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The rich structure of solid state physics provides us with Dirac materials the effective theory of which enjoys
the Lorentz symmetry. In nonsymmorphic lattices, the Lorentz symmetry can be deformed in a way that the
null energy-momentum vectors will correspond to the on-shell condition for tilted Dirac cone dispersion. In this
sense, tilted Dirac/Weyl materials can be viewed as solid state systems where the effective spacetime is non-
Minkowski. In this work, we show that the polarization tensor for tilted Dirac cone systems acquires a covariant
form only when the spacetime is considered to be an appropriate deformation of the Minkowski spacetime that is
compatible with the dispersion. As a unique consequence of the deformation of the geometry of the spacetime felt
by the electrons in tilted Dirac cone materials, the Coulomb density-density interactions will generate corrections
in both longitudinal and transverse channels. Therefore the transverse photons also participate in mediating the
Coulomb forces, implying emergent Amperean forces associated with the tilt of the spacetime.
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I. INTRODUCTION

Dirac solids are materials in which the continuum limit
of the effective Hamiltonian is the Dirac equation. From a
geometric perspective, the spacetime felt by the electronic
degrees of freedom is the Minkowski spacetime. An important
isometry of this spacetime is the Lorentz transformation. The
interest in Dirac materials is due to the relativistic covariance
of the electronic theory in these systems, which has many
interesting consequences [1–3], including but not limited to
pseudoscalar superconductivity [4] with no counterparts in
non-Dirac materials.

Breaking the Lorentz symmetry in solid state physics is
not a surprise. Indeed the effective theory in most solids is
only Galilean invariant [5]. But in tilted Dirac cone systems
the Lorentz symmetry is broken in a very interesting way
[6,7]. Any nonzero amount of tilt which we parametrize by
two parameters ζ = (ζx, ζy) breaks the Lorentz symmetry, but
still a residual symmetry is left behind which turns out to be
a deformation of the Lorentz group [7]. The tilt deformation
of the Dirac equation can be achieved in three-dimensional
materials [8–11] as well as in two space dimensions [6,
12–14]. Two-dimensional (2D) candidate materials include
the organic material [15,16] and recently proposed 2D al-
lotrope of boron, namely 8Pmmn borophene [17–20]. The
nice property of 2D borophene is that the amount of tilt can
be controlled by the perpendicular electric field [6]. There
are also recent experimental realizations of over-tilted Dirac
cones in transition metal dichalcogenide PtTe2 [21] and PdTe2

superconductor [22].
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The geometric interpretation of the tilt deformation of the
Dirac cone immediately leads to the fact that the spacetime
felt by electrons in tilted Dirac cone materials is not the
Minkowski spacetime, but a deformation thereof [6,7,23]. In
this work, by brute force calculation of the polarization tensor,
we show that the metric of the modified Minkowski space
appears in a nice and covariant form, provided that instead of
the Minkowski metric ημν , the appropriate metric gμν is used
[7]. This signifies that, with respect to the electromagnetic
response, the electrons in a tilted Dirac cone solid behave as
if they live in a deformed Minkowski spacetime. This imme-
diately implies that the plasmon oscillations of the electron
density in the tilted Dirac electron liquids are accompanied by
both longitudinal and transverse electric fields.

II. TILTED DIRAC MODEL

The general form of the effective Hamiltonian near the
Dirac point for one of the tilted Dirac cones is given by

H (k) = h̄

(
vx,t kx + vy,t ky vxkx − ivyky

vxkx + ivyky vx,t kx + vy,t ky

)
, (1)

where the off-diagonal elements represent the cone-like fea-
ture of the system characterized with Fermi velocity scales vx

and vy. The diagonal elements specified by the tilt velocities
vx,t and vy,t represent the tilting characteristic [13,14]. Let
us assume that the ratio between the tilt parameters and
the Fermi velocity vF = vx = vx is given by vx,t = ζxvF and
vy,t = ζyvF . We set the units by h̄ = vF = 1. Therefore the
above Hamiltonian becomes

H (k) =
(

ζxkx + ζyky kx − iky

kx + iky ζxkx + ζyky

)
= ζ · kσ0 + k · σ, (2)
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the spectrum of which is

Es(k) = sk + ζ · k, |k, s〉 = 1√
2

(
1

seiθk

)
, (3)

where s = ±, E+ and E− are the conduction and valence
bands, respectively. The ζ is a dimensionless parameter which
describes the strength of the tilt in the system. The effective
Hamiltonian around the other valley can be obtained from
the above equation by k → −k and σ → σ� [24,25]. This
model reduces to the graphene (upright Dirac cone) in the
limit vt = 0, which is the renormalization group fixed point
of tilted Dirac fermions in two dimensions [26]. A similar
renormalization group picture holds in three dimensions [27].

An alternative way to think about the above dispersion
relation is to assume that it describes the null spacetime
vectors in 2 + 1-dimensional spacetime, namely gμνkμkν = 0,
where kμ = (E , k) and the covariant components of gμν are
defined by the Painelevé-Gulstrand metric [28] ds2 = −dt2 +
(dr2 − vt dt )2, which is explicitly given by

gμν =
⎛
⎝−1 + ζ 2 −ζx −ζy

−ζx 1 0
−ζy 0 1

⎞
⎠, (4)

where ζ 2 = ζ 2
x + ζ 2

y determines the magnitude of parameter
ζ. In the type I tilted Dirac cone we have 0 � ζ � 1 [17,24]
and in the type II tilted Dirac cone is ζ > 1 [21,22]. In
3 + 1-dimensional systems a border corresponding to ζ =
1 corresponds to a standard black-hole horizon [29,30]. In
2 + 1-dimensional systems such a border will correspond to
Bañados-Teitelboim-Zanelli (BTZ) black holes [31]. The pur-
pose of the present work is to show that the metric in Eq. (4)
naturally appears in the electromagnetic response of the tilted
Dirac fermions and will be encoded in the polarization tensor.

An essential feature of the above dispersion relation is its
anisotropic dependence on the wave vector k which is due to
the vector ζ and makes the calculation of correlation func-
tions different and more complicated compared to graphene,
especially in the extrinsic case [13]. In our previous work,
we calculated the density-density correlation function in tilted
Dirac cone systems. The physical consequence of tilt ζ for the
doped Dirac cone is that it generates a kink in the plasmon
dispersion [13,14]. In recent work, we built on Eq. (4) that
states the spacetime felt by the electrons satisfying the tilted
Dirac equation is a deformation of the Minkowski spacetime,
and obtained the algebraic structure of such a deformed
Minkowski spacetime [7]. In the present work, we calculate
the entire polarization tensor �μν (q) = −T 〈 jμ(q) jν (q)〉 [32]
by brute force. Then we will show that it acquires a covariant
form only in a spacetime given by metric (4). We will then
discuss the consequences of nonzero components ζ that mix
space and time in this metric.

III. POLARIZATION TENSOR

Let us start the calculation of the polarization tensor for
tilted Dirac fermions with tilt parameter ζ. In this work we
will be interested in |ζ | < 1. Since we are interested in the
small momentum (long wavelength) response, we will confine
ourselves to a single valley. In general, the current response

function in the Lehmann representation is given by

�̃μν (q, ω) = gs

A
lim
ε→0

∑
k,s,s′=±

nk,s − nk+q,s′

ω + Ek,s − Ek+q,s′ + iε
F̃μν

s,s′ (k, k′),

(5)

where A is area of a system and gs is the spin degeneracy. Here
ε is defined as an infinitesimal positive constant and Fermi
distribution function defined by nk,s is a step function at zero
temperature and k′ = k + q with direction of k and q with
respect to x axis being θk and φ, respectively. Note that the
valleys are no longer degenerate. The corresponding results
for the other valley can be obtained by ζ → −ζ. The form
factor F̃μν

s,s′ (k, k′) is determined by the matrix elements of the
current operator as

F̃μν

s,s′ (k, k′) = 〈k, s| j̃μ|k′, s′〉〈k′, s′| j̃ν |k, s〉, (6)

where μ, ν = 0, 1, 2, as the spacetime is 2 + 1 dimensional,
and j̃0 stands for charge density ρ̃ and j̃1(2) stands for the
spatial components j̃x(y) of the current density which can
be directly extracted from Eq. (2) and have the following
representation:

ρ̃ =
(

1 0
0 1

)
, j̃x =

(
ζx 1
1 ζx

)
, j̃y =

(
ζy −i
i ζy

)
. (7)

The Lehmann representation in Eq. (5) can be simplified to

�̃μν (q,) = gs

A
lim
ε→0

×
∑

k,s,s′=±
F̃μν

s,s′ (k, q)
nk,s − nk+q,s′

( + s|k| − s′|k + q|) + iε
, (8)

where  = ω − q.ζ. Indeed the new representation reduces
to the polarization tensor for graphene when ζ → 0. In this
limit, we have  → ω and the matrix elements F̃μν

s,s′ reduce to
the corresponding ones, namely, Fμν

s,s′ of graphene.
Although one can directly evaluate the integrals appearing

in Eq. (5) which has been done in the Appendix, nevertheless,
a quick and neat way of obtaining the same result is to note
that in the undoped Dirac cone in both tilted and tilt-less
situations the Fermi surface will be a point node. Therefore
one can relate the matrix elements F̃ of tilted Dirac cone
with F of upright Dirac cones. To do this, let us note that the
3-current j̃μ (of tilted Dirac cones) given in Eq. (7) and jμ (of
the tilt-less limit) are related by

ρ̃ = ρ, j̃x = ζxρ + jx, j̃y = ζyρ + jy, (9)

where quantities without a tilde correspond to the ζ = 0 limit,
and those with a tilde correspond to the tilted system. Already
at this basic level it can be seen that the spatial components
j̃ i of the 3-vector in a tilted Dirac system is a mixture of
both temporal (ρ) and spatial components ( ji) of the tilt-less
system. Equation (9) immediately implies the following set of
relations between the matrix elements F̃ and F :

F̃ 00
s,s′ (k, k′) = F 00

s,s′ (k, q),

F̃ ii
s,s′ (k, k′) = F ii

s,s′ (k, q) + 2ζiF
i0

s,s′ (k, q) + ζ 2
i F 00

s,s′ (k, q),

F̃ i0
s,s′ (k, k′) = F̃ 0i

s,s′ (k, k′) = ζiF
00

s,s′ (k, q) + F i0
s,s′ (k, q),

F̃ i j
s,s′ (k, k′) = ζiζ jF

00
s,s′ (k, q) + F i j

s,s′ (k, q)

+ ζiF
j0

s,s′ (k, q) + ζ jF
i0

s,s′ (k, q). (10)
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Here the graphene form factors are denoted by Fμν

s,s′ (k, q)
which have the following representation:

F 00
s,s′ (k, q) = 1/2(1 + ss′ cos(θk − θk′ )),

F 11
s,s′ (k, q) = 1/2(1 + ss′ cos(θk + θk′ )), (11)

F 10
s,s′ (k, q) = 1/2(s cos θk + s′ cos θk′ ).

The rest of the elements can be derived from the above results
by a simple shift of the angular variables θk → θk + φ where
φ is the polar angle of q with respect to the kx-axis. This
amounts to cos θk → cos(θk + φ) and so on,

F 22
s,s′ (k, q) = F 11

s,s′ (k, q, φ − π/2),

F 12
s,s′ (k, q) = F 21

s,s′ (k, q) = 1
2 F 11

s,s′ (k, q, φ − π/4)

− 1
2 F 11

s,s′ (k, q, φ + π/4), (12)

F 20
s,s′ (k, q) = F 02

s,s′ (k, q) = F 11
s,s′ (k, q, φ − π/2).

The above relations between the matrix elements of F̃ and F
induce a similar relation between the tensors �̃ of Eq. (8) and
� of the upright Dirac cone. The only additional point is that,
to obtain the correct form of denominator in Eq. (8), one has
to supplement it with the substitution of ω by  = ω − q.ζ.

IV. COVARIANT REPRESENTATION

Equation (10) supplemented by ω →  gives us the entire
matrix elements of the polarization tensor. It turns out that
the polarization tensor for undoped graphene [33,34] can be
represented in a compact covariant form [32,35,36]

�μν (ω, q) = π (q)[q2ημν − qμqν], π (q) = −gs

16
√

q2
, (13)

where ημν = diag(−1, 1, 1) is the metric of the 2 + 1-
dimensional Minkowski metric. This relation holds in ar-
bitrary dimensions [32,35], q2 = qαqα = −ω2 + q2 is the
length of the 3-vector qα defined with respect to the above
metric, qμ = ημαqα . The function π (q) is also an invariant
(scalar) with respect to isometries of the Minkowski metric
(i.e., with respect to rotations and Lorentz transformations).
In fact, �μν being a tensor has to be constructed from the
only tensors available in the theory, namely ημν and qμqν

is severely restricted by the general covariance principle.
Furthermore, imposing the Ward identity qμ�μν = 0 fixes
the form of the terms in the square brackets. It only remains
to specify the scalar π (q) which can be obtained from the
graphene literature. In the above equation the real (imagi-
nary) part is nonzero when q > |ω| (q < |ω|) and furthermore
Im�μν (ω, q) is equal to sgn(ω)Im�μν . We should notice that
the graphene response function in addition to spin degeneracy
has valley degeneracy, which we ignore in our calculation for
the tilted Dirac cone, hence gs in the above equation points to
the spin degeneracy.

We are now ready to construct the explicit form of the
polarization tensor �̃ for tilted Dirac cone systems. The

components are given by

�̃00(q,) = {q2}π̃ (q),

�̃ii(q,) = {(2 − q2) + q2
i + q2ζ 2

i + 2qiζi}π̃ (q),

�̃i0(q,) = �̃0i(q,) = {qi + q2ζi}π̃ (q), (14)

�̃i j (q,) = {qiq j + q2ζiζ j + qiζ j + q jζi}π̃ (q),

where as usual i, j run over spatial indices 1,2 and π̃ (q) =
π (q,) is the scalar defined in Eq. (13) and  > 0. The only
possible factor that can generate the imaginary part is the
scalar part π̃ (q). Therefore a purely real (imaginary) response
is obtained when q > || (q < ||) and further Im�μν (, q)
is proportional to the sgn(). The cutoff term that arises
from the Kramers-Kronig integration relation disappears by
requiring the gauge invariance [37,38].

The set of equations (14) can be nicely summarized in the
following covariant expression:

�̃μν = [q2gμν − qμqν]π̃ (q2), π̃ (q) = −gs

16
√

q2
, (15)

where qμ = (−ω, qx, qy ) and and qμ is naturally given by

qμ = gμνqν ⇒ q2 ≡ qμqμ = −2 + q2, (16)

where gμν is the inverse of the metric (4), which is given by

gμν =
⎛
⎝

−1 −ζx −ζy

−ζx 1 − ζ 2
x −ζxζy

−ζy −ζxζy 1 − ζ 2
y

⎞
⎠. (17)

Equation (16) identifies the combination −2 + q2 simply
as an invariant in the spacetime given by metric (4). The
covariant form in Eq. (17) cannot be obtained with the metric
ημν . Therefore the covariance of the polarization tensor for
tilted Dirac matter at zero density can only be attained when
the metric (4) replaces the Minkowski metric ημν . Equation
(17) pleasantly satisfies the Ward identity qμ�̃μν = 0. Need-
less to say that when the tile ζ → 0, the metric gμν reduces
to ημν of the standard Minkowski spacetime, and hence the
electromagnetic response �̃μν trivially reduces to �μν .

What is the difference between the geometry given by
gμν and the standard Minkowski spacetime when the density-
density Coulomb interaction in the materials is turned on?
This is the subject of the next section.

V. COULOMB INTERACTION CORRECTION

In Dirac solids the continuum limit is described by the
Minkowski spacetime ημν . In such systems, there is no off-
diagonal component on the first row or column of ημν . In
such systems, within the random phase approximation (RPA),
the Coulomb interaction being a density-density interaction
will not be able to give interaction-induced corrections to the
transverse component of the polarization. However, as we will
show in this section, with the metric gμν of Eq. (4), due to
the mixing of space and time (nonzero g0i components), both
longitudinal and transverse components of polarization will
be corrected by the instantaneous Coulomb interactions.

Let us use the covariant form of the tensor �̃ and sum the
RPA-like geometric series of Fig. 1. The Coulomb interaction
operates in the density-density channel. The charge density is
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FIG. 1. Diagrammatic representation of Coulomb (density-
density) interaction correction to current tensor correlation function.
Here σμ(ν ) represents the component of current vector and σ0 points
to the zeroth component of current, i.e., the charge density operator.
The Coulomb interaction only connects σ0 vertices.

the μ = 0 component of the current operator. Therefore both
ends of the wiggly interaction lines in Fig. 1 carry index μ = 0
only [39,40]. Straightforward algebra for the above geometric
series gives [40]

�̃
μν
RPA(, q) = �̃μν (, q) + �̃μ0(, q)v(q)�̃0ν (, q)

1 − v(q)�̃00(, q)
, (18)

in which the corrected current tensor elements is denoted
by �̃

μν
RPA(, q). The “00” component of the above equation

gives the celebrated RPA expression [39]. In the case of
Minkowski spacetime where the metric is given by ημν , the
only source of the nonzero contribution to “μ0” components
in the second term of the above equation is proportional to
qμq0 [see Eq. (13)]. Therefore the spatial component “i j” of
the second term in Eq. (18) will be proportional to (q0)2qiq j .
Now any tensor in space proportional to qiq j is purely longi-
tudinal. This is how, in Minkowski spacetime, the Coulomb
interaction cannot generate RPA corrections in the transverse
channel. But in the spacetime of tilted Dirac fermions where
the metric is gμν given in Eq. (4) the situation is different. In
this case, the correction term will be given by

v(q)

1 − v(q)�00
[(q0)2qiq j + q4ζ iζ j − q2q0(ζ iq j + ζ jqi )],

which has both longitudinal and transverse components. We
define ζ i = ζi. Note that ζ is a parameter that defines the
new geometry in Eq. (4) and is not a vector in this particular
spacetime.

In a standard Minkowski spacetime, the only way to gener-
ate interaction corrections in transverse channels is to think
of Thirring interactions [41] of the form (ψ̄ jμψ )(ψ̄ jμψ ).
The pure Coulomb forces (corresponding to the μ = 0 com-
ponent of the above Thirring interaction) as argued above,
will not be able to generate interaction-induced corrections
in the transverse channel. But the tilted Dirac solids fur-
nish a unique solid state system where Coulomb interactions
alone are able to generate interaction-induced corrections to
transverse part of the polarization.

VI. SUMMARY AND OUTLOOK

In this paper, we calculated the polarization tensor for
undoped tilted Dirac solids in 2 + 1 dimensions. The explicit
calculation of the tensor shows that this tensor acquires the

covariant representation (15), where the metric tensor em-
ployed in this equation is given by Eq. (4). The covariance
of the representation (15) ensures that the same expression
holds in 3 + 1 dimensions for tilted Weyl semimetals as well.
Furthermore, it satisfies the Ward identity. Therefore, as far as
the electromagnetic response of the system is concerned, the
geometry of the spacetime felt by electrons is given by metric
(4). The isometries of this metric will be different from the
Lorentz transformations of the Minkowski spacetime. Instead
of Lorentz boosts, one will have a deformation of Lorentz
boosts, and so on [7].

When the Coulomb interactions are included, the deviation
of metric gμν from the metric ημν of the Minkowski spacetime
combines the spatial and temporal components of the jμ in the
sense of Eq. (9). This gives rise to interaction-induced cor-
rections in the transverse part of the polarization tensor. This
has no counterpart in ordinary electron “liquids” [3,39]. In
ordinary quantum liquids, including graphene, the collective
charge density oscillations always correspond to longitudinal
electric field oscillations. However, solids with tilted Dirac
cone are an interesting form of electron liquids where collec-
tive charge oscillations can also be accompanied by transverse
electric field propagation. This implies that in a tilted Dirac
cone material the strength of the transverse photon is set by
the electric charge itself. This is in contrast to Minkowski
spacetime, where the Amperean forces (forces between two
current carrying wires) arising from transverse photons are
parametrically small by a factor of (v/c)2 [42]. Therefore
the Amperean forces are parametrically a very small effect
in Minkowski spacetime. Amperean forces arising from the
emergent gauge field in strongly correlated systems can be
a possible route to non-Fermi liquid behavior [43]. In this
respect, the tilted Dirac cone materials can be viewed as
another platform where, due to tilt parameter ζ, the Coulomb
forces can be coupled to transverse photons. Given the low
dimension of systems such as borophene [17,18] and organic
compounds [15,16], the Coulomb forces in these systems are
likely to lead to non-Fermi liquid behavior as the transverse
photons cannot be screened. This might have relevance to
the anomalous Kondo effect in organic materials that host a
2 + 1-dimensional tilted Dirac cone [16,44].

A combination of the above geometric description of the
polarization tensor with axial term of 3 + 1-dimensional Weyl
systems and investigation of the fate of axial anomaly in
deformed Minkowski spacetime (4) is also an interesting
question [45–47]. The fate of various collective excitations
such as plasmons [34], triplons [48–51], surface plasmon
polaritons [52], spin-plasmons [53], and so on, in a non-
Minkowski background can teach us valuable lessons about
the interplay of the spacetime geometry of solid state systems
and the collective excitations. An investigation of the connec-
tion between the present geometric description and the unique
plasmonic feature with the kink in the plasmon dispersion of
tilted Dirac fermions [13,14] is an interesting question.
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APPENDIX: ALTERNATIVE COMPACT FORM FOR F̃

The current matrix elements F̃ of the tilted Dirac fermions can alternatively be expressed in a compact form without invoking
the corresponding F factors of graphene. To this end we first represent the tilt in terms of magnitude ζ and angular variable θt

by ζx = ζ cos θt , ζy = ζ sin θt and substitute θk → θk + φ and in Eq. (6)

F̃ xx
s,s′ (k, k′) = fs,s′ (k, q, θt ), F̃ yy

s,s′ (k, k′) = fs,s′ (k, q, φ − π/2, θt − π/2),

F̃ xy
s,s′ (k, k′) = F̃ yx

s,s′ (k, k′) = 1
2 [ fs,s′ (k, q, φ − π/4, θt − π/4) − fs,s′ (k, q, φ + π/4, θt + π/4)], (A1)

F̃ x0
s,s′ (k, k′) = F̃ 0x

s,s′ (k, k′) = f ′
s,s′ (k, q, θt ), F̃ y0

s,s′ (k, k′) = F̃ 0y
s,s′ (k, k′) = f ′

s,s′ (k, q, φ − π/2, θt − π/2),

and

F 00
s,s′ (k, k′) = 1

2 (1 + ss′ cos(θk − θk′ )), (A2)

where

fs,s′ (k, q, θt ) = 1
2 {ζ 2 cos2 θt [1 + ss′ cos(θk − θk′ )] + [1 + ss′ cos(θk + θk′ )] + 2ζ cos θt [s cos θk + s′ cos θk′]},

f ′
s,s′ (k, q, θt ) = 1

2 {ζ cos θt [1 + ss′ cos(θk − θk′ )] + [s cos θk + s′ cos θk′]}.
In the undoped tilted Dirac cone with zero Fermi energy, at zero temperature the states with negative (positive) energy are

occupied (unoccupied) which implies that the Fermi distribution function will be a step function, therefore the current response
function Eq. (8) reduces to

�̃μν (q,) = gs

A
lim
ε→0

∑
k

{
F̃μν

−,+(k, q)

 − |k| − |k + q| + iε
− F̃μν

+,−(k, q)

 + |k + q| + |k| + iε

}
. (A3)

By replacing k ↔ −(k + q) in the second part of Eq. (A3), the simplified representation is given by

�̃μν (q, ω) = gs

A
lim
ε→0

∑
k

F̃μν
−,+(k, q)

{
1

 − |k| − |k + q| + iε
− 1

 + |k + q| + |k| + iε

}
. (A4)

Again this expression is similar to the case of graphene with different F̃ functions and the replacement ω → . This does not
generate further difficulty, and the integrals can be evaluated using the same method employed in graphene [13,33]. The result
is identical to Eq. (14).
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Fedorov, R. Zhong, J. Schneeloch, G. Gu, and T. Valla, Nat.
Phys. 12, 550 (2016).

[47] T. E. O’Brien, C. W. J. Beenakker, and I. Adagideli, Phys. Rev.
Lett. 118, 207701 (2017).

[48] G. Baskaran and S. A. Jafari, Phys. Rev. Lett. 89, 016402
(2002).

[49] S. A. Jafari and G. Baskaran, Eur. Phys. J. B 43, 175 (2005).
[50] M. Ebrahimkhas and S. A. Jafari, Phys. Rev. B 79, 205425

(2009).
[51] S. A. Jafari and G. Baskaran, J. Phys.: Condens. Matter 24,

095601 (2012).
[52] J. Hofmann and S. Das Sarma, Phys. Rev. B 93, 241402(R)

(2016).
[53] A. Agarwal, M. Polini, G. Vignale, and M. E. Flatté, Phys. Rev.

B 90, 155409 (2014).

075113-6

https://doi.org/10.1103/PhysRevB.95.195412
https://doi.org/10.1103/PhysRevB.95.195412
https://doi.org/10.1103/PhysRevB.95.195412
https://doi.org/10.1103/PhysRevB.95.195412
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.1103/PhysRevLett.116.116803
https://doi.org/10.3367/UFNe.2017.01.038218
https://doi.org/10.3367/UFNe.2017.01.038218
https://doi.org/10.3367/UFNe.2017.01.038218
https://doi.org/10.3367/UFNe.2017.01.038218
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1088/1367-2630/8/12/318
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.75.235423
https://doi.org/10.1103/PhysRevB.75.235423
https://doi.org/10.1103/PhysRevB.75.235423
https://doi.org/10.1103/PhysRevB.75.235423
https://doi.org/10.1103/PhysRevB.80.075418
https://doi.org/10.1103/PhysRevB.80.075418
https://doi.org/10.1103/PhysRevB.80.075418
https://doi.org/10.1103/PhysRevB.80.075418
https://doi.org/10.1016/j.jmmm.2018.09.040
https://doi.org/10.1016/j.jmmm.2018.09.040
https://doi.org/10.1016/j.jmmm.2018.09.040
https://doi.org/10.1016/j.jmmm.2018.09.040
https://doi.org/10.1103/PhysRevB.97.075202
https://doi.org/10.1103/PhysRevB.97.075202
https://doi.org/10.1103/PhysRevB.97.075202
https://doi.org/10.1103/PhysRevB.97.075202
https://doi.org/10.1016/0003-4916(58)90015-0
https://doi.org/10.1016/0003-4916(58)90015-0
https://doi.org/10.1016/0003-4916(58)90015-0
https://doi.org/10.1016/0003-4916(58)90015-0
https://doi.org/10.1103/PhysRevLett.117.076806
https://doi.org/10.1103/PhysRevLett.117.076806
https://doi.org/10.1103/PhysRevLett.117.076806
https://doi.org/10.1103/PhysRevLett.117.076806
https://doi.org/10.1103/PhysRevLett.98.067006
https://doi.org/10.1103/PhysRevLett.98.067006
https://doi.org/10.1103/PhysRevLett.98.067006
https://doi.org/10.1103/PhysRevLett.98.067006
https://doi.org/10.1103/PhysRevB.85.033401
https://doi.org/10.1103/PhysRevB.85.033401
https://doi.org/10.1103/PhysRevB.85.033401
https://doi.org/10.1103/PhysRevB.85.033401
https://doi.org/10.1103/PhysRevB.89.081407
https://doi.org/10.1103/PhysRevB.89.081407
https://doi.org/10.1103/PhysRevB.89.081407
https://doi.org/10.1103/PhysRevB.89.081407
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1103/PhysRevLett.118.207701
https://doi.org/10.1103/PhysRevLett.118.207701
https://doi.org/10.1103/PhysRevLett.118.207701
https://doi.org/10.1103/PhysRevLett.118.207701
https://doi.org/10.1103/PhysRevLett.89.016402
https://doi.org/10.1103/PhysRevLett.89.016402
https://doi.org/10.1103/PhysRevLett.89.016402
https://doi.org/10.1103/PhysRevLett.89.016402
https://doi.org/10.1140/epjb/e2005-00040-8
https://doi.org/10.1140/epjb/e2005-00040-8
https://doi.org/10.1140/epjb/e2005-00040-8
https://doi.org/10.1140/epjb/e2005-00040-8
https://doi.org/10.1103/PhysRevB.79.205425
https://doi.org/10.1103/PhysRevB.79.205425
https://doi.org/10.1103/PhysRevB.79.205425
https://doi.org/10.1103/PhysRevB.79.205425
https://doi.org/10.1088/0953-8984/24/9/095601
https://doi.org/10.1088/0953-8984/24/9/095601
https://doi.org/10.1088/0953-8984/24/9/095601
https://doi.org/10.1088/0953-8984/24/9/095601
https://doi.org/10.1103/PhysRevB.93.241402
https://doi.org/10.1103/PhysRevB.93.241402
https://doi.org/10.1103/PhysRevB.93.241402
https://doi.org/10.1103/PhysRevB.93.241402
https://doi.org/10.1103/PhysRevB.90.155409
https://doi.org/10.1103/PhysRevB.90.155409
https://doi.org/10.1103/PhysRevB.90.155409
https://doi.org/10.1103/PhysRevB.90.155409

