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We study the role of electronic spin and valley symmetry in the quantum interference (QI) patterns of the
transmission function in graphene quantum junctions. In particular, we link it to the position of the destructive
QI antiresonances. When the spin or valley symmetry is preserved, electrons with opposite spin or valley display
the same interference pattern. On the other hand, when a symmetry is lifted, the antiresonances are split, with
a consequent dramatic differentiation of the transport properties in the respective channel. We demonstrate
rigorously this link in terms of the analytical structure of the electronic Green function, which follows from
the symmetries of the microscopic model, and we confirm the result with numerical calculations for graphene
nanoflakes. We argue that this is a generic and robust feature that can be exploited in different ways for the
realization of nanoelectronic QI devices, generalizing the recent proposal of a QI-assisted spin-filtering effect
[A. Valli et al., Nano Lett. 18, 2158 (2018)].
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I. INTRODUCTION

Quantum-interference (QI) effects in the electron transport
in nanostructures are direct evidence of the particle-wave du-
ality of electrons, which is deeply rooted in the fundamentals
of quantum mechanics. From a theoretical point of view, it
is well established that ballistic electron transport in molec-
ular junctions characterized by multiple transmission paths
displays clear signatures of QI. The prototype of completely
destructive QI is the meta-benzene molecular junction [1–3].
In the classical interpretation, QI emerges when electrons
propagating through two different spatial paths along the short
and the long arms of the ring acquire a phase difference
�φ=π [2,3], yielding a complete cancellation of the trans-
mitted wave amplitude. Interestingly, this view was recently
challenged [4] in favor of a different interpretation, where
the antiresonance is a consequence of interference in energy
space between different molecular orbitals. Independently of
its origin, the presence of a QI antiresonance close to the
Fermi level drastically influences the transport properties of
quantum junctions and results in huge ON/OFF ratios, which
can be exploited for the realization of transistors [2,3] or
spin filters [5–9], nanocircuitry [10], and to enhance the
thermoelectric performance [11] of nanoelectronic devices
with organic functional units.

Recently, experimental evidence of destructive QI was
clearly observed in molecular junctions involving benzene
[12], terphenyl [13], anthanthrene [14], antraquinone [15],
fullerenes, and porphyrins [16], as well as several other
molecules with an organic backbone [17]. Sharp resonances in
the differential conductance, the fingerprint of destructive QI,
has been clearly detected even at room temperature [18,19]. In
some cases, the agreement between experiments and density
functional theory calculations [14,17,20], as well as with

predictions made by graphical rules [20], is remarkable, thus
establishing a scenario in which QI antiresonances can be
regarded as robust features of quantum junctions, thus paving
the way toward the realization of atomic-scale engineered
quantum coherent devices.

Polyphenyl molecular systems, or, more generally, alter-
nant hydrocarbons with delocalized π orbitals, represent the
natural platform for QI effects. Remarkably, graphene nanos-
tructures also fall into this category. Indeed, recent exper-
iments reported QI patterns in graphene nanoconstrictions
[21], or bridges [22], and break junctions [18,19,23]. What
is more important, quantum junctions with graphene func-
tional blocks benefit from all the extraordinary properties of
graphene. Their chiral nature enables the manipulation of spin
[24] and valley [25–29] degrees of freedom, while appropriate
engineering of the substrate and gating offers the possibility to
realize superlattices [30] and to tune the properties of the junc-
tion. Furthermore, the presence of edges and reduced dimen-
sionality offers the possibility to enhance correlation effects
and to induce magnetic order, absent in pristine graphene [24,
31–33], thus paving the way to a wide range of applications.
Very recently, for instance, edge magnetism was stabilized
in graphene nanoribbons functionalized with stable magnetic
radical groups, demonstrating spin coherence times in the
range of microseconds at room temperature [24].

The present work is related to all these aspects. By means
of numerical calculations and a detailed symmetry analysis,
we show that QI effects can be used to control spin and
valley polarization of ballistic transport in graphene quantum
junctions up to room temperature in the absence of external
magnetic fields. In particular, we show that both spin filtering
and valley filtering can be achieved in the same device by
simply tuning the coupling with a substrate to switch the
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FIG. 1. Schematic representations of (a) AF order in the spin-
SU(2) symmetry-broken case, where red (blue) circles represent
spin-↑ (spin-↓) ordered magnetic moments, and (b) charge order
in the chiral symmetry-broken case, where the size of the circle is
proportional to the local charge density. (c) Two possible realiza-
tions of meta contact configurations, i.e., at edge atoms from either
sublattice A or sublattice B. (d) Quantum junction with a functional
block consisting of a hexagonal graphene nanoflake with zigzag
edges, which is deposited on an h-BN substrate and is connected to
two metallic leads. (e) Equilibrium stacking of the graphene/h-BN
bilayer.

nature of the site-site correlations in the functional element
between ionic and antiferromagnetic.

The paper is organized as follows. In Sec. II we discuss
the model and the methods used to tackle the problem of
correlated transport and QI effects in graphene nanostructures.
In Sec. III we discuss the interplay between destructive QI and
different kinds of symmetry-breaking, and we provide a uni-
fied description of the phenomenon. In Sec. IV we explore the
occurrence of the QI antiresonances from a Green’s function
perspective, which allows us to pinpoint their origin. Finally,
Sec. V contains our conclusions and an outlook.

II. GRAPHENE QUANTUM JUNCTIONS

We consider the quantum junction schematically depicted
in Fig. 1. The Hamiltonian of the junction (H) can be decom-
posed in three terms, which describe the nanoflake (HF ), the
leads (HL), and the tunneling between the leads and the flake
(HT ), respectively,

H = HF + HT + HL. (1)

The relevant features of the nanoflake are captured by the
following low-energy effective Hubbard model for the delo-
calized π electrons:

HF = −t
∑
〈i j〉σ

p†
iσ p jσ − μ

∑
iσ

niσ + U
∑

i

ni↑ni↓

+ ε
∑

σ

(∑
i∈A

niσ −
∑
i∈B

niσ

)
, (2)

where p†
iσ (piσ ) create (annihilate) an electron at lattice site i

with spin σ , and niσ = p†
iσ piσ is the electron density operator.

The parameter t denotes the nearest-neighbor hopping ampli-
tude on the honeycomb lattice, μ is the chemical potential,
and the Hubbard U describes the on-site Coulomb repulsion.
Here, ε is an on-site energy that explicitly breaks the chiral
symmetry between the A and B graphene sublattices, which
can be induced, e.g., by the interaction between graphene and
a suitable substrate, such as hexagonal boron-nitride (h-BN).

The metallic electrodes and the tunneling Hamiltonians,
HL and HT , are instead given by

HL =
∑
αkσ

ε
αkσ

c†
αkσ

c
αkσ

,

HT =
∑
αikσ

(Vαikσ c†
αkσ

piσ + V ∗
αikσ p†

iσ c
αkσ

), (3)

where the operators c†
αkσ

(c
αkσ

) create (annihilate) an electron
with energy εαkσ in lead α, and Vαikσ denotes the hopping
amplitude between lattice site i of the nanoflake and state k
of lead α. We consider a hexagonal zigzag edge graphene
nanoflake with N = 54 C atoms and a C3 rotation symmetry
around the center. As discussed in Ref. [5], destructive QI
effects arise in contact configurations analogous to the meta
configuration of a benzene molecular junction. In the meta
configuration for the nanoflake, the leads are connected at
edge sites that belong to the same graphene sublattice. As
depicted in Fig. 1, there are two possibilities to realize such
a configuration, i.e., when the edges belong to either the A or
the B sublattice.

The Green’s function of the nanoflake in the presence of
the leads is obtained by solving the Dyson equation,

G−1
i j (ω) = G−1

0,i j (ω) − 	L
i j (ω) − 	R

i j (ω) − 	i j (ω), (4)

where G−1
0,i j (ω) is the bare Green’s function of the isolated

nanoflake, which is renormalized by three self-energy con-
tributions: 	L

i j (ω) and 	R
i j (ω), which describe the embed-

ding of the nanoflake with the left (L) and right (R) lead,
respectively, and 	i j (ω), which describe the electronic corre-
lations stemming from the Hubbard interaction U within the
nanoflake.

The leads contribution to the self-energy is given by

	α
i jσ (ω) =

∑
k

VαikσV ∗
α jkσ

ω+ıη − εαkσ

, (5)

where η > 0 regularizes the analytic continuation. The prod-
uct VαikV

∗
α jk in Eq. (5) describes virtual hopping processes

in which an electron from site i of the nanoflake is injected
into state k of lead α and (after a certain time) returns
to site j of the nanoflake. In the following, we restrict to
local hybridization processes, i.e., 	α

i j ∝ δi j , without affecting
the qualitative results presented below. Moreover, since the
QI properties originate from the topology of the nanoflake,
and are independent of the details of the coupling with the
leads, it is reasonable to assume a wide-band-limit (WBL)
approximation for the leads [34], in which 	α

ii =−ı� and it
is independent of energy for each contact site i.

The effects of electronic correlations within the nanoflake
are taken into account within the dynamical mean-field theory
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[35] (DMFT), in a real-space extension suitable to deal with
systems where the translational symmetry is broken in one
or more spatial dimensions [36–41]. This approach is also
suitable to treat inhomogeneous systems in the presence of
charge- [42,43] and spin-order [5,36,44,45], which will be
of importance in the following, as well as superconductivity
[46]. Within real-space DMFT, the nanoflake is mapped onto
a set of self-consistent auxiliary Anderson impurity prob-
lems, which are solved with a Lánczos exact diagonalization
procedure [47,48], yielding a local yet site-dependent self-
energy 	i j (ω)=	i(ω)δi j . Within this approximation, local
quantum fluctuation are treated nonperturbatively, whereas
nonlocal spatial correlations are retained at a static mean-field
level.

At the same time, DMFT also allows us to take into
account finite-temperature effects within the Green’s function
formalism. This includes the broadening of the Fermi-Dirac
distribution function as well as nontrivial effects of the tem-
perature evolution of the many-body states. In the following,
we consider temperature effects at T = 0.005t , which corre-
sponds to T ≈ 150 K for a realistic value of t = 2.7 eV of the
nearest-neighbor hopping in graphene [49].

Starting from the Green’s function of the nanoflake, un-
der appropriate assumptions [50–52], the transmission of
the junction can be estimated with the following Landauer-
Büttiker expression [53,54]:

T (ω) = Tr[�LGa�RGr], (6)

where Gr(a) is the retarded (advanced) Green’s function
obtained from Eq. (4), while the matrix �α = ı[	α − 	†α]
encloses the spectral information of the leads. Within our
description of the leads, the transmission in Eq. (6) can be
recast as

T (ω) =
∑




∑
r

�L


 �R

rr

∣∣Gr

r (ω)

∣∣2
, (7)

which represents a sum over independent transmission chan-
nels, with 
 and r labeling the lattice sites of the nanoflake
connected to the L and R leads, respectively.

As is evident from Eq. (7), the energy dependence of the
transmission is controlled entirely by the Green’s function,
thus establishing a direct relation between the transport prop-
erties of the junction and the electronic properties of the
graphene nanoflake. It can be explicitly shown that corrections
to the transmission function beyond the WBL do not change
qualitatively the results presented in the following [55].

This is particularly relevant because it is possible to link the
existence of destructive QI to the symmetries and the analytic
properties of the Green’s function (see Sec. IV and Appendix).
This suggests that the extraordinary filtering properties of the
device in the spin and valley channels are robust features,
which depend neither on the details of the nanoflake and of the
lead-flake hybridization, nor on the approximation employed
in the calculations [5].

III. RESULTS AND DISCUSSION

In the following, we discuss the electronic and transport
properties of the hexagonal graphene nanoflake quantum
junction. In particular, we focus on the interplay
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FIG. 2. Evolution of Tλ(ω) in the spin- and valley-transmission
channels. By breaking the spin-SU(2) or the chiral symmetry (or
both), the fourfold degeneracy (gλ = 4) of the QI antiresonance at
ωQI = 0 is lifted, and gλ = 2 or gλ = 1 QI antiresonances at ω

QI
λ 
=0

appear in the corresponding channel. The curves of each case are
shifted vertically for clarity. Parameters: �/t = 0.02, T/t = 0.005,
while U/t and ε/t as labeled.

between the destructive QI in the meta configuration and
the symmetry-breaking phenomena involving the spin and
valley degrees of freedom.

A. Effects of the symmetry breaking on a
destructive QI antiresonance

To realize the scenario in which we are interested, the
minimal requirements for the transmission function Tλ(ω) are
as follows: (i) Tλ(ω) displays a QI antiresonance at ω = ω

QI
λ

in a given channel, denoted by λ, which has two (or more)
components; (ii) Tλ(ω) is the same for each component of λ,
at least close to ω

QI
λ , when the symmetry associated with λ is

not broken.
In the present case, the previous requirements are fulfilled,

in any of the meta contact configurations of the junction, for
both the spin and valley pseudospin (i.e., λ = {σ, τ }, with
σ = ±1 and τ = ±1). When the SU(4) symmetry associated
with the combined degrees of freedom is intact, we observe
a QI antiresonance with multiplicity gλ = 4, while breaking
the spin or the chiral SU(2) symmetry (or both) results in a
lifting of the degeneracy of ω

QI
λ and a strong differentiation

of the transport properties due to the destructive QI. We
summarize our findings in Fig. 2, where we show how the
transmission T (ω) changes when breaking the symmetries
of the Hamiltonian. When neither the spin nor the valley
degeneracy is lifted, T (ω) is the same in all channels and
displays a fourfold antiresonance at ωQI = 0, a signature of
destructive QI. This scenario is depicted in Fig. 2(b), while
Figs. 2(a), 2(c), and 2(d) correspond to all the different
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symmetry-breaking scenarios, which we are going to discuss
below in detail.

B. Spin-split scenario

The ground state of the nanoflake changes from paramag-
netic (PM) to antiferromagnetic (AF) when the local repul-
sion overcomes a critical threshold (U > U AF). The AF state
breaks the spin-SU(2) symmetry, with a Néel-like pattern of
ordered moments 〈Sz

i 〉 = 〈ni↑〉 − 〈ni↓〉, which have opposite
polarization in the two graphene sublattices, and a finite
staggered magnetization

〈Sz〉 = 1

N

(∑
i∈A

〈
Sz

i

〉 − ∑
i∈B

〈
Sz

i

〉)
. (8)

The local magnetic moments are spatially inhomogeneous,
and they increase with the distance from the center of the
nanoflake [44,56,57]. The magnetic pattern is stabilized by
short-range antiferromagnetic correlations, which are stronger
at the edges and weaker in the bulk [44]. In the spin-SU(2)
symmetry-broken state, the transmission for a given valley is
no longer the same in the spin-↑ and spin-↓ channels. The
spin-resolved transmission Tσ (ω) still exhibits destructive QI,
but the antiresonances are separated in energy and located at
ωQI

σ ∝ σ 〈Sz〉, as shown in Fig. 2(c) and in Fig. 3 explicitly.
The selective suppression of the transmission in one of

the spin channels, due to destructive QI, can be exploited to
obtain a nearly perfect QI-assisted spin-filtering device, as
recently proposed in Ref. [5], which demonstrates the poten-
tial impact of the investigated phenomenon for technological
applications. Note that, since the two sublattices have oppo-
site magnetization, the transmission is still symmetric under
the simultaneous inversion of the spin (σ → σ̄ ) and valley
pseudospin (τ → τ̄ ), i.e., Tτσ (ω)=Tτ̄ σ̄ (ω), as specified in the
legend of Fig. 2. This means also that the QI antiresonance is
still twofold-degenerate, ωQI

τσ = ω
QI
τ̄ σ̄ .

The transport properties of the junction in this scenario are
shown in detail in Fig. 3. The top panels show the heatmap
of Tσ (ω) as a function of ω/t and U/t separately for the
spin-↑ and spin-↓ channels (for valley B, but the situation is
analogous for valley A, as discussed above). From the point of
view of the electronic structure, the information enclosed in
the transmission function is equivalent to that of the electronic
excitation spectrum. Indeed, one can follow the evolution
of the electronic resonances (darker shades of color in the
heatmap) and in particular of the ones closest to the Fermi
level, corresponding to the highest occupied molecular orbital
and the lowest unoccupied molecular orbital, which identify
the spectral gap. At U/t < U AF/t � 3, the gap is reduced with
respect to its noninteracting value [44] as � ≈ 〈Z〉�0, where
〈Z〉 is the average over the nanoflake of local quasiparticle
residue, extracted from the local DMFT self-energy as

Zi =
(

1 − ∂	i(ω)

∂ω

∣∣∣∣
ω→0

)−1

. (9)

Instead, when AF sets in, the gap is no longer controlled by
the quantum confinement effect, but by the staggered magne-
tization, and it increases with U . While the transmission is
exponentially suppressed within the energy gap, destructive
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FIG. 3. Interplay between destructive QI and spin-SU(2) sym-
metry breaking. Map of the spin-resolved transmission Tσ (ω) (top
panels). The dashed lines show the relation ωQI

σ ≈ σ 〈Sz〉, while the
gap can be estimated by the energy difference of the lowest-energy
(HOMO and LUMO) transmission resonances. Map of the spin
polarization ζσ (ω) and corresponding cuts at different values of U/t
(lower panels). Parameters: ε/t = 0, �/t = 0.02, and T/t = 0.005.
The data shown are for valley B, but the results are analogous for
valley A, when the proper symmetry relations are considered, as
discussed in the text.

QI manifests itself in the form of a QI antiresonance (in the
middle of the white area in the heatmap). In the PM state,
the antiresonance is pinned at the Fermi level ωQI = 0 due
to the particle-hole symmetry of the spectrum [5,58]. In the
AF state instead, ωQI

σ is spin-dependent and shifts below or
above the Fermi level, proportionally to the average staggered
magnetization 〈Sz〉. The detailed analysis of the transmission
as a function of U/t shown in Fig. 3 explains the change in the
transmission [Figs. 2(b) and 2(c)] in between the symmetric
and the spin-split scenarios.

As a consequence of the different behavior of T↑(ω) and
T↓(ω), the spin-polarization of the transmission,

ζσ (ω) = T↑ − T↓
T↑ + T↓

, (10)

is not zero in a wide frequency range above and below the
Fermi level. This is demonstrated in the bottom panels of
Fig. 3, where we show the heatmap of ζσ (ω) as a function
of ω/t and U/t , as well as cuts of ζσ (ω) for specific values of
U/t . In all cases, the maxima (or minima) of the polarization
are located at ωQI

σ , where the transmission probability in
one spin channel is strongly suppressed and the transport is
dominated by the other channel, thus achieving nearly perfect
spin filtering [5].
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C. Valley-split scenario

Let us consider the case in which U < U AF and the ground
state of the system is therefore PM, and let us introduce
a field that breaks the chiral symmetry, associated with the
chemical equivalence of the graphene sublattices. Here we
assume that this term originates from the interaction between
graphene and an h-BN substrate. Indeed, ab initio density
functional theory calculations have shown that in graphene/h-
BN bilayers, in the equilibrium stacking position, the atoms
of one of the two graphene sublattices are stacked on top of
B atoms, while the atoms of the other sublattice are located
in the hollow position of the underlying h-BN honeycomb
lattice [59]. Following Skomski et al. [60], the asymmetric
adsorption of the graphene sublattices can be encoded in a
single-particle term ε, which has the form given in Eq. (2) in
the Hamiltonian of the nanoflake.

The chiral symmetry-breaking field ε induces a charge-
density wave (CDW) and drives the C atoms locally away
from half-filling (while the electric charge is overall con-
served). At ε 
= 0 the two valleys are no longer degenerate
and each of the valley-resolved transmission functions Tτ (ω),
shown in Fig. 2(a), displays a destructive QI antiresonance at
ωQI

τ ≈ τ 〈nA − nB〉, where

〈nA/B〉 = 2

N

∑
σ

∑
i∈A/B

〈niσ 〉 (11)

is the sublattice-resolved charge density. Note that, analo-
gously to the previous case, Tτ (ω) retains a twofold degen-
eracy due to the spin-SU(2) invariance, and therefore ωQI

τσ =
ω

QI
τ σ̄ .

The analysis of the transport properties is presented in
Fig. 4 and can be done in complete analogy with that of the
spin-split scenario. For this reason, we mostly focus on the
differences between the two cases. The heatmap of Tτ (ω) as a
function of ω/t and ε/t shows that the spectral gap increases
for any ε>0, and ωQI

τ shifts away from the Fermi level
proportionally to the charge-density-wave order parameter.
In contrast to the previous case, there is no finite critical
threshold for the onset of the charge-density wave. The valley
polarization of the transmission ζτ (ω), defined as

ζτ (ω) = TA − TB

TA + TB
, (12)

is finite for any ε 
= 0. The maxima (or minima) of the po-
larization ζτ (ω) are always located at frequencies ωQI

τ , where
the transmission probability in one valley channel is strongly
suppressed and the transport is therefore dominated by the
other channel. This corresponds to a nearly perfect valley
filtering.

D. Spin- and valley-split scenario

Lastly, we consider the case in which both the spin- and
the chiral-SU(2) symmetries are broken. It is more intuitive to
take the spin-split scenario above as a starting point and break
the chiral symmetry with the ε field. As shown in Fig. 2(d),
the QI antiresonance of each valley splits under the effect of ε,
further reducing the degeneracy of ω

QI
λ to gλ = 1. It is obvious
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FIG. 4. Interplay between destructive QI and chiral symmetry
breaking. Map of the valley-resolved transmission Tτ (ω) (top pan-
els). The dashed lines show the relation ωQI

τ ≈ τ 〈nA − nB〉, while
the gap can be estimated by the energy difference of the lowest-
energy (HOMO and LUMO) transmission resonances. Map of the
pseudospin polarization ζτ (ω) and corresponding cuts at different
values of ε/t (lower panels). Parameters: U/t = 1.5, �/t = 0.02,
and T/t = 0.005. The data shown are for the spin-↑ channel, but
the results are identical for the spin-↓ channel, due to the spin-SU(2)
symmetry, as discussed in the text.

that a completely equivalent description is obtained by taking
the valley-split scenario as a starting point and increasing U
above U AF to induce magnetic order. Let us note that there is
a nontrivial feedback between charge and spin correlations,
resulting in a (weak) dependence of the critical threshold
for spin ordering on the chiral symmetry-breaking field, i.e.,
U AF = U AF(ε). In fact, the formation of a charge-density
wave requires us to locally drive the C atoms away from
half-filling. This is detrimental to the formation of the AF
state, and it results in a partial quench of the local magnetic
moments [5]. A consequence of this interplay is that, if the
system is on the verge of magnetic ordering, tuning ε could
drive the system through a crossover between phases with
different charge and spin order, ideally working as a switch
between spin-filtering and valley-filtering effects.

Due to the finiteness of the system, it is not trivial to
obtain a reliable estimate of UAF(ε). There is, however, an
alternative way to visualize this effect. In Fig. 5(a) we show
the magnetic order parameter 〈Sz〉, which is suppressed by
ε at any value of U . However, we note that it is difficult
to reduce the order parameter below a certain numerical
threshold since the observables for two spin components are
evaluated independently. At the same time, the CDW order
parameter 〈nA − nB〉 increases linearly with ε. In Fig. 5(b) we
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FIG. 5. (a) Evolution of the magnetic order parameters 〈Sz〉
(green lines) and the CDW order parameter |〈nA − nB〉| (violet lines)
with ε/t for different values of U/t . (b) Phase diagram identifying
the PM and the AF (at ε = 0) as well as the CDW and the AF+CDW
states. The quantity φ (see definition in the text) measures the weight
of the different order parameters. The red dashed line separating
the AF+CDW and the CDW states is a guide to the eye indicating
the crossover between the two states rather than a true estimate of
UAF(ε).

show a phase diagram, characterized by the quantity

φ = |〈Sz〉| − |〈nA − nB〉|
|〈Sz〉| + |〈nA − nB〉| , (13)

which measures the relative weight of the AF and CDW
order parameters. Hence, as φ(U, ε) → −1, it highlights a
crossover toward a pure CDW state (i.e., without AF order)
and provides a reasonable estimate of UAF(ε)/t , as indicated
by the dashed line (which is a guide to the eye).

At the same time, the crossover from a spin filter to
a valley filter can be observed directly by looking at the
polarization of the transmission function across the UAF(ε)
line in parameter space. It is very intuitive to look at it as a
function of ε/t at a fixed value of U/t , as shown in Figs. 6(a)
and 6(b) for U/t = 3. In Fig. 6(a) we show the spin-filtering
efficiency ζσ (ω). At ε = 0 it displays two strong peaks at

-0.6 0 0.6

=0

=1

-1

0

1

-1

0

1

-0.6 0 0.6

=0

=1

FIG. 6. Evolution with ε/t at U/t = 3 of the spin-filtering ef-
ficiency ζσ (ω) (for valley B, while the results for valley A can be
obtained by symmetry) and the generalized valley-filtering efficiency
ζσ⊗τ (ω). Upon increasing the strength of the chiral symmetry-
breaking field from ε/t = 0 to ε/t = 1 (in steps of �ε = 0.2), ζσ (ω)
is suppressed (green to dark shades) while ζσ⊗τ (ω) is enhanced (dark
to violet shades) thus driving the system from a pure spin filter toward
a pure valley filter.

ω = ωQI
σ , which identify the destructive QI antiresonances

causing the transport to be dominated by one spin channel.
As ε/t increases, both peaks are shifted to higher energy
due to the inversion-symmetry breaking and are progressively
suppressed as the AF order parameter 〈Sz〉 is suppressed, until
the spin-filtering efficiency substantially vanishes. To quantify
the valley filtering efficiency in the regime where both the
spin-SU(2) and the valley-SU(2) symmetries are lifted, it is
convenient to consider the quantity

ζσ⊗τ = TA↑ − TB↓
TA↑ + TB↓

, (14)

which properly takes into account the fact that in the presence
of AF order opposite valleys have also opposite spin polariza-
tion. In particular, ζσ⊗τ (ω) ≡ 0 if ε/t = 0 even if 〈Sz〉 
= 0,
which is not true in the case of the quantity ζτ (ω) as defined
in Eq. (12). In Fig. 6(b) we show that is strongly enhanced
over an increasingly wider energy window as ε/t increases.

Combining these two pieces of information demonstrates
that, eventually, the chiral symmetry-breaking drives the sys-
tem from a pure spin filter into a pure valley filter.

IV. ORIGIN OF THE QI ANTIRESONANCES

To understand the mechanism leading to the ωQI degener-
acy lifting, we look explicitly at the structure of the Green’s
function.

As already discussed, the general Landauer expression
for the transmission function can be recast as in Eq. (7),
which establishes a direct link between T (ω) and G
r (ω)
for the generic 
→r channel. In particular, in the WBL, all
the frequency dependence of T (ω) comes from the Green’s
function. This means that a QI antiresonance (i.e., a zero of
the transmission) necessarily implies a zero of the Green’s
function. At energies |ω|<� (i.e., within the spectral gap),
ImG
r (ω) ≈ 0 for every pair (
, r), where the exact relation
holds at T = 0. Therefore, the zeros of the Green’s function
coincide with the zeros of ReG
r (ω). It can be shown (see
Appendix A 1 for the derivation) that when neither the spin-
SU(2) nor the chiral symmetry is broken, the zero of the
Green’s function is pinned at the Fermi level (ω = 0) by the
particle-hole symmetry. Instead, any symmetry-breaking term
shifts the zeros of ReG
r (ω), and hence the destructive QI
antiresonance at finite frequency (see Appendix A 2).

To demonstrate this effect, in Fig. 7 we explicitly show the
low-energy structure of ReG
r (ω) for a given transmission
channel, in which 
 and r are the sites in the middle of the
L and R edges in the meta configuration (of sublattice B).
The case of sublattice A can be obtained from this one by
symmetry. In the upper panel of Fig. 7 we show the effect
of the spin-SU(2) symmetry breaking. In the PM state, the
zero of ReG
r (ω) is found at ω = 0 for both the spin-↑ and
spin-↓ channels, while in the AF state we observe an opposite
shift of the zeros to finite frequency, which correlates with
the behavior of the destructive QI antiresonance found at ωQI

σ ,
as shown in Fig. 2(c) (for sublattice B). In the lower panel
of Fig. 7 we demonstrate the analogous effect for the chiral
symmetry breaking. Contrary to the previous case, at ε = 0,
ReG
r (ω) is not identical for the two valleys, but both display
a zero at ω = 0. At finite field ε, the zeros split symmetrically
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FIG. 7. Zeros of the ReG
r (ω) for the sites in the middle of
the edges of the meta configuration, without and with symmetry
breaking. In the spin-split scenario for valley A (upper panel) and
in the valley-split scenario for spin-↑ (lower panel), the twofold
degeneracy of the zero at ω0 = 0 is lifted, yielding two zeros at
|ω↑

0 |=|ω↓
0 |≈〈Sz〉≈0.33 and two zeros at |ωA

0 |=|ωB
0 | ≈ 〈nB − nA〉 ≈

0.19, respectively. The gray shaded area indicates the energy window
lying outside the broken-symmetry gaps. Parameters: U/t = 3.75,
ε/t = 0, �/t = 0.02, and T = 0.005t (upper panel); U/t = 1.5,
ε/t = 0 and ε/t = 0.4, �/t = 0.02, and T = 0.005t (lower panel).

with respect to the Fermi level, yielding different ωQI
τ for the

two valleys.
While an analytic expression for ω

QI
λ in the generic case

cannot be easily obtained, in Appendix we provide an argu-
ment that explains the relation between ω

QI
λ and the order

parameters 〈Sz〉 and 〈nA − nB〉, which is shown in Figs. 3 and 4
for the two symmetry-broken states, respectively. In particu-
lar, we stress that the shift of the zeros of the Green’s function
is controlled by the low-frequency behavior of Re	ii(ω). This
can be significantly different from the large-frequency one,
which in turn can be seen as a sort of mean-field value. The
difference between the low-frequency and high-frequency
values of the self-energy can be taken as an estimate of the
dynamical correlations beyond mean field, and it has been
shown to influence qualitatively the physics in models with
a nontrivial band topology [45,61].

V. CONCLUSIONS AND OUTLOOK

We investigated the interplay between destructive QI and
symmetry-breaking phenomena involving the spin and valley
degrees of freedom in graphene nanoflakes. Specifically, by
establishing a relation between the analytic structure of the
real-space Green’s function and the symmetries of the Hamil-
tonian, we provide a clear understanding of the origin of the
QI antiresonances and of their effects on ballistic transport.
Interestingly, our analysis works both in the symmetric and
in the symmetry-broken cases, and we show that breaking

a symmetry shifts the position of the antiresonance without
spoiling the destructive QI effects. This demonstrates the
generality and the robustness of the phenomenon within a
generic theoretical framework and also in the presence of
electron-electron interactions. Ultimately, it allows us to pre-
dict the occurrence of QI antiresonances in complex nanos-
tructures interacting with the environment.

In our original proposal in Ref. [5], we showed that de-
structive QI can be used to generate nearly completely spin-
polarized currents in the absence of magnetic fields or spin-
orbit coupling, simply exploiting the spontaneous breaking
of the SU(2) spin-rotational symmetry induced by electronic
correlation in the presence of the edges. The present work
extends the scope of our previous study to multicomponent
systems where other degrees of freedom (e.g., valley, orbital,
layer) can be manipulated via an external handle lifting the
symmetry. In the specific case considered here, the mecha-
nisms involved are the onset of a magnetically ordered state
(associated with the electron spin) and the breaking of the
inversion symmetry due to the interaction with a specific
substrate (associated with the valley). We show that tuning
the coupling between the nanoflake and the substrate can turn
a spin filter into a valley filter.

The approach developed in the present work follows a gen-
eral scheme according to which it is possible to manipulate the
transport properties of a quantum junction exploiting destruc-
tive QI given a symmetry and the corresponding symmetry-
breaking control parameter. Other mechanisms suitable to
this purpose are (i) the switchable magnetic bistability of
metalorganic complexes [62], (ii) the Jahn-Teller distortions
in charged fullerenes [63], and (iii) the formation of a moiré
pattern in twisted bilayer graphene junctions [64].

In this respect, we believe that our work can drive the
community toward a promising and as yet only sporadically
explored direction.
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APPENDIX: IMPACT OF SYMMETRIES ON THE
REAL-SPACE GREEN’S FUNCTION AND THE

TRANSMISSION

1. Symmetric state

At half-filling, the Hamiltonian of the flake HF given
in Eq. (2) is symmetric under the following particle-hole
transformation:

p†
Aiσ → pAiσ , pAiσ → p†

Aiσ ,

p†
Biσ → −pBiσ , pBiσ → −p†

Biσ .
(A1)
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The pinning of the destructive QI antiresonance at the
Fermi level can be demonstrated by considering the definition
of the retarded Green’s function

Gr
i jσ (ω) = −i

∫
θ (t )〈{piσ (t ), p†

jσ (0)}〉e−iωt dt, (A2)

where θ (t ) is the Heaviside function, {·, ·} is the anticom-
mutator for the fermionic operators, and the average is taken
over the ground state at T = 0, while it is replaced by the
usual thermal average at T 
= 0. The invariance of the above
expression under particle-hole transformation implies

Gr
i jσ (ω) = −i(−1)i+ j

∫
θ (t )〈{p†

iσ (t ), p jσ (0)}〉e−iωt dt,

(A3)
where the prefactor (−1)i+ j equals ±1 depending on whether
i and j belong to the same or to different sublattices. On the
other hand, taking the complex conjugate of Eq. (A2) one
obtains[

Gr
i jσ (ω)

]∗ = i
∫

θ (t )〈{p†
iσ (t ), p jσ (0)}〉eiωt dt . (A4)

A comparison of Eqs. (A3) and (A4) demonstrates that in
the presence of particle-hole symmetry, the following relation
holds: [

Gr
i jσ (ω)

]∗ = (−1)i+ j+1Gr
i jσ (−ω). (A5)

This implies that, in the meta configuration, ReGi jσ (0) is
vanishing due to the particle-hole symmetry. Since ImGi jσ (0)
is suppressed by the presence of the spectral gap, the trans-
mission from Eq. (7) becomes

T meta
σ (0) =

∑

r

�

�rr

∣∣ImGr

rσ (0)

∣∣2 ≈ 0, (A6)

where 
 and r span the proper subsets for the meta con-
figuration. This demonstrates the pinning of the destructive
QI at the Fermi level in the particle-hole symmetric case.
Moreover, this implies that a destructive QI is expected for any
transmission channel 
→r connecting sites from the same
sublattice [5,58], which allow us to predict the occurrence of
antiresonances in complex graphene nanostructures.

It is interesting to notice that the situation is drastically
different in the other possible transport configurations. In both
the ortho and para configurations, the sites i and j belong to
different sublattices. Hence, Eq. (A5) implies that ImGi jσ (0)
is vanishing, while ReGi jσ (0) is not. As a consequence,
both T ortho

σ (0) and T para
σ (0) do not display any destructive QI

antiresonance at the Fermi level.
Let us note that, in principle, an asymmetric coupling

between the leads and the flake explicitly breaks the particle-
hole symmetry. However, in the WBL approximation, the
leads introduce an additional lifetime �

 and �rr , but they do
not induce any energy shift to the poles, so that the excitation
spectrum remains particle-hole symmetric. Furthermore, even
in the case when the particle-hole is broken, the QI antireso-
nance would still exist at a finite frequency ω

QI
λ .

2. Symmetry-broken state

In the presence of AF short-range order with a Néel pattern,
the particle-hole transformation Eq. (A1) has to be modified

as follows to leave the ground-state invariant:

p†
Aiσ → pAiσ̄ , pAiσ → p†

Aiσ̄ ,

p†
Biσ → −pBiσ̄ , pBiσ → −p†

Biσ̄ ,
(A7)

where σ̄ = −σ . In this case, Eq. (A5) becomes[
Gr

i jσ (ω)
]∗ = (−1)i+ j+1Gr

i jσ̄ (−ω), (A8)

which yields the following relation for the spin-dependent
conductance:

Tσ (ω) = Tσ̄ (−ω) (A9)

in all transport configurations (i.e., including also contact
configurations of the nanoflake that do not exhibit destructive
QI, such as the analogs of ortho and para configurations of
benzene).

Since the AF order and the graphene sublattices share
the same real-space pattern, we can equivalently define the
particle-hole transformation as

p†
Aiσ → pBiσ , pAiσ → p†

Biσ ,

p†
Biσ → −pAiσ , pBiσ → −p†

Aiσ ,
(A10)

where, with respect to Eq. (A7), we only exchanged the role
of spin and sublattice indices.

Let us now analyze the consequences of the invariance
of the Green’s function under the particle-hole transforma-
tion in Eq. (A10). When the Green’s function connects sites
belonging to different sublattices, as in the ortho and para
configurations, the invariance under Eq. (A10) implies

Gr
i j (ω) = i

∫
θ (t )〈{p†

jσ (t ), piσ (0)}〉e−iωt dt, (A11)

which compared with Eq. (A4) yields[
Gr,AB

i jσ (ω)
]∗ = −Gr,AB

jiσ (−ω), (A12)

where the superscripts AB indicate that i and j belong to dif-
ferent sublattices. Equation (A12) in turn implies for the total
transmission in the ortho and para configurations Tσ (ω) =
Tσ (−ω), and along with Eq. (A9) eventually prevents the
spin-filtering effect, yielding

T ortho
σ (ω) = T ortho

σ̄ (ω), T para
σ (ω) = T para

σ̄ (ω). (A13)

On the contrary, in the meta configuration, similar reasoning
shows that invariance under Eq. (A10) implies[

Gr,AA
i jσ (ω)

]∗ = Gr,BB
jiσ (−ω), (A14)

where the AA and BB superscripts indicate the two possible
meta configurations, i.e., where only sites of sublattice A or
only sites of sublattice B are connected to the leads.

Finally, Eq. (A14) implies the following relation for the
transmission:

T meta
σAA (ω) = T meta

σBB (−ω), (A15)

which along with Eq. (A9) yields

T meta
σAA (ω) = T meta

σ̄BB (ω). (A16)

Hence, provided that ωQI
σ 
=0, the above relations imply the

spin and sublattice structure observed in the numerical sim-
ulations. Considering that in this case the AF and CDW
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order share the same real-space pattern, Eq. (A15) also
demonstrates the properties of the chiral symmetry-breaking
case.

The last step of the analysis consists in the identification
of the mechanism that shifts the QI antiresonance. Within
DMFT, the spin-SU(2) symmetry breaking is a spontaneous
phenomenon. It is induced by the sort-range AF correlations
due to the local repulsion U , resulting in a dynamical spin-
dependent self-energy 	σ (ω). The static contribution of the
self-energy, Re	σ (0) ∝ σ 〈Sz〉, acts as an effective chemical
potential, with opposite sign for the two spin polarizations,
and it shifts the zeros of the Green’s function to ωQI

σ . This
effect is ultimately at the origin of the behavior observed
in Fig. 7 (upper panel) for the spin-split case. The chiral
symmetry is instead explicitly broken by the field, so that the
effective correction to the zero of the Green’s function is given
by ετ + Re	τ (0) ∝ 〈nA − nB〉. Both terms have opposite sign

for the two valleys, and they induce the symmetric shift of
the zeros to ωQI

τ , as observed in Fig. 7 (lower panel) for the
valley-split case. Finally, in the spin- and valley-split case,
the combination of the above self-energy corrections in the
different channels can result in the complete lifting of the
fourfold degeneracy of the QI antiresonance.

In general, the exact value of ω
QI
λ in a given transmission

channel depends on the details of the real-space magnetization
and charge redistribution pattern. Moreover, the transmission
through the junction is in general given by the sum over
the contributions of different channels, as shown in Eq. (7).
Hence, one might expect a distribution of antiresonances,
one for each channel, which result in a broadening of the
minima of the transmission with respect to the one pinned at
the Fermi level and controlled by the particle-hole symmetry
alone. Indeed, this effect is clearly observed in the numerical
results.

[1] G. C. Solomon, D. Q. Andrews, T. Hansen, R. H. Goldsmith,
M. R. Wasielewski, R. P. V. Duyne, and M. A. Ratner, J. Chem.
Phys. 129, 054701 (2008).

[2] D. M. Cardamone, C. A. Stafford, and S. Mazumdar, Nano Lett.
6, 2422 (2006).

[3] C. A. Stafford, D. M. Cardamone, and S. Mazumdar,
Nanotechnology 18, 424014 (2007).

[4] D. Nozaki and C. Toher, J. Phys. Chem. C 121, 11739
(2017).

[5] A. Valli, A. Amaricci, V. Brosco, and M. Capone, Nano Lett.
18, 2158 (2018).

[6] M. Kagan, V. Val’kov, and S. Aksenov, J. Magn. Magn. Mater.
440, 15 (2017).

[7] V. S. Protsenko and A. A. Katanin, Phys. Rev. B 99, 165114
(2019).

[8] D. Li, R. Banerjee, S. Mondal, I. Maliyov, M. Romanova, Y. J.
Dappe, and A. Smogunov, Phys. Rev. B 99, 115403 (2019).

[9] D. Li, Y. J. Dappe, and A. Smogunov, arXiv:1906.01429.
[10] G. Calogero, I. Alcón, N. Papior, A.-P. Jauho, and

M. Brandbyge, J. Am. Chem. Soc. (2019), doi:
10.1021/jacs.9b04649.

[11] M. Noori, H. Sadeghia, and C. J. Lambert, Nanoscale 9, 5299
(2017).

[12] G. Yang, H. Wu, J. Wei, J. Zheng, Z. Chen, J. Liu, J. Shi, Y.
Yang, and W. Hong, Chin. Chem. Lett. 29, 147 (2018).

[13] Y. Li, M. Buerkle, G. Li, A. Rostamian, H. Wang, Z. Wang,
D. R. Bowler, T. Miyazaki, L. Xiang, Y. Asai, G. Zhou, and N.
Tao, Nat. Mater. 18, 357 (2019).

[14] Y. Geng, S. Sangtarash, C. Huang, H. Sadeghi, Y. Fu, W. Hong,
T. Wandlowski, S. Decurtins, C. J. Lambert, and S.-X. Liu, J.
Am. Chem. Soc. 137, 4469 (2015).

[15] C. M. Guédon, H. Valkenier, T. Markussen, K. S. Thygesen,
J. C. Hummelen, and S. J. van der Molen, Nat. Nanotechnol. 7,
305 (2012).

[16] S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K.
Hornberger, P. J. Fagan, J. Tüxen, M. Mayor, and M. Arndt,
Nat. Commun. 2, 263 (2011).

[17] M. Gantenbein, L. Wang, A. A. Al-jobory, A. K. Ismael, C. J.
Lambert, W. Hong, and M. R. Bryce, Sci. Rep. 7, 1794 (2017).

[18] A. Batra, J. S. Meisner, P. Darancet, Q. Chen, M. L.
Steigerwald, C. Nuckolls, and L. Venkataraman, Faraday
Discuss. 174, 79 (2014).

[19] M. Famili, C. Jia, X. Liu, P. Wang, I. M. Grace, J. Guo, Y.
Liu, Z. Feng, Y. Wang, Z. Zhao, S. Decurtins, R. Häner, Y.
Huang, S.-X. Liu, C. J. Lambert, and X. Duan, Chem 5, 474
(2019).

[20] T. Markussen, R. Stadler, and K. S. Thygesen, Nano Lett. 10,
4260 (2010).

[21] P. Gehring, H. Sadeghi, S. Sangtarash, C. S. Lau, A. A. J. Liu,
J. H. Warner, C. J. Lambert, G. A. D. Briggs, and J. A. Mol,
Nano Lett. 16, 4210 (2016).

[22] D. Nozaki, Lokamani, A. Santana-Bonilla, A. Dianat, R.
Gutierrez, and G. Cuniberti, J. Phys. Chem. Lett. 6, 3950
(2015).

[23] S. Caneva, P. Gehring, V. M. García-Suárez, A. García-Fuente,
D. Stefani, I. J. Olavarria-Contreras, J. Ferrer, C. Dekker,
and H. S. J. van der Zant, Nat. Nanotechnol. 13, 1126
(2018).

[24] M. Slota, A. Keerthi, W. K. Myers, E. Tretyakov, M.
Baumgarten, A. Ardavan, H. Sadeghi, C. J. Lambert, A.
Narita, K. Müllen, and L. Bogani, Nature (London) 557, 691
(2018).

[25] A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Nat. Phys. 3,
172 (2007).

[26] N. M. Freitag, T. Reisch, L. A. Chizhova, P. Nemes-Incze, C.
Holl, C. R. Woods, R. V. Gorbachev, Y. Cao, A. K. Geim, K. S.
Novoselov, J. Burgdörfer, F. Libisch, and M. Morgenstern, Nat.
Nanotechnol. 13, 392 (2018).

[27] M. Sui, G. Chen, L. Ma, W.-Y. Shan, D. Tian, K. Watanabe, T.
Taniguchi, X. Jin, W. Yao, D. Xiao, and Y. Zhang, Nat. Phys.
11, 1027 (2015).

[28] T. Fujita, M. B. A. Jalil, and S. G. Tan, Appl. Phys. Lett. 97,
043508 (2010).
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