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Corner states in a second-order acoustic topological insulator as bound states in the continuum
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A second-order topological insulator is designed on a platform of a two-dimensional (2D) square lattice
with all coupling coefficients having the same sign. Simulated results show the existence of two types of
nontrivial corner states in this system, with one type being identified as bound states in the continuum (BIC).
The non-BIC corner states are also found by surrounding a nontrivial sample by a trivial one, and interestingly,
these perfectly confined corner states can be gradually delocalized and merge into edge states by tuning the
intersystem coupling coefficient. Both BIC and non-BIC corner states originate from bulk dipole moments
rather than quantized quadrupole moments, with the corresponding topological invariant being the 2D Zak phase.
Full wave simulations based on realistic acoustic waveguide structures are demonstrated. Our proposal provides
an experimentally feasible platform for the study of the interplay between BIC and a high-order topological
insulator, and the evolution from corner states to edge states.
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I. INTRODUCTION

Topology, a mathematical concept, was introduced to
physics along with the discovery of the quantum Hall effect
[1–3]. This concept has attracted growing attention accom-
panying the developments of various topological effects, in-
cluding the quantum spin Hall effect [4,5] and the quantum
valley Hall effect [6,7]. Recently, some other topological
materials, including Floquet topological insulators and topo-
logical crystalline insulators, were proposed and studied
[8–12]. A key characteristic of a topological material is the
existence of gapless edge states on its boundary, which are
immune to defects and impurities as long as the correspond-
ing symmetry is preserved, leading to robust unidirectional
transport of electrons without backscattering. Thus, it had
been believed that a d-dimensional nontrivial material should
host (d−1)-dimensional gapless edge states on its boundary.
This position was held until very recently, when so-called
higher-order topological insulators (HOTIs) were discovered
[13–17]. It turns out that a d-dimensional topological insulator
does not necessarily possess a (d−1)-dimensional edge state.
Alternatively, it can support (d−n)-dimensional boundary
states. For example, a two-dimensional (2D) second-order
topological insulator does not exhibit one-dimensional (1D)
gapless edge states, but it hosts nontrivial zero-dimensional
(0D) corner states. Several tight-binding models, consider-
ing quantized quadrupole and octupole moments, have been
proposed as candidates for HOTIs [13,18], and attention was
soon extended to the platforms of classical waves including
electromagnetic [19–21], acoustic [22–24], and mechanical
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waves [25] due to their flexibility in adjusting the geometries
and potentials.

As another emerging interesting topic in wave propaga-
tion, bound states in continuum (BIC) refer to localized
and nonradiative modes whose frequencies are embedded
in the continuous spectrum of radiating waves [26]. The
physical mechanism behind this somewhat counterintuitive
phenomenon is diverse, and the prohibited radiation may
be attributed to symmetry mismatch [27] or decoupling
through separability [28], or to an interference effect be-
tween multiple radiation channels [29,30]. The ultrahigh-
quality factor of the BIC is unique and highly desirable
for large-area high-power applications including lasing
[31–33], sensing [34,35], filtering [36], and nonlinearity
enhancement [26].

In this work, we study both the topologically nontrivial
corner states and the BIC. We demonstrate that these two
seemingly unrelated topics could be combined naturally in a
simple 2D system. We focus on a special kind of corner states
that are simultaneously BIC and nontrivial boundary states
of a HOTI. The physical properties of the corner states are
studied and explored in realistic acoustic waveguide structures
both analytically from a tight-binding model and numerically
by full wave simulations. Interestingly, in the same platform
we also identify the existence of the non-BIC corner states of
a second-order HOTI. The evolution and transition between
these two types of corners states can be realized by tuning
the intersystem coupling coefficient. Different from the previ-
ously reported works [13,25], the proposed 2D system in our
work does not rely on the introduction of a negative hopping
amplitude for the realization of a HOTI. Although both of
them are characterized by the 2D Zak phase, their origins
are intrinsically different: the corner states studied here are
strongly related to the bulk dipole moments [21], while the

2469-9950/2019/100(7)/075120(7) 075120-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.075120&domain=pdf&date_stamp=2019-08-09
https://doi.org/10.1103/PhysRevB.100.075120


CHEN, XU, AL JAHDALI, MEI, AND WU PHYSICAL REVIEW B 100, 075120 (2019)

corner states reported in Ref. [13] are due to the quantized
quadruple moments.

II. DESIGN AND MODEL OF THE SECOND-ORDER
ACOUSTIC TOPOLOGICAL INSULATOR

The acoustic crystal (AC) considered here is a 2D square
lattice composed of rings and waveguides filled with air. As
illustrated in Fig. 1(a), the unit cell with a lattice constant a =
4 m contains four identical hollow rings with inner and outer
radii as r0 = 0.35 m and r1 = 0.5 m. Each ring is connected
to its nearest neighbors by four rectangular waveguides. The
acoustic wave propagates inside the network of these rings
and waveguides. Its pressure field ϕ satisfies the governing
equation [∇2 + ω2/c2]ϕ(�r, ω) = 0, where c is the sound

velocity in air, and the boundaries of the rings and waveguides
are treated as hard walls: n · ∇ϕ = 0, where n is the normal
vector of the boundaries.

The adjacent rings are correlated only through the waveg-
uides, suggesting that the rings and waveguides effectively
act as sites and coupling, respectively, in the picture of tight
binding [37]. In the low-frequency regime, the hopping ampli-
tude (i.e., the coupling coefficient) between two neighboring
rings is proportional to the width of the waveguides, because
only fundamental modes can survive inside the waveguides.
The intracell and intercell hopping amplitudes are denoted as
w and v, respectively, and they can be realized in a realistic
AC structure by waveguides with different widths [38,39]. For
such an AC system, in the momentum space, the Hamiltonian
can be written as

H (k) =

⎛
⎜⎜⎝

εs −w − ve−ikxa −w − ve−ikya 0
−w − veikxa εs 0 −w − ve−ikya

−w − veikya 0 εs −w − ve−ikxa

0 −w − veikya −w − veikxa εs

⎞
⎟⎟⎠, (1)

where εs is the onsite energy (or eigenfrequency) of each ring,
and kx, ky is the Bloch wave vector. We introduce a negative
sign in front of both w and v so that the lowest-energy mode
(in the long-wavelength limit) is symmetric, which is widely
adopted in solid-state physics [40]. Let us consider two dif-
ferent configurations of the unit cells. Configuration A has the
hopping amplitude w = 5v, and configuration B has v = 5w.
As shown in Fig. 1(a), these two configurations can be simu-
lated in AC systems by setting the corresponding waveguide
widths as dw = 0.05 m and dv = 0.01 m (for configuration
A), and dw = 0.01 m and dv = 0.05 m (for configuration B),
respectively. Details can be found in Appendixes A and B.
Obviously, periodically repeating these unit cells in the 2D
space would eventually give rise to two identical ACs that
share the same band structure. Both the simulation results
obtained from the finite-element method (black dots) and the
calculation results obtained by the tight-binding model (red
curves) are plotted in Fig. 1(b), and they agree with each other
very well. Detailed fitting parameters for the tight-binding
model are given in Appendix A.

Although configurations A (w = 5v) and B (v = 5w) share
the identical band structure, they are topologically inequiv-
alent. Inspired by the well-known 1D Su-Schrieffer-Heeger
(SSH) model, one can simply guess that at the critical point
w = v [41], where the band gap closes, topological phase
transition occurs. To rigorously characterize the topological
phase transition, we need to calculate the corresponding
topological index or invariant. Here the relevant topological
invariant is the 2D Zak phase or 2D polarization, which is
defined as the integral of the Berry connection through [42]

P = 1

2π

∫
dkxdkyTr[An(kx, ky)], (2)

where An(kx, ky) = 〈ψn(k)|i∂k|ψn(k)〉 is the Berry connec-
tion, n represents the band index, the symbol ∂k is a vector
gradient operator in momentum space, and the integration is

performed over the entire Brillouin zone (BZ). For a system
with inversion symmetry, the calculation of P can be substan-
tially simplified by checking the parities of eigenstates at the
high-symmetry points in the BZ [43]:

Pm = 1

2

(∑
n

qn
mmod2

)
, (−1)qn

m = η(Xm)

η(	)
, (3)

where the summation is taken over all the occupied bands, η

denotes the parity associated with π rotation, and m stands for
x or y. Equation (3) indicates that the topology of the current
AC system is encoded in the parities of Bloch eigenstates
at high-symmetry points. For example, the eigenstates cal-
culated from finite-element simulation and the corresponding
eigenvectors at the X point on the third branch for configura-
tions A and B are shown in Fig. 1(b). It is easy to find that the
parity η associated with π rotation is “−” for configuration
A and “+” for configuration B. The difference in parity η

implies that the topology of the two configurations is different
because the topology depends on the way in which the unit
cell is chosen [21,41,44,45]. By taking all eigenstates at the
high-symmetry points into account, we obtain PA = (0, 0) and
PB = (1/2, 1/2), which means that configuration A is trivial
and B is nontrivial.

III. TWO TYPES OF CORNER STATES

Recently, it was found that in 2D systems the polarization
(Px, Py ) corresponds to the Wannier center of the Bloch state,
which is the expectation value of the Wannier function in
real space. The value of P = p2

x + p2
y indicates the distance

of the Wannier center from the origin of a lattice site [13,14].
From a topological perspective, the mismatch of the Wan-
nier center with the origin of a lattice site gives rise to a
second-order boundary state at the corner of the system. These
corner states are topologically nontrivial since they have the
same origin as the end states in the 1D SSH model. In this
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FIG. 1. (a) Schematic of the acoustic ring-waveguide system that
can be described by the Hamiltonian model, i.e., Eq. (1). Each unit
cell contains four identical hollow rings, whose inner and outer
radii are fixed, connected by rectangular waveguides. Two different
unit cells with inversed intercell and intracell hoppings are circled
out. The hopping is characterized by the rectangular waveguides,
whose width represents the hopping strength. (b) The calculated band
structure using the finite-element method (black dots), compared
with the results obtained from the tight-binding model (red line),
where the fitting parameter is εs = 26.375, w = 5, v = 1, and all
of the fitting parameters have the unit Hz. The symbol “±" means
the parity of the states under π rotation, which is derived from the
eigenfield distributions and eigenvectors shown in the right inset.
Red (blue) in the right inset indicates the normalized maximum
(minimum) acoustic pressure field, respectively.

way, an analytically solvable tight-binding model with w = 0
(or v = 0) would offer direct insight for the existence of
corner states. For a 2D system with N × N unit cells, as shown
in Fig. 1(a), it corresponds to a topologically nontrivial phase
with w = 0. Among all 4N2 sites of the system, there are
4N − 4 dimers, (N − 1)2 tetramers, and four isolated sites.
Every dimer occupies energy εs + v and εs − v. The tetramer
occupies energy εs ± 2v, and two degenerate energies εs.
More interestingly, there are four isolated sites with energy
εs, from which four corner states can be built. Here we want
to point out that the energy of the corner state, εs, falls into
the energy spectrum of the bulk tetramer states, which means
that these corner states are embedded in the continuum. In
contrast, if v = 0, the system is in the topologically trivial
phase. There are N2 bulk tetramer states, and no corner states
are observed. Thus, we can conclude that the corner states
only appear in a topologically nontrivial system.

Although the conditions of w = 0 or v = 0 are extreme,
in the following we will show that the topological properties
discussed earlier persist under more relaxed conditions, where
neither w nor v is zero. For an N × N system with w > v > 0
(i.e., configuration A), there are 2N eigenstates with energy εs.
We intentionally introduce small random perturbations in the
hopping amplitudes and onsite energies to lift the degeneracy
of these 2N states. We find that the randomly perturbed system
has an energy spectrum that preserves the main features of the

FIG. 2. The corner states in continuum. (a) Illustration of a 3 × 3
lattice with w = 0, where the corner states naturally appear. (b) The
eigenmodes of a 10 × 10 sample calculated from both the tight-
binding model (red point) and the numerical simulation result (black
point). In the tight-binding model calculations, we introduce small
random perturbations to all of the site energies and coupling param-
eters. The energy spectrum is plotted after an ensemble average of
10 configurations. The result shows four corner states in the bulk
frequency region marked as purple stars. The field distribution of the
four corner states from the tight-binding model and the finite-element
simulation are shown in (c) and (d), respectively. The sample size we
calculated in (d) is 3 × 3 for simplicity and clarity.

original periodic system, and no corner states are found. This
is consistent with our previous analysis, since configuration
A is topologically trivial. In contrast, configuration B (v >

w > 0) can be adiabatically connected to the extreme case
of w = 0, thus we expect that the corner states appear in
the frequency range of bulk states. This is indeed verified
by our calculations. In fact, even after we introduce random
perturbations into configuration B (see details in Appendix C),
we can still find four corner states with energy around εs.
For a sample of configuration B with N = 10, we calculate
the frequencies of the eigenstate by using both finite-element
simulation and the tight-binding model, and the results are
shown in Fig. 2(b). Both results confirm that the four corner
states fall into the range of bulk state frequency. To the best
of our knowledge, this is the first observation of nontrivial
corner states in the continuum. The corresponding pressure
field distributions given by both the tight-binding model and
finite-element simulations are shown in Figs. 2(c) and 2(d),
respectively.

In addition to the corner states found in a simple nontrivial
system with configuration B, we also find another form of
corner state in a more complex composite system consisting of
a nontrivial sample surrounded by a trivial sample, as shown
in Fig. 3(a). Here we simply set the width of the waveguides
connecting the two systems d , representing intersystem hop-
ping, to be identical to dv, characterizing the intercell hopping
in the nontrivial phase (configuration B), i.e., d = dv = 5 cm.
Four corner states are found at the interface between trivial
and nontrivial phases. All of these four corner states are in the
bulk gap region, which differs from the case shown in Fig. 2.

075120-3



CHEN, XU, AL JAHDALI, MEI, AND WU PHYSICAL REVIEW B 100, 075120 (2019)

FIG. 3. The corner states in a gap of topological phononic clus-
ters. (a) The sample consists of a topologically nontrivial system B
surrounded by a topologically trivial system A. (b) The eigenmodes
of the sample calculated from both the tight-binding model (red
point) and the finite-element simulation result. We also set the
coupling between systems A and B as t = 5. The result shows four
corner states in the band-gap region. (c) and (d) The field distribution
of the four corner states from the tight-binding model (c) and the
finite-element simulation (d), respectively.

The corresponding pressure field distributions for the corner
states are obtained by using both the tight-binding model
[Fig. 3(c)] and the finite-element simulations [Fig. 3(d)]. Both
results confirm that the fields are highly localized around the
four corners of the interface between the trivial and nontrivial
phases.

The more interesting features of these four corner states
are the delocalization and even the merging into edge states
when the intersystem hopping (denoted as t in the tight-
binding model) is tuned (details are available in Appendix D).
When connecting configuration A with configuration B, we
are endowed with some degree of freedom for selecting the
intersystem hopping t(or the waveguide width d), as illus-
trated in Fig. 4(a). Different intersystem hopping leads to
different configurations of the corner states, as demonstrated
in Fig. 4(c). To determine the critical value of t (or d), one
can take the following strategy by calculating the projected
band structure of a ribbon structure consisting of a nontrivial
sample sandwiched between two trivial samples with varying
t . There always exists a band gap in the projected band
structure except when t = tc = 10.8, which, in our setup,
corresponds to the waveguide width d = dc = 8.18 cm in the
full wave simulations (see details in Appendix D). From the
tight-binding model, it is interesting to find that the size of
the band gap depends linearly on (t − tc) when t deviates
from tc, as shown explicitly in Fig. 4(b). We show the energy
spectrum and field distribution at t = tc = 10.8 in the middle
panels of Figs. 4(c) and 4(d), respectively, and we observe
that the corner states merge into the edge state in this case.
This is because the band gap vanishes at t = tc = 10.8 and
the corner states have to share the same energy with the edge
states. In conjunction with the results presented in Fig. 3,
this implies that the corner states are not determined solely
by the bulk topological invariant, and in some cases they
also depend crucially on the boundary conditions [23]. This

FIG. 4. The corner states evolution against intersystem hopping
t . The sample consists of 27 × 27 unit cells. (a) The schematic of
a structure that contains two interfaces between systems A and B,
where the coupling parameters are undetermined. (b) The estimated
band-gap size of the edge states as a function of hopping parameters
t in the tight-binding model. The result indicates there would be
a gapless edge state when t = tc = 10.8. (c) The eigenfrequency
spectrum of the sample when we change intersystem hopping t . The
red points are corner states and the blue points are edge states. (d) The
corner states delocalize when the gap of the edge states disappears at
certain intersystem hopping t = tc = 10.8.

finding indicates an effective way to manipulate the corner
states by simply tuning the intersystem hopping. Figures 4(c)
and 4(d) show the energy spectra and field distributions of
corner states with different values of t . We observe that the
corner states can stay below and isolated from the edge states,
then merge into the edge states, and further stay above and
isolated from the edge states, as the intersystem hopping t
continuously increases.

IV. CONCLUSION

In conclusion, we find two types of nontrivial corner states
in a second-order topological insulator, and interestingly,
one type is identified as BIC, which means that they are
perfectly confined without any radiation even when they lie
inside the continuum and coexist with extended states. Both
types of corner states are found to be associated with the
nonzero dipole momentum in the bulk, in contrast with the
quantized quadrupole momentum as reported in the literature.
We develop a simple tight-binding model that can provide an
analytic solution and direct insight into the origin of the corner
states. Full wave simulations based on the realistic acoustic
waveguide system are also presented, and together with the
tight-binding model they corroborate the robustness of the
corner states even when random perturbation is introduced.
Our findings not only offer an experimentally feasible plat-
form for the study of HOTI in classical wave systems, but they
also provide an alternative method for the realization of BIC in
a simple system. This may stimulate subsequent explorations
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of the interesting interplay between BIC and HOTI as well as
large-area high-power applications in acoustic waves.
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APPENDIX A: THE FITTING PARAMETERS OF THE
TIGHT-BINDING MODEL

To compare the results obtained from the tight-binding
model and the full wave simulation, we need to know the
values of various parameters such as the on-site energy. To
determine these values, we let the frequencies of the eigen-
states at the 	 point be identical. For the band structure shown
in Fig. 1(b), we are interested in the second, third, fourth,
and fifth branches. From the tight-binding model, we can
get four eigenvalues of the Hamiltonian H (k) [Eq. (1) in
the main text] at the 	 point as a function of εs, w, and v.
To be more precise, these functions are εs + 2(w + v), εs,
εs, εs − 2(w + v), where w = 5v. We set v = 1 and εs =
26.375, such that the eigenfrequency on the second branch
at the 	 point, εs − 2(w + v), is equal to that calculated from
the full wave simulation of a real acoustic model. We find that
by using this set of fitting parameters, the tight-binding model
can quantitatively reproduce the entire second, third, fourth,
and fifth branches of the real acoustic model. Furthermore, in
both models, the band topology is encoded in the parity of
the eigenfunctions at the high symmetry point. We examine
the parity of the eigenfunction calculated from both the tight-
binding and the real model, and the results are consistent. An
example taken at the X point is shown in Fig 1(b) in the main
text.

APPENDIX B: “ZERO-COUPLING” CONDITION IN THE
ACOUSTIC MODEL

As stated in the main text, the on-site energy and hopping
amplitudes in the tight-binding model can be characterized
by rings and waveguides in realistic acoustic waveguide sys-
tems. One interesting example is the corner states shown
in Fig. 2(b), which are related to the “zero coupling” at
the boundary between lattice sites and the “vacuum.” The
realization of zero coupling in the real acoustic system is not
as obvious as that in the tight-binding model. Here we explain
how to realize the condition of zero coupling at the sample
boundary.

According to the analysis in the main text, there exist edge
states at the boundary of a topologically nontrivial system,
while no edge state emerges when the system is trivial. In
this regard, we calculate the projected band structure of a
supercell that contains 10 unit cells along the y direction and
is periodically repeated along the x direction. The results pre-
dicted by the tight-binding model are shown in Figs. 5(a) and
5(b)), where the bulk topology is indicated by whether there

FIG. 5. The projected band structure from the tight-binding cal-
culations [(a) and (b)] and full wave simulations [(c)–(h)]. Only the
system with boundary type III exhibits an edge state predicted by the
tight-binding model.

exist edge states. For realistic acoustic waveguide systems, we
consider the design of three different boundaries, as shown
in Figs. 5(c)–5(h), respectively. We find that the edge states
appear only for a type III boundary, and no edge state emerges
for the other two types of boundaries. Thus, we conclude that
the condition of “zero coupling” in the tight-binding model
can be simulated by a type III boundary design in realistic
acoustic systems.

APPENDIX C: THE ROBUSTNESS OF THE CORNER
STATE IN THE CONTINUUM

In the main text, we consider an extreme condition,
i.e., w = 0, under which the corner states coexist with the
continuum. In that situation, the system can be well-identified
as dimers, tetramers, and isolated states, respectively. The
corner states can be constructed from the isolated states
and are robust. Then we consider a general topologically
nontrivial system with nonzero w, and the energy spectrum
of the corner states is fixed as εs. We note that many bulk
states also take the energy εs, and the system has a high
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FIG. 6. Gapless edge state by tuning the width of the coupling
waveguide. (a) The edge-state dispersion turns out to be gapless
when we take d = dc = 8.18 cm compared to the results in (b) d =
7 cm and (c) d = 9 cm. (d) The gapless behavior is also captured by
measuring the amplitude of acoustic pressure in the output channel.

density of states at the energy εs, which makes the corner
states indistinguishable compared with the bulk states. We
introduce small random perturbations εp ∈ (−0.1, 0.1) into
all site energy to separate the corner states from the bulk states
with energy εs. Then the corner states and the bulk states
will take distinct eigenenergies. In the trivial case no corner
state exists, while in the nontrivial case the corner state can
be clearly observed as shown in Fig. 2(c). The corner states
always exist in the continuum regime regardless of small
perturbations, indicating that the corner states are robust and
determined by the nontrivial bulk topology instead of a certain
boundary.

APPENDIX D: THE GAPLESS EDGE STATES
AND WAVE PROPAGATION

In this Appendix, we will discuss the dispersion of an
edge state living between topologically trivial and nontrivial
systems. Generally speaking, the edge-state dispersion is not

FIG. 7. The wave propagates along the interface between topo-
logical trivial system A and nontrivial system B. (a) The sample takes
a boundary along the x and y directions. (b) The sample takes a
boundary along x and the x = y direction. The results show the wave
propagation along the interface.

gapless. But we find that, by tuning the coupling parameters
between trivial and nontrivial systems, the edge states can
be gapless, as shown in Fig. 4(b). This is verified in the
real acoustic model. We take the edge state in the second
band gap as an example. We tune the width of the coupling
waveguide and calculate the projected band structure. When
d = dc = 8.18 cm, closing to the value predicted by the tight-
binding model, the edge state is gapless. The interface can be
regarded as a waveguide at the frequency of interface states,
and the gapless property of the interface state can be captured
by measuring the transmittivity of the waveguide. When we
take d = 7 or 9 cm, we can observe a frequency range of
low transmission corresponding to a band-gap region. The
results are consistent with the projected band structure shown
in Fig. 6.

We also demonstrate the simulated wave propagation be-
havior along a specifically designed interface. The system
contains 24 × 24 unit cells and is equally divided into sys-
tems A and B, noting that the interface does not break the
rings in the unit cells. We consider two samples: the first
sample, shown in Fig. 7(a), consists of boundaries along the
x and y directions, while the second sample, illustrated in
Fig. 7(b), introduces a boundary along the x = y direction.
A point source is put on the left boundary, while the acoustic
wave is localized in the vicinity of the interface and decays
exponentially into the bulk, indicating the existence of the
interface state between these two insulating ACs.
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M. Soljačić, and O. Shapira, Phys. Rev. Lett. 109, 067401
(2012).

[28] M. Robnik, J. Phys. A 19, 3845 (1986).
[29] H. Friedrich and D. Wintgen, Phys. Rev. A 32, 3231 (1985).
[30] F. Remacle, M. Munster, V. B. Pavlov-Verevkin, and M.

Desouter-Lecomte, Phys. Lett. A 145, 265 (1990).

[31] K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama,
and S. Noda, Nat. Photon. 8, 406 (2014).

[32] M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher,
J. D. Joannopoulos, and O. Nalamasu, Appl. Phys. Lett. 74, 7
(1999).

[33] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M.
Mochizuki, Science 293, 1123 (2001).

[34] A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A.
Khanikaev, J. H. Connor, G. Shvets, and H. Altug, Proc. Natl.
Acad. Sci. (USA) 108, 11784 (2011).

[35] B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G.
Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, Proc.
Natl. Acad. Sci. (USA) 110, 13711 (2013).

[36] J. M. Foley, S. M. Young, and J. D. Phillips, Phys. Rev. B 89,
165111 (2014).

[37] Y. Yang, Z. Yang, and B. Zhang, J. Appl. Phys. 123, 091713
(2018).

[38] Z.-G. Chen and Y. Wu, Phys. Rev. Appl. 5, 054021 (2016).
[39] Z.-G. Chen, J. Zhao, J. Mei, and Y. Wu, Sci. Rep. 7, 15005

(2017).
[40] C. Kittel, Introduction to Solid State Physics (Wiley, New York,

2004).
[41] F. Liu and K. Wakabayashi, Phys. Rev. Lett. 118, 076803

(2017).
[42] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[43] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 86,

115112 (2012).
[44] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T.

Chan, Nat. Phys. 11, 240 (2015).
[45] K. H. Choi, C. W. Ling, K. F. Lee, Y. H. Tsang, and K. H. Fung,

Opt. Lett. 41, 1644 (2016).

075120-7

https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1038/s41567-019-0472-1
https://doi.org/10.1038/s41567-019-0472-1
https://doi.org/10.1038/s41567-019-0472-1
https://doi.org/10.1038/s41567-019-0472-1
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1103/PhysRevLett.109.067401
https://doi.org/10.1103/PhysRevLett.109.067401
https://doi.org/10.1103/PhysRevLett.109.067401
https://doi.org/10.1103/PhysRevLett.109.067401
https://doi.org/10.1088/0305-4470/19/18/029
https://doi.org/10.1088/0305-4470/19/18/029
https://doi.org/10.1088/0305-4470/19/18/029
https://doi.org/10.1088/0305-4470/19/18/029
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1016/0375-9601(90)90361-Q
https://doi.org/10.1016/0375-9601(90)90361-Q
https://doi.org/10.1016/0375-9601(90)90361-Q
https://doi.org/10.1016/0375-9601(90)90361-Q
https://doi.org/10.1038/nphoton.2014.75
https://doi.org/10.1038/nphoton.2014.75
https://doi.org/10.1038/nphoton.2014.75
https://doi.org/10.1038/nphoton.2014.75
https://doi.org/10.1063/1.123116
https://doi.org/10.1063/1.123116
https://doi.org/10.1063/1.123116
https://doi.org/10.1063/1.123116
https://doi.org/10.1126/science.1061738
https://doi.org/10.1126/science.1061738
https://doi.org/10.1126/science.1061738
https://doi.org/10.1126/science.1061738
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1073/pnas.1311866110
https://doi.org/10.1073/pnas.1311866110
https://doi.org/10.1073/pnas.1311866110
https://doi.org/10.1073/pnas.1311866110
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1063/1.5009626
https://doi.org/10.1063/1.5009626
https://doi.org/10.1063/1.5009626
https://doi.org/10.1063/1.5009626
https://doi.org/10.1103/PhysRevApplied.5.054021
https://doi.org/10.1103/PhysRevApplied.5.054021
https://doi.org/10.1103/PhysRevApplied.5.054021
https://doi.org/10.1103/PhysRevApplied.5.054021
https://doi.org/10.1038/s41598-017-15409-2
https://doi.org/10.1038/s41598-017-15409-2
https://doi.org/10.1038/s41598-017-15409-2
https://doi.org/10.1038/s41598-017-15409-2
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1038/nphys3228
https://doi.org/10.1038/nphys3228
https://doi.org/10.1038/nphys3228
https://doi.org/10.1038/nphys3228
https://doi.org/10.1364/OL.41.001644
https://doi.org/10.1364/OL.41.001644
https://doi.org/10.1364/OL.41.001644
https://doi.org/10.1364/OL.41.001644

