symmetry and bonding nature, it
can be seen that all the plotted ζ matrices display a cross-strip
pattern that runs both vertically and horizontally. This cross-
strip pattern suggests that the ζ matrix for x-ray excitations
can be universally expressed in terms of the Kronecker prod-
uct of two vectors: ζi j ∼ aib j , with a few small residual terms.
Thus it becomes natural to introduce an SVD analysis to the ζ

matrix, and apply the two theorems proved above to determine
the spectral convergence with respect to shakeup order.

The 20 most significant singular values of the ζ matrices
of the chosen systems are shown in Fig. 4 (the singular values
are plotted logarithmically). The first five largest singular
values (denoted as si) are also tabulated in Table I. It can
immediately be seen for all the ζ matrices that only a few
singular values are larger than 1, especially for graphite, TiO2,
LiCoO2, and the insulating (spin-down) channel of CrO2 with
only one si > 1.0. The latter three are systems with a large
band gap. The other systems only have two singular values
larger than 1. Note that in Li, s3 = 0.977 and s4 = 0.653,
which can be rounded to 1. In all the cases, si < 0.1 for i > 10,
which are orders of magnitude smaller than s1. This means
only a few singular values si are relevant for the analysis of
shakeup orders.

With these numerical results and the properties of {si}, we
can revisit the two theorems and discuss the contributions

from different shakeup order f (n) to the x-ray spectra. Because
the vast majority of si are small, we could take the product of
the leading si to form an analysis of order of approximation.
As indicated in Theorem 1, the n × n subdeterminants corre-
sponding to the f (n) terms are associated with the coefficients
sk1 sk2 · · · skn . We may thus take the largest n singular values s1

and calculate their product to estimate the contribution of f (n):

f (1) : s1 f (2) : s1s2 f (3) : s1s2s3 · · · (22)

The cumulative product s1s2 · · · sn of some leading-order sin-
gular values are also shown in Table. I. For Li, RuO3, Cu,
CrO2↑, s1s2 is significantly larger than s1 because s2 > 1.5.
This suggests the contribution of the f (2) terms is of the same
order of magnitude of f (1). An extreme case is Li in which
even s1s2s3s4 ≈ 591 is larger than s1 ≈ 479. This requires one
to go beyond f (1) in the XAS determinant calculation for these
systems.

C. XAS calculated by the determinant formalism

To test how good this empirical estimate is, we perform
determinant calculations for XAS of the chosen systems, at
least at the order of f (2). The obtained spectra decomposed
by different shakeup orders are shown in Fig. 5 (odd rows).
We find it is indeed true that the contribution from the
f (2) terms is as significant as f (1) in Li, RuO3, Cu, CrO2↑
(as studied in Refs. [1,2]). In every case, the contribution
from f (2) constitutes more than 40% of the entire computed
spectrum. In particular for Li, a trend of convergence is only
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FIG. 4. 20 most significant singular values of the ζ matrices. The singular values are positive definite and scaled logarithmically. The
horizontal line at S = 1 is used to divide values larger than 1 and smaller than 1. For CrO2, two series of singular values for spin-wise ζ

matrices are plotted.

seen after including the f (4) terms. The contributions from
f (1), f (2), f (3), f (4), and f (5) to the full spectrum ( f (1) +
f (2) + f (3) + f (4) + f (5)) are 29.7%, 51.3%, 14.8%, 3.7%,
and 0.5%. This is consistent with the fact that s1s2 ≈
927, s1s2s3 ≈ 906, and s1s2s3s4 ≈ 591 are comparable to
s1 ≈ 479 in this system. But note that the contribution f (n) is
not entirely proportional to the cumulative product s1s2 · · · sn.
It is observed that f (n) decays more quickly than s1s2 · · · sn as
n increases. This is because we have not taken into account
the decomposed determinants Da

[kμ] and Db
[kμ] in this empirical

estimate, and |Da
[kμ]|, |Db

[kμ]| < 1 holds strictly as proved in
Theorem 2.

In other investigated systems such as graphite, LiCoO2,
TiO2, and CrO2↓, the contribution from the f (2) terms is

noticeably less significant, constituting less than 30% of the
full spectrum. Their corresponding second largest singular
values s2 < 0.6, suggesting that s1s2 < s1 and hence f (2)

would not be as important as the f (1) terms. One severe
deviation from this estimate would be the tight-binding 1D
chain. The corresponding s1s2 ≈ 10.25, which is comparable
to s1 ≈ 9.97. However, the f (2) contribution is tiny, about
6.1% of the full ( f (1) + f (2)) spectrum. Again, this is because
the decomposed determinants Da

[kμ] and Db
[kμ] are missing. In

this regard, it would be better to view the cumulative product
s1s2 · · · sn as the upper bound of the f (n) contribution. In other
words, if s1s2 · · · sn is significantly small compared to the
leading order terms (s1 and s1s2), then it is already safe to
neglect the f (n) terms.

TABLE I. The largest five singular values of the zeta matrices of the studies systems, and their cumulative products.

System s1 s2 s3 s4 s5 s1s2 s1s2s3 s1s2s3s4 s1s2s3s4s5

1D chain 9.9683 1.0287 0.2810 0.0592 0.0094 10.2545 2.8820 0.1707 0.0016 η3 = 0.28
Li 478.8850 1.9354 0.9774 0.6528 0.4657 926.8103 905.8236 591.2829 275.3625 η5 = 0.30
TiO2 7092.6499 0.5008 0.4417 0.3118 0.2006 3552.0365 1569.0875 489.1961 98.1572 η3 = 0.22
RuO3 267.8267 1.5267 0.5323 0.3790 0.2721 408.8852 217.6645 82.4916 22.4428 η4 = 0.21
Graphite 7.8617 0.5691 0.3137 0.2325 0.1913 4.4744 1.4035 0.3264 0.0624 η3 = 0.18
Cu 1076.8833 1.7903 0.4386 0.4087 0.3919. 1927.8910 845.5359 345.5765 135.4185 η3 = 0.44
CrO2 ↑ 37.0903 1.5178 0.6071 0.4586 0.3631 56.2962 34.1768 15.6735 5.6917 η4 = 0.28
CrO2 ↓ 310.3019 0.3667 0.3556 0.3157 0.1634 113.7812 40.4625 12.7736 2.0867 η2 = 0.37
LiCoO2 113.3031 0.5227 0.4932 0.3257 0.2632 59.2231 29.2065 9.5120 2.5036 η3 = 0.26
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FIG. 5. Odd rows: Comparison of the determinant spectra at different shakeup orders. Even rows: Comparison of the determinant spectra,
with the initial- and final-state spectra, and with available experimental spectra. A high-order determinant spectrum is not plotted if it appears
to overlap on the determinant spectrum at one lower order (for example, the Li spectrum up to f (5) appear to overlap with the one up to f (4)).
The determinant spectra are scaled for comparing to the initial- and final-state spectra, according to the absorption peak at around 293 eV for
graphite, 536 eV for LiCoO2, 64 eV for Li, 4 eV for RuO3, and 9005 eV for Cu, respectively. The experimental spectra are digitized from
Ref. [63] (graphite), [64] (LiCoO2), [65] (Li), and [66] (Cu). The double-peak structure of the σ ∗ peak near 292.5 eV in graphite could be due
to lattice vibrational effects, according to a recent work [59].

To define the smallness of the cumulative
product, we may introduce the ratio ηn such that:
ηn max

m
{s1s2 · · · sm} = s1s2 · · · sn, where max

m
{s1s2 · · · sm}

is the maximum of the cumulative product. According to

the examples studied in this work, we find one could safely
neglect the f (n) configurations with ηn < 0.5.

Although we have gone beyond f (2) configurations in the
determinant calculation, we still find the spectra for all the
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cases studied in this work can be well defined by just the
configurations up to f (2). This applies even to Li, in which
up to f (5) configurations are included. The f (2) configurations
slightly increase intensities of the two absorption humps at
61 and 64 eV compared to the absorption peak at 56 eV.
And the spectra beyond f (2) (summed from f (1) to f (n) for
n = 3, 4, 5) can basically be reproduced by scaling up the
f (1) + f (2) spectrum using an energy-independent factor.

Here we take a closer examination of the intensity con-
tribution from f (2) configurations (as shown by black dotted
curves in Fig. 5). The f (2) contributions in the 1D chain,
graphite, and LiCoO2 (the first row of Fig. 5) are different
from the ones as in Li, RuO3, and Cu (the third row of Fig. 5).
In the former group, the f (2) contribution does not have
as many absorption features compared to f (1). In particular,
the f (2) contribution does not have a well-defined peak at
the absorption edge as manifests in f (1). In the latter group,
the f (2) contribution mimics the f (1) contribution in that they
have similar absorption structures (peaks). All the absorption
peaks that appear in f (1) also appear in f (2), including the
peaks at the absorption onset. A primary reason for the f (2)

contribution mimicking the f (1) one in Li, RuO3, and Cu
is due to low-energy e-h pair production in these metallic
systems. There are many orbitals of similar energies near
the Fermi level in the final-state system (the supercell that
contains an impurity for modeling core-excited states). More
specifically, there are more than 12 orbitals within an energy
window of 0.3 eV at the � point of the supercell, as found by
the �SCF calculations. Some of these orbitals are occupied
and some are not. The majority of the f (2) configurations
in these systems can be understood as a transition from the
core level to one empty final-state orbital c, coupled with a
low-energy e-h pair (as labeled by c1 and v1), whose excitation
energy is negligibly small. Therefore the spectral contribution
from f (2) mimics the one from f (1), which is only defined
by empty final-state orbitals, in a one-body manner. This
partially explains why the one-body final-state method can
often reproduce the XAS of many metallic systems adequately,
even though the physics of MND theory is completely missing.

The f (2) contributions in the 1D chain, graphite, and
LiCoO2 are more complex to analyze, which involves not
just low-energy e-h pairs near the Fermi level/band gap. In
graphite, for instance, many f (2) configurations that contribute
modestly to XAS are composed of a core-level transition
to c which is coupled to an e-h pair with c1 being a low-
lying empty orbital (π∗), and v1 going over the continuum
of occupied orbitals that span more than 8 eV (π and σ

continuum). So the transition energy should be added from
the two e-h pairs: E = (εc − εh) + (εc1 − εv1 ), in which both
εc − εh and εc1 − εv1 can vary across a wide energy range.
This explains why the f (2) spectral contribution in graphite
is smeared out without well-defined peaks. Similar analysis
applies to the f (2) continuum between 530 and 534 eV in
LiCoO2, which involves transitions from the core level and
some valence orbitals v1 (mainly O 2p) around 4 eV below
the valence band maximum (VBM) to two low-lying empty
orbitals c and c1. This f (2) continuum fills out the energy
gap between 530 and 534 eV, and explains why there is no
spectral gap between near-edge peaks (<6 eV from onset) and
the high-energy humps (>6 eV from onset) in the O K edge

of TMOs, although there is no single-body orbital within this
gap. Such is true for the energy gap near 6 eV in RuO3.

It should be noted that configuration interaction is absent
from the above analysis of f (2) configurations. Interaction
within f (2) may introduce excitonic effects between c1 and v1

and plasmon excitations. So far there is no electron-plasmon
(plasmaron) coupling present in the determinant approach.
Configuration interaction between f (1) and f (2) may remix the
spectral contribution from the two sets of configurations and
modify the shakeup effects. So far the ratio of the intensities of
the near-edge peaks to the high-energy humps in TMOs is still
too high in the determinant calculation up to f (2), as compared
with experiments. Introducing configuration interaction may
resolve this problem, which is beyond the scope of this work.

D. Initial-state, final-state, and the determinant XAS

Lastly, we rationalize the determinant calculation by com-
paring the determinant spectra with the initial- and final-state
spectra (even rows in Fig. 5).

For the 1D tight-binding chain, the MND effects manifest
as an asymmetric, power-law singularity that diverges at the
absorption edge. Note that this singularity has already been
reproduced at the f (1) level. Thanks to the final-state orbitals
in the determinant formalism, one does not need to go over
many orders of Feynman diagrams expanded in the initial-
state orbitals to produce the edge singularity. The determinant
spectrum does not resemble the one-body final-state spectrum,
which looks like a “half dome,” making the inclusion of MND
effects essential to the spectral calculation. The singularity at
2 eV is the van Hove singularity due to the 1D band edge.

Similar MND effects also manifest in the XAS (polar-
ization vector is 45 deg off-plane) of graphite. After the
correction of the determinant approach, the first-peak (around
286 eV, due to π∗) intensity is significantly magnified com-
pared with the final-state XAS. The corrected intensity ratio of
the first peak to the second (around 293 eV) is 1.25 (0.65 in the
final-state spectrum), which is in good agreement with 1.35 in
a previous experiment [63]. The spectral plateau between 288
and 292 eV (due to the constant joint DOS in 2D systems)
is also tilted upward at the low-energy end, due to the MND
effects. Such MND effects in graphite were also obtained
from first principles using a more complex approach based
on Green’s function, which involves energy and time integral,
and Fourier transformation [55,56,58]. Here the determinant
approach provides equivalent spectra by only a one-shot
matrix inversion and a heuristic search of computationally
accessible configuration space. It should be noted that both
the determinant spectrum in this work and the MND spectrum
in Ref. [58] cannot reproduce the splitting of the σ ∗ peak
at 292.5 eV, which could instead be explained by lattice
vibrational effects as in a recent work [59].

Significant intensity correction of the peak at onset is also
observed in LiCoO2, Li, and RuO3. In LiCoO2, the intensity
ratio of the peak at 528 eV to the peak at 532 eV as found
by the determinant approach is 2 : 1, which is in good agree-
ment with a previous measurement [64]. In the same work,
the intensity ratio by the one-body final-state approach with
GGA + U is 1 : 1, which is consistent with our calculation. In
RuO3, the intensity ratios of two near-edge peaks are reversed
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after correction, which was also reported in our previous work
on 3d TMOs [1,2].

The Li K edge calculated from the determinant formalism
(at the level of f (4)) for Li metal is in good agreement with
a previous experiment [65]. Thermal vibration of the lattice
could further modify the spectrum [44], and may broaden the
peaks at 61 and 63 eV, making it in closer agreement with the
experiment. However, thermal effects will not be discussed in
this work, because we focus on the convergence with respect
to shakeup orders.

The core-hole attraction effect is most significant in the 1D
chain, graphite, and Li, although they are gapless systems.
After the inclusion of the core hole, the initial-state spec-
tra dramatically redshift. However, the core-hole effect only
causes the initial-state spectra to redshift rigidly in LiCoO2,
RuO3, and Cu. The redshifts of the lowest-energy peaks in
LiCoO2 and RuO3 are 1.28 and 0.34 eV respectively, which
are not negligibly small, although the core hole is at the O site
where the near-edge orbitals are mainly composed of TM d
orbitals. This explains why initial-state spectra are sometimes
good approximation to XAS for O K edges in TMOs, as
discussed in Ref. [3].

III. CONCLUSIONS

In summary, we have introduced two theorems for regu-
lating the convergence of the determinant calculation, using
a SVD analysis over the auxiliary ζ matrix. The convergence
with respect to the excitation order n depends on the number
of the significant singular values of the ζ matrix. We show that
the cumulative product of the singular values s1s2 · · · sn can
be used as an effective estimate for the f (n) contribution. It is
found empirically that it is safe to neglect the f (n) contribu-
tion and higher-order when s1s2 · · · sn < 0.5 max

m
{s1s2 · · · sm}.

However, satisfactory determinant spectra have been achieved

at the order of f (2) for all the examined cases (in this work and
the TMOs as in Ref. [2]).
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APPENDIX: COMPUTATIONAL DETAILS

The single-body energies and orbitals for both the initial-
and final-state systems are obtained with DFT �SCF cal-
culations, as described in Refs. [1,2]. PBE functionals are
used for the DFT calculations. Modified pseudopotentials (by
changing 1s2 to 1s1) are generated for simulating the core-
hole potential of K edges. We use exactly the same set of
pseudopotentials for all the atoms in initial-state and final-
state calculations, except for the core-excited atom. Supercell
dimensions are chosen to be approximately 10 Å that is
sufficient to minimize spurious periodic interactions among
the core-hole impurities. The �SCF calculations for TMOs
are performed using the DFT +U theory [15] with the U
value adopted from Ref. [17]. A 5 × 5 × 5 k grid is used
to sample the BZ of the supercell, which is essential for
high-energy scattering states and metallic systems. The DFT
part of the calculations is performed using a local repository
of the ShirleyXAS code, which is available at the David
Prendergast’s group at the Molecular Foundry.

The determinant calculations are performed using an open
source software package, MBXASPY, which is available at
[67].
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