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The discovery of topological insulators has reformed modern materials science, promising to be a platform
for tabletop relativistic physics, electronic transport without scattering, and stable quantum computation.
Topological invariants are used to label distinct types of topological insulators. But, it is not generally known
how many or which invariants can exist in any given crystalline material. Using a new and efficient counting
algorithm, we study the topological invariants that arise in time-reversal symmetric crystals. This results in
a unified picture that explains the relations between all known topological invariants in these systems. It
also predicts new topological phases and one entirely new topological invariant. We present explicitly the
classification of all two-dimensional crystalline fermionic materials, and give a straightforward procedure for
finding the analogous result in any three-dimensional structure. Our study represents a single, intuitive physical
picture applicable to all topological invariants in real materials, with crystal symmetries.

DOI: 10.1103/PhysRevB.100.075116

I. INTRODUCTION

Phase transitions in nature come in two types. The first is
heralded by a change in symmetry, and includes for example
the freezing of liquid water into ice, or the condensation of
Cooper pairs into a superconducting state. A different sort
of transition is traversed for example when changing from
one conductivity plateau to another in the integer quantum
Hall effect. This second type is related to the topology of the
electronic wave function. Together, topology and symmetry
determine the physical properties of any material, and they
are the keystones in our modern understanding of phase
transitions across all areas of physics. These two concepts are
not, however, independent from one another. The much cel-
ebrated 10-fold periodic table, for example, lists the allowed
topological phases depending on the types of time-reversal,
particle-hole, and chiral symmetries present in a material
[1–4]. The symmetries of the atomic lattice making up real
crystals likewise restrict the number and types of topologi-
cal phases that can emerge within them [5–15]. Combining
symmetry and topology in such materials can give rise to
exciting new features, like protected edge state circumventing
the usual fermion-doubling theorem, Fermi arcs, and isolated
Weyl points [16]. It has yielded the discovery of weak topo-
logical invariants in three-dimensional time-reversal symmet-
ric crystals [17], so-called bent Chern numbers [18], and
translationally active topological states [14]. A systematic
classification of all possible topological phases in the presence
of a given crystal symmetry and dimensionality, however, has
not yet been attempted in full generality.

The ideal approach, at least in principle, would be to use
the rigorous mathematical tool of K theory to find and index
all topologically distinct phases of matter [19]. The challenge
is that K-theoretic groups are notoriously hard to compute.
As a result, there is no methodical mathematical structure that
connects different types of known topological invariants, or

guarantees that any list of topological invariants is complete
in any but the simplest settings. Even the physical interpre-
tation of what crystal features are represented by topological
invariants varies wildly from one author to the next [20].

Here, we partially solve this problem for a large and
experimentally relevant group of crystals. We present an algo-
rithm for counting topologically distinct crystalline phases of
fermionic matter with time-reversal symmetry (TRS), but bro-
ken particle-hole symmetry. That is, class AII in the 10-fold
periodic table [2,4]. We also give an intuitive interpretation for
the physical origin of all topological invariants encountered in
these crystals. The presented algorithm augments our previous
work on materials that have no symmetries other than those
of their crystal structure (class A in the 10-fold periodic
table) [5]. In that restricted class, K theories can be computed,
and confirm the validity of our approach. The present work
extends the intuitive counting procedure into the realm where
results of K theory are typically not available (class AII in the
10-fold periodic table). Although this means the completeness
of our classification cannot in general be rigorously proven in
this class, confidence may be gained by the fact that it agrees
with all results of K theory that are available for systems
in class AII. In particular, Ref. [21] discusses the relevant
K-theory groups for p2, p4, and pm in class AII, which agree
with the results found here. The approach described here
thus provides a methodical algorithm for counting topological
phases in time-reversal symmetric crystals. We use it to not
only identify new crystal symmetries in which a known invari-
ant may arise, but also to suggest an entirely new topological
invariant.

II. REPRESENTATION INVARIANTS

To find a way of counting the number of possible topo-
logical phases, we start by defining two insulating phases of
matter to be topologically distinct (up to the addition of trivial
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FIG. 1. (a) The typical band structure of a Kramers’ pair close to a high-symmetry point. Two bands related by the time-reversal operation
necessarily come together into a degenerate Kramers pair at the time-reversal invariant momentum in the center. Also shown schematically is
a band inversion which brings together states at points away from the high-symmetry momentum. This results in the formation of vortices in
the Berry connection, indicated here by yellow and orange arrows. (b) A more schematic representation of two bands containing states |ψ〉 and
T |ψ〉, which form Kramers pairs at two time-reversal invariant momenta, chosen here to be � and M. (c) Vortices in the Berry connection,
depicted by + and −, can be moved throughout the Brillouin zone without annihilating. The color indicates the band to which the vortices
belong. (d) An even number of vortices can be created by a band inversion within a set of states related by TRS. (e) Vortices can hop between
partner bands using a band inversion to create two vortex-antivortex pairs.

bands), if smoothly deforming one into the other necessarily
involves either closing the band gap around the Fermi level, or
breaking a crystal symmetry [5]. These two conditions imply
that symmetry eigenvalues can be used as a type of topological
invariant, as shown for crystalline topological insulators in
class A in [5]. Here, we review the arguments of that work,
and generalize it to class AII.

Consider the example of a two-dimensional lattice with
only fourfold rotation symmetry. In momentum space, the
Brillouin zone (BZ) has three high-symmetry points �, X ,
and M. These momentum values are special because they are
mapped onto themselves by at least some of the lattice sym-
metry operators. The wave functions making up the electronic
bands at these high-symmetry points must be eigenstates of
the symmetry operators. To be specific, � and M are invariant
under the full fourfold rotation, whereas at X there is only a
twofold rotational symmetry. Considering first the case with
broken TRS, this means that at � and M, each electronic band
must have one of four possible eigenvalues {±1,±i}, while at
X only ±1 are allowed. We can now characterize a material
with only fourfold rotation symmetry by listing the number
of occupied bands for each eigenvalue at all of the high-
symmetry points. This gives a list of 10 numbers. In order
for the assignment to be consistent throughout the Brillouin
zone, however, the total number of all occupied bands should
be equal at all high-symmetry points. This gives two relations
among the 10 integers, resulting in a set of 8 independent
integers. These serve as eight topological invariants because
the only ways to change the number of bands with a given
symmetry eigenvalue at a high-symmetry point are to either
break the symmetry, or take a band across the Fermi level. The
list of eight numbers can thus not be changed without going
through a topological phase transition [5]. We call these eight
invariants representation invariants because they specify the

group representations of the lattice symmetry taken on by the
electronic states.

If we include in our analysis the fact that electrons are
spin- 1

2 particles, the number of possible eigenvalues could
change because upon rotating the electron over 2π , its wave
function will be multiplied by −1, rather than 1. The possible
eigenvalues of the symmetry operators are then contained
in the fermionic part of the so-called double group. In the
case of the fourfold rotational symmetry, there are still four
different eigenvalues at both � and M and two at X , and the
total number of integers acting as representation invariants is
still eight.

Considering next the situation with time-reversal symme-
try (in this case with T 2 = −1), things do change. Each
electronic state at momentum k must now have a partner
state with the same energy, but opposite spin, at −k. These
two partner states necessarily come together into a single
twofold degenerate state at high-symmetry points. This is the
celebrated Kramers degeneracy, and it is shown schematically
in Fig. 1. Since one state in a Kramers pair is always related
to a partner state by TRS, the transformations of a Kramers
pair under symmetry operations now produce pairs of related
eigenvalues. With only fourfold rotational symmetry, there is
a single possible pair of eigenvalues at X , but two different
allowed pairs at � and M. Listing the number of occupied
Kramers pairs in each representation thus gives five integers,
which again are connected by two relations. In this case then,
there are three independent representation invariants.

The counting of possible consistent sets of symmetry rep-
resentations can be done for crystals in any dimension and
with any crystal symmetry, for both broken and unbroken
time-reversal symmetry (classes A, AI, AII, and AIII). In the
Appendices, we give a detailed but straightforward algorithm
for doing this consistently throughout the Brillouin zone
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TABLE I. The classification of topologically distinct phases of two-dimensional crystalline matter in Altland-Zirnbauer class AII (i.e.,
having unbroken time-reversal symmetry, but broken particle-hole, chiral, and any other anticommuting or antiunitary symmetry). The
topological invariants are either torsion invariants like the FKM2 and line invariants, or representation invariants related to the transformation
properties of the bands. The total classification is the (direct) sum of these two factors. The wallpaper groups in the first row are denoted in the
Hermann-Mauguin notation [22].

AZ class Type p1 p2 pm pg cm p2mm p2mg p2gg c2mm p4 p4mm p4gm p3 p3m1 p31m p6 p6mm

Representations Z Z Z Z Z Z Z Z Z Z3 Z3 Z2 Z4 Z4 Z3 Z4 Z4

AII Torsion invariants Z2 Z4
2 Z2

2 Z2 Z2 Z4
2 Z2

2 Z2
2 Z3

2 Z3
2 Z3

2 Z2
2 Z3

2 Z3
2 Z3

2 Z3
2 Z3

2

for any crystalline material. The results for all time-reversal
symmetric, two-dimensional, fermionic crystals are listed in
Table I. The corresponding result for any three-dimensional
crystal can be easily found using the methods in the Appen-
dices. Notice that a generalization of the arguments in [5]
to class AI and AII was also given in [12,23]. Here, we go
beyond the results of those approaches by also considering
the effect of crystal symmetries on topological invariants other
than the space-group representations themselves.1

III. TORSION INVARIANTS

The representation labels are topological invariants, but
by themselves they do not yet completely specify the band
structure. Just like crystals with broken TRS may possess
Chern numbers in addition to band labels, the representation
invariants in crystals with unbroken TRS need to be sup-
plemented with torsion invariants. These include the well-
known Fu-Kane-Mele [24,25], or Z2, invariants in two and
three dimensions (FKM2,3), as well as a generalization of
line invariants [10]. That crystal symmetries can be central in
determining whether or not invariants other than the represen-
tation labels may arise in any given material is already known
from the case with broken time-reversal symmetry. There,
the famous Thouless-Kohmoto-Nightingale-den Nijs (TKNN)
invariant, or total Chern number, is zero when reflection
symmetries are present [6].

All torsion invariants are related to the presence of Berry
curvature in some of the occupied electronic bands. To define
a systematic procedure for identifying which torsion invari-
ants are allowed to be nonzero in any time-reversal symmetric
crystal, we interpret Chern numbers for individual bands as
counting the number of vortices in its Berry connection. The
generic procedure for creating such vortices is a continuous
change in the Hamiltonian which closes the gap between
two bands, takes them through each other, and again gaps
any points of intersection. After this band inversion, a vortex
of one handedness resides in one of the bands, and one of
the opposite handedness (an antivortex) in the other. Once
formed, vortices can be moved throughout the Brillouin zone
without closing any gaps, or breaking any symmetry, using
nontopological changes in the Hamiltonian.

1Notice that in class A, a relation between the representation
invariants and the Chern number is known [6]. For classes AI and
AII, however, it is not a priori clear whether such a relationship
exists.

If the Hamiltonian is always time-reversal symmetric, then
any change to an electronic state at momentum k is accompa-
nied by an opposing change in the partner state at −k. Vortices
in TRS materials thus necessarily come in vortex-antivortex
pairs, as shown schematically in Fig. 1. The pairs can be
moved through the Brillouin zone, and even brought together
at time-reversal invariant momenta, but they cannot annihilate
there, due to the orthogonality of the electronic states within a
Kramers pair. We give a more detailed analysis of this in the
Appendices.

Since vortices are created in pairs, the total vorticity, or
total Chern number, within any pair of TRS-related bands
is always zero. It is known, however, that vortices do not
annihilate at high-symmetry points because the (Berry) con-
nection of the individual bands to the Kramers degenerate
pair at the high-symmetry points does not mix the bulk time-
reversed states [26]. This makes it possible to consider the
Chern number of just one band within each pair, as proven
rigorously in Ref. [26]. We have to keep in mind, however, that
a band inversion within the pair of TRS-related bands does not
constitute a topological phase transition, as it does not close
the gap at the Fermi level. As shown in Fig. 1, two vortices
or antivortices can be created in each band this way, without
changing the topological classification of the system. What
cannot be done without going through a topological phase
transition is turning an even Chern number into an odd one.
There is thus a Z2 invariant which can be expressed in terms
of the Chern number C of a single band as

FKM2 = N mod 2

= C mod 2, (1)

with N = N+ − N− the total vorticity, given by the difference
in the numbers of vortices and antivortices. This is the Fu-
Kane-Mele invariant for two-dimensional materials in class
AII [17]. If multiple Kramers pairs are occupied, the corre-
sponding FKM2 invariants are summed.

A major advantage of the vortex picture of FKM invariants
is that the effects of crystal symmetry on its allowed val-
ues become much more transparent. In the lattice with only
fourfold rotational symmetry, for example, a vortex at some
generic momentum k must always be accompanied by three
other vortices at symmetry-related momenta. Such states have
a topologically trivial FKM invariant (FKM2 = 0) because N
is even. Topologically nontrivial states can be constructed by
having a single vortex either at � or M, whereas a vortex
at X again implies two vortices in the full Brillouin zone,
and thus a trivial FKM invariant. All these configurations are
shown schematically in Fig. 2, and described in more detail in
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FIG. 2. (a) Topologically nontrivial vortex configurations with
p4 symmetry in class AII. (b) A band inversion involving a second,
trivial, Kramers pair connects the configurations with a single vortex
at � to one with an FKM2-trivial band with vortices at both � and
M, and one FKM2-nontrivial band with only a vortex at M. Notice,
however, that the final situation cannot be deformed into a band with
a single vortex at M and no vortices in the second band. That would
require a change in the value of the new torsion invariant described
in Sec. VI. (c) Vortex configuration with p4 symmetry in class AII in
which the FKM2 invariant is trivial, but the new invariant of Sec. VI
is not.

the Appendices, following a generalization of the arguments
given in [27] to nontrivial crystal symmetries.

In fact, a configuration with a single vortex at � can be
turned into a configuration with a single vortex at M plus a
band with trivial FKM invariant, if we allow for a second,
trivial, Kramers pair to be present in the set of valence
bands [8]. The two configurations are then connected by a
band inversion, as shown in Fig. 2. As in the case without
symmetries, the FKM invariant can thus take two possible
values, signifying an even or odd number of vortices, without
regard to where in the Brillouin zone the vortices occur.

IV. LINE INVARIANTS

The identification of FKM invariants with vorticity, and
the methodology of seeing how they are affected by lattice
symmetries, works for all possible crystal structures in two
and three dimensions, and is suited for class AI as well
as AII. Additional features, however, may be identified if
there are lines in the Brillouin zone that are mapped onto
themselves by both TRS and a crystal symmetry, such as
reflection, inversion, or twofold rotation. On such lines, a
one-dimensional topological invariant ν1, known as the line
invariant or Lau–van den Brink–Ortix (LBO) invariant, can
be defined [10].

The one-dimensional line invariants are in fact closely
related to the vortices appearing in two dimensions. For
example, in a crystal characterized only by a single reflection
symmetry in the x axis, the lines at kx = 0 and π are each
mapped onto themselves by the reflection symmetry, and also
by time reversal. A line invariant can be defined on each of
these lines, but they are related by the expression

FKM2 = ν0
1 + νπ

1 mod 2. (2)

(a) (b)

(c)

FIG. 3. (a) Sketch of the Berry connection projected onto the
highest-energy state within a Kramers pair. A vortex-antivortex
pair can arise in two topologically distinct ways within a Berry
connection vector field that is continuous on the Brillouin zone torus.
(b) Sketch of vortex lines extending across the bulk of a three-
dimensional Brillouin zone with trivial FKM3 invariant. (c) Sketch
of a vortex line extending into the bulk of a three-dimensional
Brillouin zone, and closing onto itself. This situation is described
by a nontrivial FKM3 invariant.

The vortices in the Berry connection again provide an intuitive
way to understand this. If FKM2 = 1, there is one vortex at
some momentum k, and an antivortex in the time-reversed
state with the same energy at −k. Both of these must lie on the
kx axis because of the reflection symmetry. Keeping in mind
that reciprocal space is periodic owing to the translational
symmetry of the atomic lattice, there are then two distinct
ways the Berry connection between the vortices could behave.
Examples of both are sketched in Fig. 3, which depicts a
projection of the matrix-valued Berry connection onto the
highest-energy state. The connection either makes an odd
number of complete windings along the line kx = 0 and an
even number along kx = π , or the other way around. The field
of Berry connections can be altered by gauge transformations
and nontopological changes in the Hamiltonian. Since these
do not affect the parities ν0

1 and νπ
1 of the number of windings

along the two lines, however, the line invariants cannot be
changed without going through a topological transition.

In the crystal with only a reflection symmetry, there are
thus two ways for the FKM invariant to be nontrivial, depend-
ing on which of the two line invariants is nontrivial. Likewise,
there are two ways for the FKM invariant to be trivial, having
the line invariants either both zero, or both one. The latter case
arises, for example, from a connection that winds the same
way along all lines of constant kx but does not contain a vortex.
The two independent torsion invariants in the crystal with only
a reflection symmetry thus add a factor Z2

2 to its topological
classification.

The heuristic arguments presented here in terms of vortices
are given a formal foundation in the Appendices, where it
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is shown that the link between line invariants and the FKM2

invariant, arising from vortices in the Berry connection, holds
in general. To fully classify topological insulators both of the
torsion invariants, as well as the relations between them, need
to be consistently taken into account. This can be done for
any crystal symmetry in two and three dimensions using the
analysis detailed in the Appendices.

V. INTEGER SPIN

For spinless electrons, in class AI of the 10-fold periodic
table, one may not expect the FKM and line invariants to
play a role [2]. Combining spatial symmetries with TRS,
however, can cause bands of spinless electrons to mimic the
structure of a Kramers pair, by forcing bands with complex
eigenvalues of symmetry operations to necessarily become
degenerate at high-symmetry points. In these cases, nontrivial
torsion invariant are again allowed [7]. Whether or not further,
different, types of torsion invariants can arise in this class, is
a question we leave for future investigation.

VI. A NEW INVARIANT

The combination of line and FKM invariants constitutes
all known torsion invariants in time-reversal symmetric crys-
tals. This, however, cannot be the full picture. Consider, for
example, the crystal with only twofold rotational symmetry.
There are many lines in the Brillouin zone that can be mapped
onto themselves by both TRS and the twofold rotation. Most
of these lines can be smoothly deformed into one another,
and it suffices to define line invariants on the kx = 0, π and
ky = 0, π lines. These are again related to each other by the
FKM2 invariant, giving a total of three independent torsion
invariants.

A possible configuration with all invariants equal to zero
would be to have no vortices present in the band structure
at all. Another possible configuration with the same values
for all invariants would be to have vortices present at all
high-symmetry points. Because of the rotational symmetry,
however, vortices cannot be spread out away from the high-
symmetry points by any deformation of the Hamiltonian. That
is, all Berry curvature is always concentrated in delta peaks
at the high-symmetry points, as shown in more detail in the
Appendices. But, this means that the situation with four vor-
tices can only be deformed into the situation without vortices
if either the gap is closed or the symmetry broken. These
two phases must thus be considered topologically distinct,
and there must exist an additional Z2 or torsion invariant
distinguishing them.

In fact, it is easily seen that every combination of values of
for the two line invariants and one FKM invariant can be real-
ized with precisely two distinct configurations of vortices on
the high-symmetry points. Again, these can never be smoothly
deformed into each other, and should be distinguished by the
new torsion invariant. Additional evidence for the existence
of the new invariant can be found in two places. First of all,
it is known that in certain cases a band structure with an odd
total number of vortices in all valence bands at the � point has
distinct physical properties from a band structure with an odd
number of vortices at M, even if all line and FKM invariants

are the same [14,28]. This difference is manifested when a
topological defect is introduced into the crystal, which will
be either charged or not, depending on the configuration of
vortices [28]. The topological defect in such cases may thus
be seen as indicator for the new invariant.

Furthermore, in the specific case of a crystal with only
twofold rotational symmetry, the K theory in the presence
of time-reversal symmetry may be explicitly computed, as
discussed in more detail in the Appendices. This shows that
in this specific case, the Brillouin zone hosts two invariants
at its edges, and two invariants in its bulk. These correspond
directly to the two line invariants, the one FKM invariant, and
the one new invariant found by counting vortices. Notice that
although K-theory calculations in the presence of TRS are
very challenging in all but this simplest case, counting vortices
in topologically distinct situations as suggested in the current
approach is always straightforward.

In each of the situations with equal line and FKM invariants
but different vortex configurations, the topologically distinct
phases can be distinguished by finding out whether or not
a vortex is present at �. The new invariant can thus be
determined by calculating the Berry curvature of a single
Kramers pair partner in a small region encircling the � point.
As is shown in more detail in the Appendices, this procedure is
guaranteed to be well defined because the rotational symmetry
forbids the spreading of Berry curvature away from high-
symmetry points.

An especially interesting situation to consider in the light
of this new invariant is that of a crystal with threefold sym-
metry. In that case, there is a TRS point at � with rotational
symmetry, a TRS point at M without any point-group symme-
try, and a point at K that is invariant under rotations, but not
under TRS. Looking at the allowed representations at �, there
is one real representation that allows for three vortices (or,
equivalently, a single charge-three vortex) to be formed there.
These vortices can be moved to M or K by transformations of
the Hamiltonian that do not close the gap or break the lattice
symmetry. However, there is also a complex representation
at �, which allows for a single (charge-one) vortex to be
formed there. This single vortex cannot be moved away from
� because of the rotational symmetry. It can also not be
transformed into a situation with three vortices without going
through a topological phase transition. A similar charge-one
vortex may also exist at K , accompanied by an antivortex at
−K , and again such a vortex cannot be moved away from the
high-symmetry point. The parity of the numbers of charge-
three vortices anywhere in the Brillouin zone, and charge-one
vortices at � and at K , are therefore three independent torsion
invariants. Notice that in this case, the representations of the
bands at � in fact determine which Z2 invariants are allowed.
This is reminiscent of the way that rotational symmetries of
the lattice may be used to determine the Chern number of
class-A materials modulo the order of the rotation [6].

Combining the list of allowed torsion invariants with that
of representation invariants, Table I presents the full classifi-
cation of spinful electrons in two-dimensional crystals with
time-reversal symmetry. The total classification is the direct
sum of the representation and torsion invariants. This does
not exclude the possible existence of relations amongst them.
For example, in a material with rotation symmetry the Chern
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TABLE II. In this table the torsion invariants in two-dimensional
crystals are categorized by first identifying how many of them can be
said to be two-dimensional FKM2 invariants, then how many of the
invariants left over are one-dimensional (LBO) line invariants, and
finally how many must be of the new type of invariant. Notice that
the existence of relations between FKM2, LBO, and new invariants
necessarily implies that the assignments proposed in this table are
not unique.

G FKM2 LBO New invariant

p1 Z2

p2 Z2 Z2
2 Z2

pm Z2
2

pg Z2

cm Z2

p2mm Z2 Z2
2 Z2

p2mg Z2 Z2

p2gg Z2 Z2

c2mm Z2 Z2
2

p4 Z2 Z2 Z2

p4mm Z2 Z2 Z2

p4gm Z2 Z2

p3 Z2 Z2
2

p3m1 Z2 Z2 Z2

p31m Z2 Z2 Z2

p6 Z2 Z2 Z2

p6mm Z2 Z2 Z2

number modulo the order of the rotation can be determined
from just the representations at time reversal invariant points.
This does not fully specify the Chern number from the rotation
eigenvalues, however, and hence the total number of invariants
remains the same. A similar situation we encountered also
in class AII, for example, for materials with p3 symmetry.
Because these types of relations do not affect the total number
of invariants, the total classification is still given by the
sum of representation and torsion invariants. In Table II, the
torsion invariants in two-dimensional crystals are categorized
according to their type: FKM2, Lau–van den Brink–Ortix
(LBO) line invariant, or invariants of the new type. Notice
that the assignments in this table are not unique. For example,
Eq. (2) relates LBO invariants on parallel lines to the FKM2

invariant, and implies that only two invariants out of the three
(two line invariants and one FKM2) are independent. Table II
was constructed by first listing as many FKM2 invariants
as possible, then as many independent LBO invariants as
possible, and finally categorizing the invariants that are neither
FKM2 or LBO as being of the new type. The only exception
to this rule are the groups pm, pg, cm, which contain only a
type of reflection symmetry, and are more naturally thought of
as one-dimensional space groups with only line invariants.

The same algorithm can be used to straightforwardly com-
pute the tables analogous to I and II for three-dimensional
crystals as well as layer groups, keeping in mind there may
be additional torsion invariants in higher dimensions.

VII. THREE DIMENSIONS

In three dimensions, the analysis of symmetry eigenvalues
and the corresponding representation invariants is completely

analogous to that in two dimensions. The torsion invariants,
on the other hand, feature an additional entry special to three
dimensions, the FKM3 invariant. To understand this invariant
in terms of the vortices in the Berry connection, consider the
planes kz = 0 and π , which are mapped onto themselves by
the time-reversal operation. On these planes, two-dimensional
FKM2 invariants may be defined. Much like line invariants are
related to FKM2, the invariants of the two planes are related
to FKM3 by the expression

FKM3 = FKM0
2 + FKMπ

2 mod 2. (3)

An intuitive understanding can again be found using vortices
in the Berry connection. A single vortex and antivortex on,
for example, the plane kz = 0 can be extended into the third
direction as a vortex line, or flux tube. If the vortex line
extends all the way to the plane kz = π , both planes have
nontrivial FKM2 invariants. On the other hand, if the line
closes onto itself and forms a vortex loop, the FKM2 invariant
at kz = π will be trivial, and there will be a nontrivial FKM3

invariant in the bulk of the Brillouin zone. This situation is
shown schematically in Fig. 3. Notice that a single FKM3 in-
variant may connect multiple parallel planes on which FKM2

invariants can be defined. Incorporating the effect of crystal
symmetry on whether or not FKM3 invariants are allowed is
a matter of understanding the effects it has on vortex lines.
When inversion symmetry is present, it is known that FKM3

can be computed using the inversion eigenvalues [29], and is
therefore absorbed in the representation invariants. A more
detailed derivation of these heuristic arguments is given in the
Appendices.

An interesting example of a three-dimensional crystal, is
one with space group P2/m (No. 10). Such a crystal has
inversion symmetry and a twofold rotation symmetry around
the kz axis. The representation invariants can be straightfor-
wardly identified both for spinless and spin- 1

2 particles, as
is done in the Appendices. Spinless particles (class AI) do
not have torsion invariants for this crystal symmetry, due
to the lack of a Kramers pair structure. In class AII, the
torsion invariants on kz = 0, π planes cannot be nontrivial
because the inversion symmetry forbids single vortices even
at high-symmetry points. Since the values of both the line
invariants and new invariants are related to the presence of
vortices at high-symmetry points, these too must be trivial.
Moreover, due to (3), FKM3 is also zero. We thus find no
torsion invariants in this crystal. Notice that this implies the Z2

invariant in, for example, [29] is in our description absorbed
into the representation invariants.

VIII. DISCUSSION

Interpreting topology in insulators to stem from a combi-
nation of representation invariants imposed by the symmetries
of the atomic lattice, and torsion invariants that can always be
interpreted as coming from vortices in the Berry connection,
provides a straightforward way of counting the number of
topological invariants needed to classify time-reversal sym-
metric crystalline materials in any dimension up to three. The
picture is especially powerful, however, in relating topological
invariants associated with different dimensions, and gives an
intuitive, unified picture of how these are influenced by the
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presence of both lattice symmetries and each other. In doing
so, it reveals the necessary existence of a hitherto unknown
topological invariant complementing the line and FKM invari-
ants.

As mentioned in passing in the Introduction, we consider
two bands to be distinct under smooth deformations up to
the addition of trivial bands. More explicitly, this implies that
two band structures are topologically equivalent when they
can be made to be equal upon adding topologically trivial
sets of bands. In the present context, and in accord with K
theory, trivial band structures are defined to be particle-hole
symmetric pairs of bands. To be precise, then, we really con-
sider the combined topological invariant of all bands below
a gap in the spectrum at any energy (not necessarily at the
Fermi level), and consider the trivial set of bands to be a pair
with equal topological indices in which one is occupied and
one unoccupied. This definition reflects the fact that negative
integers may appear in the K theory, and in our classification,
corresponding to bands of holes, rather than electrons. This
necessity of including the concept of negative integers in the
definition of equivalence is a direct consequence of the fact
that the elements in K theory are difference classes, which
necessitates the existence of a trivial element.

Extrapolating the bulk-boundary correspondence for
known topological insulators to the range of new topological
phases identified here suggests that new boundary modes
may be associated with at least some of the new invariants
characterizing these materials. The existence and properties
of these new modes will be an interesting avenue for future
research. Likewise, the intuitive arguments presented here are
given a solid mathematical foundation in the Appendices,
which ensures a consistent counting of torsion and repre-
sentation invariants for all crystalline, time-reversal invariant
materials in class AII up to three dimensions. We cannot
yet, however, give an explicit mathematical proof that these
invariants exhaust all possible topological quantum numbers.
To do that, a comparison to a purely K-theoretic analysis,
extending the approach of [21], would be required.
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APPENDIX A: TIME-REVERSAL SYMMETRY AND SPACE
GROUPS: MAGNETIC SPACE GROUPS

1. Types of magnetic space groups

Magnetic or nonmagnetic materials, for example in a
magnetically disordered phase or ferromagnet, may possess
antiunitary symmetries. This means that the original space
group of the lattice G needs to be enlarged by inclusion of an

antiunitary operator a. In general, the enlarged group, called
the magnetic space group, is then

M = G ⊕ aG. (A1)

Depending on what a is, there are three types of magnetic
space groups (we exclude the trivial option in which a is not
present). When a = �, the time-reversal operator M is called
a type-II Shubnikov space group. Notice that in this magnetic
space group, TRS commutes with all elements of G and the
crystal is nonmagnetic.

If a system is magnetic, it could still be invariant under an
antiunitary operator, but not under � alone. TRS should then
be accompanied by either a rotation or a reflection, allowing
the system to be invariant under a type-III Shubnikov space
group

M = H ⊕ aH, (A2)

where H is an index-two subgroup of G (the original space
group). The antiunitary symmetry is now a = R�, where R is
a point-group operation of G such that G = H ⊕ RH .

There is also a third kind of magnetic space group, the
type-IV Shubnikov space group. In this case, the time-reversal
operator is accompanied by a translation t0 so that

M = G ⊕ �{E |t0}G. (A3)

From here on, we will focus on the case in which time-
reversal symmetry is really a symmetry of the system itself,
and consider only type-II Shubnikov space groups. The other
magnetic spaces groups can be studied in a similar way [13].

2. Representation theory

To find the representation theory of magnetic space groups,
we first focus on the action of the time-reversal operator �

on the bands, and let it act on ρ(g) |ψn〉 (where n is the
band index), ignoring any momentum dependence for now.
The operator ρ(g) is any unitary operator corresponding to
an element g of G that acts on the states according to some
representation ρ of the space group G. Now,

T ρ(g) |ψn〉 = ρ∗(g)T |ψl〉 (A4)

with T a representation of �. Representations of the magnetic
space group need to satisfy this relation. These representations
are called corepresentations [30]. It is straightforward to show
that these representations have the following properties. First
of all, the time-reversed representation D̂(g) of some element
g is equivalent to the complex-conjugated representation of g,
i.e.,

D̂(g) = D(g)∗. (A5)

Second, in addition to adding symmetry elements, time-
reversal symmetry can also enhance the state space. A prime
example is the emergence of Kramers pairs. These are formed
because |ψ〉 and its time-reversed partner can be guaranteed
to be orthogonal, causing the matrix representations to be
twice their original size. Expressing these new representations
in terms of the original representations of the space group
allows us to directly apply the algorithms introduced in
Refs. [5,12] for assigning symmetry labels to bands.
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Consider a general magnetic group M = G ⊕ aG, and
suppose that g is an element of G, the space group. Then in
the basis {|ψ〉 , a |ψ〉}, the representation of g is

D(g) =
(

ρ(g) 0
0 ρ∗(a−1ga)

)
. (A6)

However, for the other half of the elements of M, elements of
the form b = ag ∈ aG, the representation looks like

D(b) =
(

0 ρ(ba)
ρ∗(a−1b) 0

)
. (A7)

These representations are irreducible in the sense of Ref. [31].
Intuitively, TRS is understood as a symmetry that can cause
bands to stick together to form Kramers pairs. This can happen
in three ways. Either nothing happens, or complex-conjugate
irreducible representations stick together, or the bands just
become doubled. In detail, these three cases are as follows:

(a) In this case ρ(g) is unitarily equivalent to ρ∗(a−1ga),
i.e., ρ(g) = Nρ∗(a−1ga)N−1. Where N satisfies NN∗ =
+ρ(a2), then D(g) = ρ(g) and D(b) = ±ρ(g)N .

(b) In this case ρ(g) is unitarily equivalent to ρ∗(a−1ga),
i.e., ρ(g) = Nρ∗(a−1ga)N−1. Where N satisfies NN∗ =
−ρ(a2), then

D(g) =
(

ρ(g) 0
0 ρ(g)

)
, D(b) =

(
0 −ρ(g)N

ρ(g)N 0

)
.

(A8)

(c) In this case ρ(g) is not unitarily equivalent to
ρ∗(a−1ga) = ρ(g). The magnetic space group representations
are then given by

D(g) =
(

ρ(g) 0
0 ρ(g)

)
, D(b) =

(
0 ρ(ga2)

ρ(g) 0

)
. (A9)

To determine whether we are dealing with type (a), (b), or
(c) upon inclusion of TRS we use a test devised by Herring
in 1937 based on the Frobenius-Schur indicator. Given a
(projective) irreducible representation ρk of the little cogroup
at k, we can write this test as

I (ρk ) = 1

#Si

∑
Si

e−i(k+S−1
i k)·wiρk

(
g2

i

)

= 1

#Si

∑
Si

e−ig·τiρk
(
g2

i

)
. (A10)

where the sum is over those Si = {gi|τi} such that gi · k = −k
modulo a reciprocal lattice vector g. The fractional translation
associated to Si is denoted by τi. Thus, when k ≡ −k + g
(i.e., at high-symmetry points which are also TRS invariant
points), we sum over all elements of the little cogroup of k,
Gk. The value of I (ρk ) determines whether the irreducible
representation Dk arising from ρk by adding time-reversal
symmetry is of type (a), (b), or (c). The assignment follows
from

I (ρk ) =
⎧⎨
⎩

γ case (a),
−γ case (b),
0 case (c)

(A11)

with γ being the sign of the square of the time-reversal opera-
tor �. This test can be used for any of the three Shubnikov

space groups because one can write a general antiunitary
element as a space-group element times �.

3. TRS degeneracies

Now that we know where degeneracies occur, we need
to compute the irreducible representations that stick together.
For cases where I = ±1, this is trivial, but for I = 0 it is not.
Let us assume that we are at a high-symmetry point which
has Gk as its little cogroup and that I = 0 for some, possibly
projective, irreducible representations of Gk. Also we assume
the magnetic little cogroup is given by Mk = Gk ⊕ aGk, with
a = �a0. It is important to note that a0 is not part of Gk and
so multiplication is done within the full point group. The TRS
reversed representation is given by

ρ(S) = ρ
(
a−1

0 Sa0
)∗

, (A12)

where S = {g|τ } with τ a fractional translation and a0 =
{g0|0}. This can be rewritten using

a−1
0 Sa0 = {

g−1
0 |0}{g|τ }{g0|0}

= {
e
∣∣g−1

0 τ − τ
}{

g−1
0 gg0|τ

}
, (A13)

where e is the identity element. Thus, (A12) becomes

ρ(S) = exp
[
ik · (

g−1
0 τ − τ

)]
ρ
({

g−1
0 gg0|τ

})∗
. (A14)

Now, there are two possible situations. First we could have
a0 = {e|0} (Mk is a type-II Shubnikov space group), in which
case

ρ(S) = ρ({g|τ })∗. (A15)

This situation occurs when k is also a TRS invariant point.
The other option is g0 �= e with g0 · k = −k and so

ρ(S) = exp(−ik · τ )ρ
(
g−1

0 gg0
)∗

, (A16)

where the product g−1
0 gg0 should be calculated in the full point

group, which might be realized projectively. For example,
when Gk consists of a single glide plane (i.e., p2mg or p2gg)
and a0 is a reflection in the kx axis, then the multiplication
should be done in the central extension, i.e., in the quaternion
group. In this group the reflections anticommute.

APPENDIX B: SMEARING BERRY CURVATURE

In a class A topological insulator, the bands are generically
nondegenerate. In that case we can move two single bands
close to each other at some point in k space and let them invert.
This band inversion is, generically, responsible for nontrivial
topology in the valence bands. In two dimensions, close to the
region in k space where the bands meet, the Hamiltonian takes
the form

H = kxσx + kyσy + mσz (B1)

with m a small mass between the two bands, one belonging
to the valence bands, the other to the conduction bands. The
Berry curvature of the band belonging to the valence bands is
then

Fkxky = −im

2

1

(k2 + m2)3/2
, (B2)
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where we ignore regularization issues for the moment because
they will not be important for our argument. One sees that
when m → 0, the curvature localizes at kx = 0 = ky and that
increasing the mass can be viewed as smearing the curvature
over a small region around kx = 0 = ky. When we add rotation
symmetry in class A, such smearing is still allowed.

However, if we move to class AII, bands at time-reversal
invariant points become degenerate Kramers pairs. Such de-
generacies are present in both the valence and conduction
bands at energies away from the Fermi energy. The Hamilto-
nian in (B1) can also be used to describe a Kramers pair near
a high-symmetry point, but only if m = 0, as any nonzero m
will destroy time-reversal symmetry. The argument that we
used above to smear a single vortex in a nondegenerate band
can thus not be used to smear the Berry curvature contained in
a vortex-antivortex pair localized at a time-reversal symmetric
high-symmetry point. In other words, if curvature is intro-
duced at time-reversal invariant points, it necessarily remains
localized there. Notice, however, that the Hamiltonian in (B1)
only describes the band structure near time-reversal invariant
points. At generic points in the bulk of the BZ, the bands are
nondegenerate and vortices can be created by band inversions
involving only a single valence band. Berry curvature at such
points can be smeared as usual.

Let us now consider the effect of adding spatial sym-
metries. A rotation symmetry will force vortices created at
generic point to come in multiplicities equal to the order of
the rotation and hence for the evenfold rotation groups only
an even number of vortices will be created, signaling trivial
topology. As explained in the main text, nontrivial topology
thus requires vortices to be formed at time-reversal invariant
points. These can subsequently not be smeared and are stuck
at those high-symmetry points. In the presence of reflection
symmetries, vortices are similarly stuck on high-symmetry
lines.

1. Stuck vortices and their invariants

Berry curvature localized on high-symmetry lines can be
detected by computing the one-dimensional line, or LBO,
invariant [10]. The vortices stuck to time-reversal invariant
points also constitute invariants, and to detect them one can
simply integrate the curvature of a single band within the
Kramers’ pair over a small region around such points. Iso-
lating a single band within the Kramers’ pair to compute
the invariant this way can be done in exact analogy to how
the FKM invariant is computed from the Berry curvature
over the whole BZ [26]. Since the curvature is contained
within a δ function localized at time-reversal invariant points,
any surface around the vortex may be considered, as long it
encloses only a single time-reversal invariant point.

APPENDIX C: TRANSITION FUNCTIONS

Next, we turn to a simple way of understanding the torsion
invariants introduced in the main text in terms of transition
functions. Such functions are necessary to globally specify
the vector bundle of states above the BZ, and can be straight-
forwardly constructed. See Ref. [32] for a clear exposition of
transition functions and vector bundles. We will also comment

FIG. 4. The BZ divided into two patches, A and B, with a
transition function U (φ) in-between. The coordinate φ parametrizes
the overlapping circle between A and B.

on line invariants in terms of transition functions, and consider
their relation to the FKM2 invariant. In the remaining we will
mostly focus on systems with two bands, and generalize the
approach presented in Refs. [27,33]. Notice that the following
analysis is only local. We believe that there generally are
global constraints, but we cannot prove that the analysis with
the constraints is equivalent to a K-theory computation.

The possibility of having an FKM2 invariant in class AII
signals the fact that it may be impossible to globally define a
basis for the two bands in a Kramers pair. To show that this
fact is related to the parity of the Chern number, one defines
two patches A and B in the BZ. To be precise, the patches
should be topologically trivial, which means that on the torus,
two patches are not enough. The reason that we still consider
only two patches, is that the FKM2 invariant is most easily
identified in the equivariant K theory of the sphere. The fixed
points of the point group outside, say �, can be collapsed to a
single point, leaving only two fixed points on the sphere, and
this justifies the use of just two patches.

In one patch one can define a consistent basis for the
Kramers doublet, but the basis might not be the same in the
other patch. The change in basis between the two patches is
encoded in a transition function, as shown schematically in
Fig. 4. A transition function for a topologically trivial system
would be

U (φ) =
(

e2iφ 0
0 e−2iφ

)
, (C1)

whereas in the nontrivial case it could be given by

U ′(φ) =
(

0 eiφ

e−iφ 0

)
. (C2)

To find these transition matrices, one simply imposes TRS on
a general unitary 2 × 2 matrix: iσyŪ (φ)(−iσy) = U (φ + π ).
The matrix U is a U(2) matrix which can be decomposed
uniquely as U (φ) = eiθ (φ)g(φ), with g ∈ SU(2). There are two
classes of U ′s that satisfy the TRS condition. Either we have
θ (φ) = −θ (φ + π ) and g(φ) = g(φ + π ) or θ (φ) = −θ (φ +
π ) + π and g(φ) = −g(φ + π ). The ± sign for g are the only
possibilities consistent with g being an SU(2) matrix. This
sign really comes from the U(1) part of U(2) and contains
all the topology. The SU(2) part has, on the level of the
fundamental group, no topology, i.e. π1[SU(2)] = ∅ and so
within each of the two classes, the transition matrix can be
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deformed at will, as long as the condition on the U(1) factor
is not violated. Of course, one can also turn the logic around
and argue that due to the two choices on the U(1) part of U ,
the SU(2) part needs to satisfy certain periodicity conditions.

As for the transition matrices given above, one quickly
checks that in the trivial case, the bands have Chern number
±2, whereas in the nontrivial case they are ±1. In fact, as was
shown in Refs. [27,33], only the parity of the Chern number
in each band is a topological invariant.

Let us now see what changes to the transition functions
as we add rotation symmetry. The action of rotation symme-
try on the transition function is encoded in the irreducible
representations of the double group of the rotation group in
question. Due to TRS, all these irreducible representations are
two dimensional and can be thought of as irreducible spinor
representations of Z2n, with n the order of rotation. Denoting
the eigenvalues of these representations by ξn and writing the
transition matrix as

U (φ) =
(

a(φ) b(φ)
c(φ) d (φ)

)
, (C3)

the rotation symmetry requires

a(φ) = a(φ + 2π/n), (C4)

ξ 2
n b(φ) = b(φ + 2π/n). (C5)

The other two entries are fixed by TRS: c(φ) = −b̄(φ + π )
and d (φ) = ā(φ + π ). Upon solving these constraints, we
find that for each irreducible representation, both trivial and
nontrivial transition matrices are possible. This means that we
can find solutions satisfying U (φ) = ±U (φ + π ) with either
sign, irrespective of the irreducible representation considered,
and that these transition matrices may implement both trivial
and nontrivial Chern numbers. The FKM2 invariant is there-
fore still given by the parity of the Chern number for the
wallpaper groups pn with n = 1, 2, 3, 4, and 6.

Let us add a few more details concerning this argument. As
before, we can decompose the U(2) matrix in U(1) and SU(2)
parts. Owing to the rotation symmetry, the U(1) part needs to
satisfy θ (φ) = θ (φ + 2π/n). There is no possibility of adding
a π as was possible for TRS because the rotation is assumed to
be a unitary symmetry. There are thus no additional topolog-
ical classes that arise from the U(1) factor other than the two
coming from TRS. The rotation symmetry also does not give
new topological classes of transition matrices coming from
the SU(2) part because the transition matrix is defined on a
circle on which the symmetry acts transitively. The topology
at fixed points was already accounted for in the representation
content, so plays no role in additional topological classes of
transition matrices.

APPENDIX D: RELATIONS BETWEEN REPRESENTATION
INVARIANTS AND TORSION INVARIANTS

That the possible existence of an FKM2 invariant is in-
dependent of the irreducible representations of rotations is
confirmed by Po et al. in Ref. [12]. On the other hand, the
irreducible representations do not leave the Chern numbers
entirely unaffected. Suppose we have a system invariant un-
der a sixfold rotation symmetry. We could construct a TRS

invariant Hamiltonian by starting with a single band with
some Chern number C and adding to it a band with the
opposite Chern number. Depending on the actual value of
this Chern number, only a particular irreducible representation
appears at, say, �. If the Chern number is C = 1, the sixfold
rotation acts on the bands as

�1 =
(

eiπ/6 0
0 e−iπ/6

)
, (D1)

whereas if C = 3, the irreducible representation at � is iσz.
This does not mean, however, that these are topologically
distinct because their FKM2 invariants are equivalent. Using
a similar analysis, it is also clear that one cannot create a TRS
system with sixfold symmetry, starting from a single band
with C = 2, since there is no irreducible representation that
supports such a Chern number. For p4 and p3 there are also
allowed and disallowed Chern numbers.

The fact that only certain Chern numbers are possible
and hence only a certain number of vortices given a rep-
resentation has interesting consequences. For example, for
topological insulators in class AII and with p3 symmetry,
there are two possible representations, ρ0 and ρ1. One, ρ0,
can only host three vortex-antivortex pairs (because it is a
real representation) while in the other, ρ1, both a single and
a triple vortex-antivortex pair is possible. In the charge 3 case,
the vortices can move away from the fixed point because
this does not break any symmetries nor does it close any
gap. A single vortex-antivortex pair, however, cannot move
away from the fixed point because that breaks the rotation
symmetry as discussed in Appendix B. This means that bands
transforming under ρ0 are different from those transforming
in ρ1 not only because their eigenvalues are different, but
also because ρ0 can allow for a topologically distinct vortex-
antivortex configuration. This is special to space groups with
a threefold rotation symmetry. For the other rotation groups
of order 2n for n = 0, 1, 2, 3, an equivalent of three vortex-
antivortex pairs does not exist because that would always be
an even number of vortices and thus topologically trivial.

1. Reflection symmetry and line invariants

Reflection symmetry can be studied in a similar way.
Parametrizing the transition matrix as before, and defining
the action of reflection on the states as t = iσz, we find that
a(φ) = a(−φ) and b(φ) = −b(−φ). It is also possible to
choose a different action of reflection, t = iσy, which results
in a(φ) = d (−φ) and b(φ) = −c(−φ). We will work with
the latter action for convenience, but the result is independent
of this choice. Trivial transition functions are then given by
a = e2iφ or b = e2iφ , whereas nontrivial ones are given by
a = ieiφ or b = ieiφ . Again, we see that these are possible
irrespective of the representation.

Reflection symmetries result in the presence of high-
symmetry lines, which could potentially carry topological
information in addition to the FKM2 invariant [10]. To see
this, consider transition functions along the lines l⊥, which are
orthogonal to the mirror plane and mapped onto themselves
by TRS. These transition functions are then maps from S0 to
the group M of matrices which act on the states. Such maps
are classified by π0(M ). On the other hand, since the lines
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are held fixed by the antiunitary symmetry T t , the matrices
need to be real, and hence the transition functions are elements
of O(2), which has two disconnected components. These two
components are directly related to the transition functions near
a time-reversal invariant point, and have determinant ±1.

A more intuitive way of understanding such line invariants
is by thinking about the Berry connection. The Berry connec-
tion is, in this case, an SU(2) valued one-form on the Brillouin
torus. This one-form should have correct periodicity condi-
tions along the cycles of the torus and it should be consistent
with the reflection symmetry. Let us consider a single Kramers
pair. As the Berry connection is an SU(2) connection, it
is easiest to visualize it by projecting the connection onto
the states within the pair that have the highest energy. Now,
consider a vortex-antivortex pair along the ky = 0 line in the
BZ (vortices are fixed there due to the reflection symmetry)
with the vortex at kx = α and the antivortex at kx = −α. The
reflection symmetry and periodicity conditions along the torus
force the connection to take a special form in which all of
the winding is in-between the vortices, i.e., either along a line
kx = β with α < β < −α or −α < β < α. This winding is
not really a U(1) winding, but rather the two states have the
topology of a Mobiüs strip along either of these two lines.
This is also in agreement with the previous discussion about
homotopy groups because the nontrivial element in π1(O(2))
is in one-to-one correspondence with the Mobiüs strip in this
situation. The integral of the Berry connection

ν = 1

π

∫ π

−π

AI dky (D2)

of one of the TRS channels will then be 1 mod 2, signaling
the Mobiüs strip nature. As the winding is only along one of
the two lines, only one of them will result in a nontrivial line
invariant. Configurations in which both line invariants are 0
or both are 1 do not require the connection to have an odd
number of vortex-antivortex pairs, which again is equivalent
to saying that when both line invariants have the same value,
the FKM2 invariant is trivial.

In the example considered in the main text, there are two
parallel lines invariant under T t . If both of these lines have
trivial line invariants, then, necessarily, the transition function
Ul is trivial and therefore also the transition function between
the two patches in the bulk is trivial. In this case, the system
as a whole is thus topologically trivial. On the other hand,
if one of the two line invariants is nontrivial, the transition
function, and hence the FKM2 invariant, also need to be
nontrivial. Finally, when both line invariants are nontrivial, the
FKM2 invariant is trivial since there is no nontrivial transition
function between the two parallel lines.

2. Line invariants in 3D in the presence of inversion symmetry

The line invariant is an invariant arising from choosing a
nontrivial transition function along a line within the BZ. To
be more precise, we cut the line in two pieces and glue them
together by using this transition function. The transition func-
tion is thus a constant and not a function of a parameter. Just
like with the Möbius band, this transition function is nontrivial
when it has determinant minus one. When inversion sym-
metry is present, this cannot happen. When TRS is present,

inversion symmetry in three dimensions (3D) acts on the states
by either ±I . The combination of TRS and inversion then
acts on the states as iσy and requires the transition function
to satisfy

σyŪσy = U . (D3)

This condition restricts U to be an element of SU(2) and can
therefore not give rise to nontrivial topology.

3. Nonsymmorphic symmetries

Symmetries that combine point-group operations with
fractional lattice translations follow a similar analysis as those
without the fractional translations. The only thing that is
relevant is the way they act on the states. Some points in
the Brillouin zone carry a different representation due to
nonsymmorphicity and could therefore prevent the existence
of nontrivial transition functions and line invariants. For ex-
ample, consider p2gm. At � and Y there is no influence of
the fractional translations, but at X and M we have different
little cogroups. The representations in which the bands can
transform also change at these points and, in particular, the
reflection in the kx axis constrains the transition function to be
an even function of its argument. This means that at X and M
no vortex can be present. The only allowed torsion invariants
then arise from vortices at Y and �.

APPENDIX E: K-THEORY COMPUTATIONS

The classification algorithm for crystalline insulators in
class AII introduced here is based on an intuitive picture of
vortices in the Berry connection. It is expected that its results
coincide with a full-fledged K-theory computation, as has
been shown to be the case in class A [5]. In the case with
time-reversal symmetry, a proposal of how to calculate such
K theories was given in [19], but explicit computations for
specific symmetry groups are missing. In a separate work, we
have studied some simple examples. These will be reported in
detail elsewhere, but we give a short summary of the approach
here.

We first use an equivariant splitting to reduce the K theory
of tori to those of spheres. This then feeds into the Atiyah-
Hirzebruch spectral sequence. The first differential gives the
Bredon cohomology with coefficients in the K theory of a
point, which we take to be a twisted representation ring. One
then has to compute the higher-order differentials to show
that either one has to go to the third page or that the spectral
sequence collapses. The result is an extension problem that
has to be solved in order to determine the K-theory groups
that one is interested in.

We have carried out this approach for several simple groups
such as p2 and pm. In particular, we find that in group p2, the
calculation yields four Z2 invariants. This is in perfect agree-
ment with the expectation from the more intuitive approach
advocated in this paper of counting possible topologically
distinct vortex configurations.
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