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We study the generic band structures of the five-dimensional (5D) Weyl semimetal, in which the band
degeneracies are 2D Weyl surfaces in the momentum space, and may have nontrivial linkings with each other if
they carry nonzero second Chern numbers. We prove a number of theorems constraining the topological linking
configurations of the Weyl surfaces, which can be viewed as a 5D generalization of the celebrated doubling
theorem for 3D Weyl semimetal. As a direct physical consequence of these constraints, the 5D Weyl semimetal
hosts a rich structure of topological boundary states. We show that on the 4D boundary of the 5D Weyl semimetal,
there are 3D chiral Fermi hypersurfaces protected by bulk Weyl surfaces. On top of that, for bulk Weyl surfaces
that are linked and carry nonzero second Chern numbers, the associated boundary 3D Fermi hypersurfaces will
shrink to singularities at certain energies, which trace out a protected 1D Weyl nodal arc, in analogy to the Fermi
arc on the 3D Weyl semimetal surface.
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I. INTRODUCTION

Topological states of matter are known as quantum states
protected by topological invariants. Depending on whether
the bulk states are gapped or not, they can be divided
into gapped topological states and gapless topological states.
While gapped topological phases have been extensively stud-
ied [1–4], the study of gapless topological states in various
dimensions is still less understood and ongoing. In general,
the spatial dimension and symmetries largely determine the
classification of topological states [5,6]. In three dimensions,
there are two well-known classes of gapless topological states:
one class is the three-dimensional (3D) Weyl semimetal
[7–17], which contains Weyl nodes in the band structure and
needs no symmetry protection other than the lattice transla-
tional symmetry. Each Weyl node is a twofold degenerate
point protected by the first Chern number, and gives rise to
topologically protected Fermi arcs on the boundaries [8,18].
The other class is the nodal line semimetal or superconductor,
which contain 1D nodal lines in the Brillouin zone (BZ)
protected by crystal symmetry or chiral symmetry. The nodal
lines may also have linking invariants [19–29], which give rise
to to linking related topological responses [30].

Extending the scope into general spatial dimensions has
been proven a valuable approach in understanding gapped
topological states [2,5,6,31]. This approach has also been
employed in the study of gapless topological states. In spatial
dimensions higher than 3, an intriguing gapless topological
state is the 5D Weyl semimetal, which is simultaneously
characterized by both the second Chern numbers and the 5D
linking invariants [32,33]. Unlike the Weyl nodes in 3D Weyl
semimetal which are zero dimensional, the band degeneracy
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submanifolds in 5D Weyl semimetals become 2D closed
surfaces in the momentum space, which are called the Weyl
surfaces (WSs). Since the WSs are extended objects, they
admit nontrivial global configurations, in particular linking
numbers among each other. Remarkably, it is shown that
the sum of linking numbers of a WS is equal to the second
Chern number defined via the band Berry curvature [32]. Like
the bulk-boundary correspondence of usual topological states
of matter, the WS linking numbers in the bulk of 5D Weyl
semimetal protect topological 1D Weyl arcs on the boundary
of the system, as can be seen in explicit lattice models [32].
Moreover, the WS linking and the second Chern number are
closely related to Yang monopole [31,34] in five dimensions
when the system restores a TP symmetry [33]. Transition
between gapped topological phases in five dimensions can be
also understood by having the gapless 5D Weyl semimetal as
intermediate stage [33], in analogy to the topological phase
transitions in three dimensions [9].

One of the most well-known theorems on 3D Weyl nodes
is the doubling theorem [35,36], which restricts the Weyl
nodes in the BZ to appear in pairs of opposite chirality.
This theorem has played an important role in the historical
development of lattice quantum chromodynamics and Weyl
semimetal. It is natural to ask whether a similar “doubling”
constraint exists for the WSs in a 5D Weyl semimetal. While
simple models of 5D Weyl semimetals have been constructed
[32,33], the generic constraints of WSs in five dimensions
have not been carefully studied yet. The aim of this paper is to
answer this question in a generic way. We prove that there
are nontrivial topological constraints governing the global
configuration of the WSs and their linking. As we shall show,
some of the constraints in five dimensions appear similar
to the doubling theorem in three dimensions, however, their
origins involve some substantial differences. Based on these
constraints, we develop the correspondence between the bulk
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band topology and the gapless boundary states in a generic
manner (as opposed to going into specific models), much
like how the doubling theorem underlies the bulk-boundary
correspondence in 3D Weyl semimetal.

We should note that extended band degeneracy subman-
ifolds can also appear in other systems, most notably nodal
line semimetals and superconductors in three dimensions, and
the nodal lines may also have linking and other topological
consequences. However, in these systems the extendedness
of the degeneracy is protected by discrete space-time sym-
metries (space group symmetry, etc.), in contrast to the 5D
Weyl semimetal in which the extendedness of the WSs is
robust without symmetry (as long as lattice momentum is well
defined). Therefore, in general, the nodal lines in 3D systems
are not subjected to stringent topological constraints as in the
doubling theorem or those that we are going to prove. Notably,
however, when a 3D nodal line system carries nontrivial
Z2 monopole charge [37,38], the nodal line configurations
in three dimensions are subjected to similar constraints as
our Weyl surfaces in five dimensions; we will discuss the
connection as we proceed.

This paper is organized as follows. In Sec. II we review the
well-known doubling theorem of Weyl nodes in three dimen-
sions. In Sec. III we review the notion of the Weyl surfaces
in 5D Weyl semimetal, and the mathematical description of
their linking. From this discussion we raise a few questions,
which lead to the topological constraints we present and prove
in Sec. IV. Moreover, we will discuss how these constraints
are related to the non-Abelian Yang monopoles. In Sec. V we
consider a 5D Weyl semimetal with a 4D physical surface,
which hosts rich surface states protected by the topological
constraints in the 5D bulk. Finally, we conclude by a few
further remarks.

II. 3D DOUBLING THEOREM

We first recall the physics of 3D Weyl semimetals and the
doubling theorem for the Weyl nodes. We consider a band the-
ory single-electron Hamiltonian H (k) with N bands, labeled
by momentum k in the BZ of D = 3 dimensions. We assume
there is no symmetry other than lattice translational symmetry
and time translational symmetry. The N × N Hamiltonian can
be generically diagonalized as

Hα
β (k) =

N∑
n=1

uα
n (k) En(k) u∗

nβ (k), (1)

which we may write as matrix factorization H = UEU † for
short. Without loss of generality, one can sort the energy levels
so that [35]

En(k) � En+1(k), (2)

which holds for any momentum k. Generically, without ad-
ditional symmetry, the equality En(k) = En+1(k) takes place
only on a (D − 3)-dimensional submanifold in the BZ. This
is because when considering the degeneracy between two
adjacent bands, one may project the Hamiltonian onto those
two bands and use the Pauli matrices basis

Hproj(k) = h0(k) + h1(k)σ 1 + h2(k)σ 2 + h3(k)σ 3. (3)

The two bands are degenerate if and only if h1 = h2 = h3 = 0.
This yields three conditions to be satisfied by the D compo-
nents of k. When D = 3, the degeneracy takes places at points
known as Weyl nodes. We shall denote the positions of the
Weyl nodes between the nth and (n + 1)th band by ki

n+1/2 (the
superscript labels each Weyl node and the subscript indicates
between which two bands it lies). Each Weyl node is asso-
ciated with a chirality ci

n+1/2 = ±1 (right or left handed), as
determined by the Hamiltonian in the following way. Define
the Abelian Berry connection and Berry curvature of the nth
band as (we use the notation of differential forms and matrix
multiplication)

An(k) ≡ −i u†
n(k) dun(k),

Fn(k) ≡ dAn(k) = −i du†
n(k) dun(k). (4)

A Weyl node can then be viewed as a “monopole” of Berry
curvature:

dFn(k) = − �
∑

i

ci
n+1/2

2
4πδ3

(
k − ki

n+1/2

)
+ �

∑
j

c j
n−1/2

2
4πδ3

(
k − k j

n−1/2

)
, (5)

where now i runs over the Weyl nodes between the nth and
(n + 1)th band, and j runs over those between the (n − 1)th
and nth band; � denotes Hodge dual. To better understand this
expression, we can draw a small sphere Si around a Weyl node
ki

n+1/2, then the first Chern number is given by the chirality,

(C1)Si

n ≡
∮

Si

Fn

2π
= −ci

n+1/2, (6)

and moreover, (C1)Si

n+1 = −(C1)Si

n = ci
n+1/2. The monopole

property (5) can be shown by linearizing Hproj in k − ki
n+1/2

near ki
n+1/2, and performing the explicit calculation.

The famous doubling theorem [35,36] asserts that the total
chirality of the Weyl nodes between the nth and the (n + 1)th
band satisfies ∑

i

ci
n+1/2 = 0. (7)

Namely, Weyl nodes have to appear in pairs of opposite
chiralities. The proof is rather straightforward. Consider small
spheres Si enclosing each ki

n+1/2 and also S j enclosing each

k j
n−1/2. By Stoke’s theorem and Eq. (5), we have∑

i, j

∮
Si, j

Fn

2π
= −

∑
i

ci
n+1/2 +

∑
j

c j
n−1/2. (8)

On the other hand, the BZ is a closed manifold, so we can
equally well view the “outside” of all the spheres as the
“inside” (up to a minus sign from reversing orientation).
Then the integral of Fn is identically 0, since now the inside,
which used to be the outside, contains no Weyl nodes. This
indicates

∑
i ci

n+1/2 = ∑
j c j

n−1/2. Besides, the lowest band
n = 1 cannot have any Weyl nodes connected from below,
as there are no lower bands, thus we have

∑
j c j

1/2 = 0. By
iteration, we then arrive at the doubling theorem in Eq. (7).
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The doubling theorem leads to important physical conse-
quences in 3D Weyl semimetal, most remarkably the Fermi
arc on the surface of the semimetal [8]. More precisely,
the 2D spatial boundary of the 3D Weyl semimetal has an
associated 2D momentum space. The Weyl nodes in the 3D
momentum space can be projected on this 2D momentum
space. It has been shown that the projected Weyl nodes must
pair up with opposite chiralities, such that between each pair
there connects a 1D Fermi arc, perpendicular to which a chiral
boundary mode flows (since the mode is chiral, the 1D Fermi
surface is an arc instead of a closed loop). This chiral surface
mode is protected by the C1 of the Weyl nodes at the ends
of the Fermi arc. Therefore, the doubling theorem in the bulk
give rise to well-defined topologically protected surface states
on the surface of the system.

III. WEYL SURFACES AND LINKING
IN FIVE DIMENSIONS

In this section we review the notion of Weyl surfaces
(WSs) in a D = 5-dimensional Weyl semimetal, and the
mathematical relation between their linking number and the
second Chern number [32]. Then we motivate the question of
topological constraints for WS linking, which we shall prove
in the next section.

The Hamiltonian and its band energies again take the form
of Eqs. (1) and (2), except that the momentum k lives in D = 5
dimensions. As we mentioned below Eq. (2), the two-band
degeneracy En(k) = En+1(k) will generically take place on a
(D − 3)-dimensional submanifold in the D dimensional BZ.
By a similar argument, a three-band degeneracy En−1(k) =
En(k) = En+1(k) will generically take place on a (D − 8)-
dimensional sub-manifold. Therefore, in D = 5 under consid-
eration, we only have 2D submanifolds of two-band degen-
eracies, which is called the WSs. To be specific, we denote the
WS between the nth band and (n + 1)th band as Wn+1/2, which
is generically a 2D closed manifold. It may consist of multi-
ple disjoint connected components, and we can denote each
connected component by W i

n+1/2, with ∪iW i
n+1/2 = Wn+1/2.

Similar to the Weyl node in three dimensions, the WS in five
dimensions can also be viewed as a “monopole” of Berry
connection in five dimensions [32], satisfying an equation
analogous to Eq. (5):

dFn(k) = 2π

(∫
k′∈Wn−1/2

−
∫

k′∈Wn+1/2

)
� δ5(k − k′). (9)

The left-hand side is a three-form, so is the right-handside,
because �δ5(k − k′) is a five-form and

∫
k′∈Wn±1/2

are 2D inte-

grals. This fixes the orientation on each connected WS W i
n+1/2,

similar to that Eq. (5) fixes the chirality ci
n+1/2 for each 3D

Weyl node.
Now we consider the linking between a WS W i

n+1/2 and

another WS W j
n−1/2. In general, two submanifolds can link

with each other if their sum of dimensions is equal to the
total spatial dimension minus 1 (in this case 2 + 2 = 5 − 1),
so the WSs can indeed be linked together. An easy way
to characterize their linking is the following: let W i

n+1/2 =
∂	i

n+1/2 (the existence of such a 3D manifold 	i
n+1/2 will be

proven in the next section), then W i
n+1/2 and W j

n−1/2 will have
linking number 1 if there is an intersection point of 	i

n+1/2 and

W j
n−1/2. This is a straightforward generalization of the picture

of linked loops in three dimensions.
It has been shown that the linking number between W i

n+1/2

and W j
n−1/2 is related to the second Chern number of the

Berry curvature in the nth band [32]. Here we show this
using the above geometric picture of linking. Let’s focus
on the two WS connected components W i

n+1/2 and W j
n−1/2

which link with each other. Let ∂V be a 4D “narrow tube”
(which is topologically W i

n+1/2 × S2) enclosing W i
n+1/2 which

is the boundary of a 5D region V . We can choose V narrow
enough so that V does not touch any other WSs in addition to
W i

n+1/2. The second Chern number on ∂V , viewed in the Berry
curvature of the nth band, is defined as

(C2)∂V
n ≡

∮
∂V

1

2

(
Fn

2π

)2

. (10)

Using Stoke’s theorem and (9), we have

(C2)∂V
n =

∫
V

dFn

2π

Fn

2π
= −

∮
W i

n+1/2

Fn

2π
, (11)

which becomes a 2D integral on WS W i
n+1/2. Now we have a

problem, since Fn is singular on WS W i
n+1/2. This is resolved

as follows: since monopole is essentially a solution to the
Poisson equation, one can separate the Berry curvature as
Fn = F (1)

n + F (2)
n , such that F (2)

n is nonsingular on W i
n+1/2,

while F (1)
n is singular on W i

n+1/2 but nonsingular on W j
n−1/2.

One may view F (1)
n and F (2)

n as produced by monopoles W j
n−1/2

and W i
n+1/2, respectively. Then we should understand the last

Fn in Eq. (11) as the nonsingular part F (2)
n . (In fact, the integral

of the singular F (1)
n part gives self-linking number of W i

n+1/2,
which is identically zero in five dimensions. We will come
back to this in the below [32]). Thus, using Stoke’s theorem
and Eq. (9) again we find

(C2)∂V
n = −

∫
	i

n+1/2

dF (2)
n

2π

= −
∫

k∈	i
n+1/2

∫
k′∈W j

n−1/2

�δ5(k − k′)

≡ −LW i
n+1/2,W

j
n−1/2

, (12)

where LW i
n+1/2,W

j
n−1/2

counts the (signed) number of intersection

points of 	i
n+1/2 and W j

n−1/2, and is thus the linking number

between W i
n+1/2 and W j

n−1/2. This process of computation is
illustrated in Fig. 1, where the linking number takes values
±1 depending on the orientation of the link.

The derivation in Eq. (12) motivates us to define two first
Chern numbers associated with W i

n+1/2 in the nth band, the
singular first Chern number (Cs

1)n and the regular first Chern
number (Cr

1 )n:

(
Cs

1

)
n =

∮
S2

F (1)
n

2π
,

(
Cr

1

)
n =

∮
W i

n+1/2

F (2)
n

2π
, (13)
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FIG. 1. Illustration of the computation relating the second Chern
number to the linking number. The green loop represents the 2D WS
component W i

n+1/2, bounding the yellow region which represents the

3D 	i
n+1/2. The blue loop represents the 2D WS component W j

n−1/2.
The grey torus represents the 4D “narrow tube” ∂V , whose “inside”
V contains the green loop. The linking number is witnessed by the
black dot, the intersection point of 	i

n+1/2 and W j
n−1/2.

where S2 in the definition of (Cs
1)n is an infinitesimal 2D

sphere in the three codimensions of the WS W i
n+1/2 which

links with W i
n+1/2. In general, (Cs

1)n is always ±1, which also
depends on the orientation of S2. The second Chern number is
then given by (C2)∂V

n = −(Cs
1)n(Cr

1 )n (recall that topologically
∂V ∼= W i

n+1/2 × S2). Similarly, one can define two such Chern
numbers for W i

n+1/2 in the (n + 1)th band, for which we
choose the orientation of S2 so that (Cs

1)n+1 = (Cs
1)n, and

we also have (C2)∂V
n+1 = −(Cs

1)n+1(Cr
1 )n+1. Note that (Cs

1)n =
±1 simply implies the fact that a WS can be viewed as
a Weyl node in the three codimensions orthogonal to the
WS. As we shall prove in the next section, we always have
(C2)∂V

n+1 = −(C2)∂V
n , therefore under the above convention we

have (Cr
1 )n+1 = −(Cr

1 )n. The concepts of both of these first
Chern numbers will appear in the surface-state physics in
Sec. V.

The computation above shows a nice relation between the
algebraic characterization C2 and the geometric picture of
linking. But it also raises several questions:

(1) We assumed every WS W i
n+1/2 is a boundary ∂	i

n+1/2

of some 3D manifold 	i
n+1/2. We need to prove such 	i

n+1/2
does always exist, so that the notion of “linking” and the
computation above make sense.

(2) The linking we considered involves one WS compo-
nent between the (n − 1)th and nth band, and the other WS
component between the nth and (n + 1)th band. In principle,
cannot one also consider both of them between the nth and
(n + 1)th band? (Geometrically one can also think of linking
between, say, some W i

n+1/2 and some W j
n−3/2. But such linking

is not detected by any Berry curvature and can adiabatically
pass through each other to unlink. So by “linking” we will not
refer to such trivial possibilities.)

(3) There is an important distinction between 2D objects
linked in five dimensions versus our familiar 1D objects
linked in three dimensions. If one goes through the “counting
intersection points” definition of L carefully, one finds that,
for 1D loops linked in three dimensions, LC,C′ = LC′,C , but for
2D surfaces linked in five dimensions, LW,W ′ = −LW ′,W (such
an alternating sign repeats in higher odd dimensions mod
four dimensions) [32]. This distinction has some important
consequences in our problem:

(a) In three dimensions (mod four dimensions), when a
loop is properly regularized, it has a notion of self-linking,
which plays an important role in, e.g., relativistic flux
attachment [39]. But in five dimensions (mod four dimen-
sions), due to the negative sign above, the self-linking must
vanish for self-consistency [40]. This justifies that in (11)
we can regard the last Fn as F (2)

n and drop F (1)
n , instead of

managing to regularize the F (1)
n contribution.

(b) Suppose one generalizes the exercise (8) from
three dimensions to five dimensions—that is, enclose each
W i

n+1/2 and each W j
n−1/2 with a narrow tube, compute the

(C2)n over all these tubes, and then regard the outside of
the tubes as the inside, in order to derive any topological
constraint about the links in the BZ. This exercise leads
to that the total (C2)n must be 0, similar to (7). While
(7) implies Weyl nodes must appear in pairs of opposite
chiralities, the vanishing of the total (C2)n in the present
case provides no topological constraint on the links—the
total (C2)n being 0 is always trivially satisfied simply
because LW,W ′ = −LW ′,W . Does this mean there is no topo-
logical constraint on the linking configurations in 5D Weyl
semimetal?
These are the questions we will address next. Moreover,

we will see that the answers to these questions are directly
related to the structure of the gapless surface states of a 5D
Weyl semimetal, similar to that the Fermi arcs are related to
the doubling theorem in three dimensions.

IV. TOPOLOGICAL CONSTRAINTS ON WEYL SURFACES

A. Topological constraints

We shall show the following topological constraints on the
WS and their linking:

(1) For each band index n, the WS Wn+1/2 must be a
boundary,

Wn+1/2 = ∂	n+1/2. (14)

Remark. 	n+1/2 may involve several connected compo-
nents 	i

n+1/2, and we will denote W i
n+1/2 = ∂	i

n+1/2. Note
that we have modified our notation slightly—in the previous
section W i

n+1/2 refers to a connected component of Wn+1/2, but
now it might involve several connected components such that
they together form the boundary of a connected component
	i

n+1/2. [For instance, in case (b) of Fig. 2, the two connected
components together form a boundary, but not individually.]

Notice that Eq. (14) resembles the 3D doubling theorem (a
pair of Weyl nodes of opposite chiralities can be viewed as the
ends of an arc), with Weyl nodes replaced by WS.

(2) For each W i
n+1/2,

LW i
n+1/2,Wn+1/2

= 0, (15)

i.e., its linking number with the other WS components be-
tween the same pair of bands is zero.

(3) For each W i
n+1/2,

LW i
n+1/2,Wn−1/2

= −LW i
n+1/2,Wn+3/2

, (16)

i.e., its linking numbers with the WS one band lower and the
WS one band higher must be opposite.
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FIG. 2. Some examples of WS configuration satisfying/violating
the topological constraints. We picture the 5D BZ by a 3D (periodic)
cube, and 2D WS by 1D (oriented) loops. For simplicity we consider
a four-band system, with W3/2 in blue, W5/2 in green, and W7/2 in red.
Configurations (a), (b), (f), (g), and (h) are allowed, while (c), (d), and
(e) are not allowed for violating (14), (15), and (16) respectively. The
explicit lattice model constructed in Ref. [32] has a WS configuration
(f). [A Hopf link seen by the nth band, like that in Fig. 1, is only
allowed if the number of bands N > 4, with 2 < n < N − 1 due to
(16). Moreover, the total number of Hopf links seen by the nth band
must be even, due to (17).]

Remark. An important corollary is

LWn+1/2,Wn−1/2 = 0, (17)

i.e., for each n, WS links must appear in pairs with opposite
linking numbers. This is because (16) taking the union over i
leads to LWn+1/2,Wn−1/2 = −LWn+1/2,Wn+3/2 , then one can start with
n = 1 and iterate. Notice that (17) also resembles the 3D
doubling theorem, but [in contrast to (14)] with Weyl nodes
replaced by WS links.

Some examples of allowed and not allowed WS configu-
rations are illustrated in Fig. 2. The physical consequences of
these constraints will be discussed in Sec. V. In the rest of
this section, we shall prove these constraints. (The connection
between these constraints and those in a special class of 3D
nodal line systems [37] is discussed at the end of this section.)

B. Proof of the topological constraints

The first constraint (14) can be proven using some formal-
ity. Clearly the WS must be a closed manifold. In the spirit
of induction, suppose we have already shown that Wn−1/2 is
a boundary (the n = 1 case is trivially true). Now suppose
Wn+1/2 is not a boundary. Then there must exist some closed,
nonexact differential two-form G such that

∮
Wn+1/2

G �= 0, for
the following reason. The closed Wn+1/2 not being a bound-
ary means it is a nontrivial element in the homology group
H2(BZ ). On the other hand, closed differential m forms over
the BZ are elements of the cohomology group Hm(BZ,R). By
the universal coefficient theorem,

Hm(BZ,R) = Hom(Hm(BZ ),R), (18)

where Hom is all homomorphisms. The right-hand side for
m = 2 contains elements that map Wn+1/2 to nonzero real
numbers, and thus guarantees the existence of G with the said
properties. With such G, we can use the familiar method (8)
from three dimensions. Consider narrow tube(s) ∂V enclosing
Wn+1/2, then by Stoke’s theorem, the closedness of G and (9),
and we have∮

∂V

Fn

2π

G

2π
=

∫
V

dFn

2π

G

2π
= −

∮
Wn+1/2

G

2π
�= 0. (19)

Now we regard the outside of ∂V as the inside and apply
Stoke’s theorem again: we have

−
∮

∂V

Fn

2π

G

2π
=

∫
BZ\V

dFn

2π

G

2π
=

∮
Wn−1/2

G

2π
= 0, (20)

where the last equality is because G is closed and, by induc-
tion assumption, Wn−1/2 is a boundary. Thus a contradiction
arises. This shows that Wn+1/2 must be a boundary.

The second constraint (15) is easily seen for a two-
band system. Let u1 be the first eigenvector. Then F 2

1 =
−(du†

1du1)2. However, for a two-band system, u1 and u†
1

together only have three real parameters (the phase choice
can be fixed without affecting F1), and therefore F 2

1 , being
a wedge product with four d’s acting on three real parameters,
vanishes. Thus, for a two-band system, the second Chern
number around each W i

3/2—whose integrand is proportional
to F 2

1 —must vanish, leading to (15). For systems with more
bands, the statement (15) only involves the nth and (n + 1)th
bands, so roughly speaking we can project the Hamiltonian
as an effectively two-band system. However, in considering
global topological effects such as linking, what we mean by
“effectively two band” needs to be carefully addressed. We
leave this technical detail to Appendix A.

In the third constraint (16), the left-hand side is detected by
Fn and the right-hand side by Fn+1. We need to find a relation
relating the two. Consider a narrow tube ∂V enclosing a WS
component W i

n+1/2 in its inside; we choose it to be so narrow
that V is disjoint from any other WS. We use the fact that the
sum of Chern numbers over all bands vanishes:

N∑
n′=1

(C2)∂V
n′ = 0. (21)

[This can be deduced by iterating (26), starting with n =
N .] For n′ = n, we have (C2)∂V

n = −LW i
n+1/2,Wn−1/2

. For n′ =
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n + 1, we have (C2)∂V
n+1 = −LW i

n+1/2,Wn+3/2
. Other (C2)∂V

n′ vanish
because Wn+1/2 is not seen by other Fn′ . This leads to (16).

This derivation of (16) and hence (17) appear very different
from the familiar derivation of the 3D doubling theorem,
despite that (17) is a “doubling theorem” for WS links. In
particular, the derivation above does not involve “enclosing
all the links and then viewing the outside as the inside.” Is
it possible to rederive (17) from such a perspective? Another
point is that there is an interesting relation between the WS
link and the Yang monopole [33], but it seems not to manifest
in the steps above. Below, we show that the answers to both
thesepoints are related. We first discuss the relation between
the WS link and Yang monopole through non-Abelian Berry
curvature, and using this notion we provide an alternative
direct derivation of (17) that resembles the derivation of the
3D doubling theorem.

C. Weyl surface link, Yang monopole and
non-Abelian Berry curvature

The doubling theorem (17) for WS links is an interesting
result. In 3D nodal line materials in which linking also plays
an interesting role [24–30], there is no topological constraint
enforcing the nodal line links to appear in pairs (unless a more
stringent constraint is applied [37,38] which we will return to
in the end). Why in five dimensions must the WS links appear
in pairs? This is because the nodal line in three dimensions
is protected by discrete symmetry, while the WS in five
dimensions is protected by topology. Below we provide an
alternative view towards the constraint (17). One can motivate
(17) by the relation between WS links and Yang monopoles
[33]: a WS link can adiabatically arise from deforming a Yang
monopole, and Yang monopoles themselves must appear in
pairs, like Weyl nodes, so WS links must also appear in pairs.
Now we proceed to the details.

While our previous proof of (17) only employed Abelian
Berry curvature, in our alternative view to be introduced now
we relate non-Abelian Berry curvature to Abelian ones. Let us
introduce the notion of non-Abelian Berry curvature. Recall
that the Hamiltonian is diagonalized as H = UEU †, and the
eigenvalues in E are ordered from low to high energies. The
matrix U has N columns, being the eigenvectors u1, . . . , uN .
Let U�n be the N × n rectangular matrix consisting of the first
n columns of U , i.e., the columns of this rectangular matrix
is u1, . . . , un. In other words, U�n is U projected to the first n
bands. Note that U�nU

†
�n is the projection matrix onto the first

n bands, and U †
�nU�n is the identity 1n×n acting on the first n

bands. The non-Abelian Berry connection

A�n ≡ −i U †
�n d U�n (22)

is therefore an n × n matrix-valued connection one-form. The
associated non-Abelian Berry curvature

F�n ≡ dA�n + iA2
�n

= −i dU †
�n

(
1 − U�nU

†
�n

)
dU�n (23)

is an n × n matrix-valued curvature two-form. (One may
wonder, in the absence of band degeneracy, the system does
not have the U (n) symmetry rotating among the first n bands,

why would such U (n) Berry curvature still be useful to define?
The idea is that this Berry curvature captures the separation
of the original N-dimensional vector bundle over the BZ
into two sub-bundles consisting of the first n bands and the
N − n bands respectively. In doing so, we are viewing the
first n bands as a whole and not worrying about the further
separation within them.) Note that F�n is only singular on the
WS Wn+1/2 between the nth and the (n + 1)th band, but does
not see, say, Wn−1/2, in contrast to Fn, because F�n treats the
first n bands as a whole.

Having introduced the notion of non-Abelian Berry cur-
vature, now let’s consider it in a four-band system with TP
symmetry, such as the model constructed in Ref. [33]. The
first and second bands are completely degenerate, so are the
third and fourth bands. Yang monopoles exist between the two
pairs of degenerate bands in the 5D BZ. A Yang monopole is
characterized by the non-Abelian second Chern number

(C2)S4

�2 ≡ tr
∫

S4

1

2

(
F�2

2π

)2

(24)

around an S4 enclosing the Yang monopole taking the value
±1. The ±1 Yang monopoles appear in pairs in analogy to
the 3D doubling theorem, due to an analogous proof. A TP-
breaking perturbation of this model does two things [33]: (1)
it lifts the complete degeneracy between the first and second
bands, leaving a WS degeneracy W3/2 (and likewise for the
third and fourth bands), and (2) it “stretches” each pointlike
Yang monopole into a small spherical WS component W i

5/2
linked to W3/2 and W7/2. The resulting WS configuration is
like Fig. 2(f). If we turn on this TP-breaking perturbation
adiabatically, (C2)S4

�2 should not change as long as the small
W i

5/2 sphere is still enclosed by the S4.
The example above motivates us to propose the following

claim: (C2)S4

�n equals ±1 if the S4 encloses a small WS
component W i

n+1/2 that links with Wn−1/2. Note that Wn−1/2

may intersect with the S4, but this is no problem because
F�n, treating the first n bands as a whole, does not see
(i.e., is nonsingular on) Wn−1/2. But now that F�n only sees
Wn+1/2, we can deform the S4 to a narrow tube ∂V enclosing
W i

n+1/2 (such that V is disjoint from any other WS), without

changing the value of C2, i.e., (C2)∂V
�n = (C2)S4

�n. Thus, our
claim becomes

(C2)∂V
�n ≡ tr

∫
∂V

1

2

(
F�n

2π

)2

= ±1. (25)

This idea is illustrated in Fig. 3. Moreover, with S4 replaced
by ∂V , we no longer need to require W i

n+1/2 to be small so that
it can be enclosed by an S4; it can run across the BZ and still
be enclosed by ∂V .

Let’s prove the claim (25). More particularly, we want to
show that the non-Abelian second Chern number (C2)∂V

�n is in
fact equal to the Abelian one (C2)∂V

n that counts the linking
number between W i

n+1/2 and Wn−1/2. To show this equality, in
Appendix B we show that, on a 4D closed manifold M that
does not intersect Wn±1/2, we have

tr
∫
M

F�n
2 =

∫
M

Fn
2 + tr

∫
M

F<n
2. (26)
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FIG. 3. The non-Abelian second Chern numbers (C2)S4

�n in (a),

(C2)S4

�n in (b), and (C2)∂V
�n in (c) are all equal to the Abelian sec-

ond Chern number (C2)∂V
n = 1 in (c). From (a) to (b) the Yang

monopole is “stretched out” into a WS link due to TP breaking. From
(b) to (c) the sphere S4 enclosing W i

n+1/2 is deformed to the narrow
tube ∂V .

(This is a special case of the Whitney sum formula for charac-
teristic classes.) Taken M = ∂V where V contains W i

n+1/2 but
disjoints from Wn−1/2, and we get

(C2)∂V
�n = (C2)∂V

n (27)

because the F<n does not see Wn+1/2. This is the general case
of the result (C2)∂V

�2 = (C2)∂V
2 explicitly computed in the four-

band model in Ref. [33].
We can have a more intuitive understanding of the doubling

Theorem (17) for WS links that resembles that of the 3D
doubling theorem. Now let ∂V be narrow tubes that en-
close all components of Wn+1/2. By (27), we have (C2)∂V

�n =
−LWn+1/2,Wn−1/2 . Next we view the outside of ∂V as the inside
and evaluate (C2)∂V

�n again; but there is no Wn+1/2 to be picked
up, so the result must vanish (recall that by construction F�n

only sees Wn+1/2, in contrast to Fn which also sees Wn−1/2).
This proves (17).

The relation to Yang monopole also gives an intuitive
understanding of (16). Upon TP breaking, a Yang monopole is
“stretched out” into a component W i

n+1/2 linked with Wn−1/2;
but we can equally well replace Wn−1/2 with Wn+3/2, which
resonates with (16). This argument, however, cannot be taken
as an alternative proof of (16) because a priori we cannot
assume each WS linking arises adiabatically from a Yang
monopole.

Before we close, we would like to comment on an interest-
ing connection between our constraints in 5D Weyl semimetal
to those in certain 3D nodal line systems. It is shown [37,38]
that in 3D nodal line systems protected by TP symmetry with
(TP)2 = +1, one can define a Z2 monopole charge character-
ized by the second Stiefel-Whitney class of the band structure,
and if the charge is nontrivial, the nodal lines must develop
links, in a manner parallel to the constraints we proved in this
section. Notably, one process to visualize [37] the relation
between the Z2 monopole charge and the linking number
is parallel to our visualization Fig. 3. Although the method
employed there appears different from ours, an intuitive ex-
planation to the similarity between the constraints is that the
(TP)2 = +1 condition demands the Hamiltonian to be real
valued, hence Refs. [37,38] and ours are considering the same
kind of constraint problems for real versus complex valued
Hamiltonians, in three and five dimensions respectively.

V. TOPOLOGICAL SURFACE STATES

The above topological constraints on WSs and their link-
ings lead to rich surface states on the 4D surface of a 5D Weyl
semimetal, as we will derive in this section. In particular, we
give a more intuitive and clearer understanding of the Weyl
arc on the surface [32,33], which is known to be protected by
the second Chern number of WSs.

We first recall that the 3D Weyl semimetal hosts topo-
logically protected Fermi arcs on its 2D surface, each of
which connects the surface projection of two Weyl nodes
with monopole charges (first Chern numbers) +1 and −1,
respectively [8]. In other words, the constant electron energy
contour of the surface states on a 2D surface of 3D Weyl
semimetal is not a closed loop (the usual Fermi surface in
two dimensions), but an open Fermi arc connecting two Weyl
nodes with opposite monopole charges. Mathematically, one
can show that the first Chern number of a Weyl node requires
its projection on the 2D surface to be connected with a Fermi
arc [33].

The 4D surface states of 5D Weyl semimetal exhibits a
richer structure. There are two types of topological surface-
state features: a 3D Fermi hypersurface protected by the first
Chern number [Eq. (13)] of the WS, and, on top of it, a 1D
Weyl arc protected by the second Chern number [Eq. (11)] of
the WS. Now we explain them in detail.

First, consider a WS W i
n+1/2 with its second Chern numbers

(C2)∂V
n = −(C2)∂V

n+1 = 0. According to the constraints we re-
vealed in the last section, such a WS can exist alone, such as
in Figs. 2(a) and 2(b). It is, however, not completely topologi-
cally trivial, since it still carries a singular first Chern number
(Cs

1)n = +1 [recall (13)]. As we have explained in Sec. III,
the first Chern number (Cs

1)n simply implies that each point
of the WS behaves as a Weyl node in the three codimensions
to the 2D WS. Therefore, while in 3D Weyl semimetal each
0D Weyl node when projected to the 2D physical surface
serves as an end point of a 1D Fermi arc [8] due to the first
Chern number’s protection, for exactly the same mathematical
reason, in 5D Weyl semimetal each 2D WS when projected to
the 4D physical surface serves as the boundary of a 3D Fermi
hypersurface, which occurs at a given Fermi energy near the
energy of the WS. Such a 3D Fermi hypersurface with chiral
2D boundary (the projected WS) is the topological surface
state protected by (Cs

1)n, and can only exist on the 4D surface
of a 5D system, because otherwise any Fermi surface in an
intrinsically 4D system is necessarily a 3D closed manifold.
Figure 4(a) gives an illustration of the 3D Fermi hypersurface
in the surface momentum space, where we have omitted one
dimension of the 4D momentum space, so that the solid circle
stands for the projected 2D WS, while the surface connected
to it represents the 3D Fermi hypersurface. It is important to
note that, in the present case, because (C2)∂V

n = −(C2)∂V
n+1 =

0, one has (Cr
1 )n = (Cr

1 )n+1 = 0 [recall (13)], which is the
Berry curvature integrated on the 2D WS. Accordingly, any
2D cross section on the 3D Fermi hypersurface which can
continuously deform into (i.e., homotopic to) the 2D WS, e.g.,
the dashed circle in Fig. 4(a), will have a first Chern number
Cr

1 = 0, which is defined as the integration of Berry curvature
of the 3D Fermi hypersurface states on the 2D cross section.
Therefore, such a 2D cross section can shrink to zero, which

075112-7



CHEN, LIAN, AND ZHANG PHYSICAL REVIEW B 100, 075112 (2019)

C  =01
r

C  =11
s

C  =01
r

C  =11
r

C  =11
s

C  =11
r

C  =11
r

C  = -11
s

C  = -11
r

C  =11
s

C  = -11
r

C  = -11
r

C  = -11
s

C  =11
rC  = -11

r C  = -11
r

C  = -11
r

C  = -11
s

C  = -11
r

C  =11
s

E= 3

E= 1

E= 2

Weyl arc

E= 3

E= 1

E= 2

Wn+1/2
2Wn+1/2

1

(a) (b)

(c)

Wn+1/2
1 Wn+1/2

2

(d)

(e)

FIG. 4. Illustration of the topological surface states on the 4D
surface of a 5D Weyl semimetal. (a) At a given fermi energy (near
the WS), a WS W 1

n+1/2 with second Chern number (C2)∂V
n = 0 (which

implies Cs
1 = 1 and Cr

1 = 0) protects a 3D Fermi hypersurface in
the 4D surface momentum space, whose 2D boundary is the surface
projection of the WS (the solid circle). (b) Illustration of the energy
dispersion of the surface states topologically protected by two WSs
W 1

n+1/2 and W 2
n+1/2 with second Chern numbers (C2)(1)

n = −1 and
(C2)(2)

n = 1, respectively. A Weyl arc arises in the surface states
connecting the projection of the two WSs. (c)–(e) The topological
surface states (3D Fermi hypersurfaces) at Fermi energies E =
ω1, ω2, and ω3 defined in panel (b), whose boundaries (2D) are the
surface projection of the two WSs (the left and right solid circles).
The regular and singular first Chern numbers of the WSs are labeled
by the side of each WS. At energy E = ω2, the constant energy plane
intersects with the Weyl arc in panel (b), leading to two Weyl points
on the Fermi hypersurface in panel (d).

means the 3D Fermi hypersurface can close by itself away
from the WS, forming a half 3D sphere topologically as shown
in Fig. 4(a).

Then, we turn to WS W i
n+1/2 with nonzero second Chern

number (C2)∂V
n = −(C2)∂V

n+1 = 1 [according to the topolog-
ical constraints we have proved, one always has (C2)∂V

n =
−(C2)∂V

n+1], and show that nonzero second Chern numbers
imply the existence of 1D Weyl arcs [32] on top of the 3D
Fermi hypersurfaces.

Consider two WSs W 1
n+1/2 and W 2

n+1/2 as shown in
Fig. 4(b), which have second Chern numbers (C2)(1)

n =
−(C2)(1)

n+1 = −1 and (C2)(2)
n = −(C2)(2)

n+1 = 1, respectively.
For simplicity, we assume they are the only WSs between
the nth band and the (n + 1)th band (as is allowed by the
5D doubling constraints). If we set the Fermi energy E = ω1

to be above the two WSs in the (n + 1)th band [Fig. 4(b)],
we will expect a 3D Fermi hypersurface on the 4D surface
of the 5D semimetal as shown in Fig. 4(c) (the left and right
solid circles represent 2D WSs W 1

n+1/2 and W 2
n+1/2 projected

on the 4D surface), which we shall explain below. Since the
WS W 1

n+1/2 has a singular first Chern number (Cs
1)(1)

n+1 = 1,
one would expect the projected W 1

n+1/2 to be a boundary

of a 3D Fermi hypersurface. However, when viewed in the
(n + 1)th band, (C2)(1)

n+1 = 1 implies the WS also has a reg-
ular first Chern number (Cr

1 )(1)
n+1 = 1. Therefore, the surface

states on a 2D cross section on the 3D Fermi hypersurface
(the dashed circle in the middle) which is homotopic to
W 1

n+1/2 will have the same regular first Chern number Cr
1 = 1.

Since Cr
1 is nonzero, the 2D cross section cannot contract to

zero by itself when moved continuously on the 3D Fermi
hypersurface; instead it can only be continuously moved to
another boundary of the Fermi hypersurface with regular
first Chern number Cr

1 = 1, which in this case has to be
the surface projection of the other WS W 2

n+1/2 [which under

proper orientation choice has (Cs
1)(2)

n+1 = −1 and (Cr
1 )(2)

n+1 =
1]. Therefore, the 3D Fermi hypersurface has to connect
W 1

n+1/2 and W 2
n+1/2 as shown in Fig. 4(c) due to nonzero second

Chern number, which is clearly different from the case in
Fig. 4(a).

Now assume we lower the Fermi energy to E = ω2, which
is slightly below the WSs and enters the nth band. Upon
entering into the nth band, the second Chern number of a
WS changes sign [relative to that viewed in the (n + 1)th
band], so the regular first Chern number of W 1

n+1/2 flips sign
to (Cr

1 )(1)
n = −1 [while (Cs

1)(1)
n = 1 remains unchanged] as

shown in Fig. 4(d), and similarly for W 2
n+1/2. Accordingly, Cr

1
of any 2D cross section on the 3D Fermi hypersurface that is
homotopic to W 1

n+1/2 has to change sign, too. It may happen
that certain 2D cross sections in the middle of the 3D Fermi
hypersurface [the dashed circle in the middle in Fig. 4(d)]
still has Cr

1 = +1 (unflipped). Then the cross sections with
opposite Cr

1 = +1 on the 3D Fermi hypersurface has to be
connected via a Weyl point on the 3D Fermi hypersurface,
as shown in Fig. 4(d). Namely, two Weyl points will emerge
from the two WSs and move towards each other on the 3D
Fermi hypersurface as the Fermi energy is lowered. If one
further lowers the Fermi energy to E = ω3, the two Weyl
points will annihilate with each other in the middle of the
3D Fermi hypersurface, and the Cr

1 of all 2D cross sections
will be flipped, as shown in Fig. 4(e). Therefore, because of
the fact that the nonzero second Chern number (C2)(i)

n+1 =
−(C2)(i)

n flips sign from the nth band to the (n + 1)th band,
the 3D Fermi hypersurface necessarily experiences the arising
(at two WSs) and annihilation of two Weyl points when the
Fermi energy is changed from the (n + 1)th band to the nth
band.

If one plots the energy dispersion of the topological surface
states on the 4D surface, one would expect to see the two
Weyl points as a function of energy forming a 1D Weyl arc
connecting the surface projection of the two WSs W 1

n+1/2

and W 2
n+1/2, as shown in Fig. 4(b). This is exactly the Weyl

arc protected by the nonzero second Chern number of WSs,
which is shown in earlier studies [32,33]. Besides, in the
above we further show the 3D Fermi hypersurface is also
nontrivial when the WSs have nonzero second Chern num-
bers, which have to connect two WSs as shown in Figs. 4(c)
and 4(e).

We note that when the system has TP symmetry, the
system will contain Yang monopoles instead of WSs, which
are protected by non-Abelian second Chern numbers as we
discussed in last section. In this case, one will have Weyl

075112-8



DOUBLING THEOREM AND BOUNDARY STATES OF … PHYSICAL REVIEW B 100, 075112 (2019)

arcs connecting Yang monopoles with opposite non-Abelian
second Chern numbers [33].

VI. CONCLUSION

In this paper, we studied the 2D WS degeneracies in
generic 5D Weyl semimetals. In particular, we showed that
their topological configuration—most notably their linking
configuration—must satisfy nontrivial constraints Eqs. (14)–
(16), which are 5D analogs to the famous doubling theorem
in 3D Weyl semimetal (but also with nontrivial distinctions).
Furthermore, the relation between WS linking and Yang
monopole in five dimensions is established by showing a gen-
eral relation Eq. (26) between the Abelian and non-Abelian
Chern numbers in topological band theory. More interestingly,
when the 5D Weyl semimetal has a 4D surface, very rich
topological surface states arise, including the 3D Fermi hyper-
surface (parallel to the 1D Fermi arc in 3D Weyl semimetal)
protected by the WSs in the bulk, and, on top of that, the 1D
Weyl arc protected by the linking of WSs in the bulk. The
topological protection of the surface physics is closely related
to the topological constraints in the bulk that we established.
Brillouin zones with synthetic dimensions have been realized
in cold atom systems [41], so the rich surface-state physics we
derived maybe observed in such experiments.

We would like to make some final comments on the
general mathematical framework behind the topology of band
degeneracies. One early and deep result in this area is obtained
for the stability of generalized Fermi surfaces (which include
Weyl degeneracies) using K theory [42] (other studies of the
stability of gapless fermionic ground states based on Green’s
functions include, e.g., [43,44]). More recently, the machinery
of K theory and homotopy theory has been extensively ap-
plied to understand the topology of band degeneracies. Most
particularly, as we have mentioned in Sec. IV, a homotopy
study of (TP)2 = +1 3D nodal line systems [37,38] has
led to constraints analogous to ours in 5D Weyl semimetal.
The connection between our simple Berry curvature method
and the full machinery of homotopy theory might not be
surprising—while the celebrated doubling theorem is usually
presented using a Berry curvature computation (as we did),
originally the theorem was established using homotopy [35].
Aside from homotopy theory, we also note that recently a
standard construction in homology theory (in which com-
putations are much simpler compared to homotopy theory),
the Mayer-Vietoris sequence, has been applied to understand
Weyl degeneracies [45,46]. At this point, this framework
seems not to encompass some of the interesting features we
discussed. In particular, it is unclear whether our constraints
on WS linking can be detected with this method. Also, this
method seems to be insensitive to the single component WS
[Fig. 2(a)] which leads to a topologically protected 3D Fermi
hypersurface; see Fig. 4(a). (Such a single WS can be realized
by a simple model: take a 3D Weyl semimetal model with
momentum kμ, μ = 1, 2, 3, and then make the Weyl node
separation depend on k4, k5 so that they annihilate for large
k4, k5.) It would be interesting to understand what refinement
of the Mayer-Vietoris approach is needed to capture the full
topological information of the bulk degeneracies and surface
states.
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APPENDIX A

In this Appendix we explain in detail what is meant by
“effectively two-band” in the proof of the constraint (15).
Let’s consider the nth and (n + 1)th band which comprise a
two-dimensional subspace of the full Hilbert space. Recall in
the diagonalization of the Hamiltonian H = UEU † that the
N × N unitary matrix U has its mth column being the eigen-
vector um. Now let U{n,n+1} be the N × 2 matrix whose two
columns are un and un+1. Let R be an arbitrary U(2) matrix
rotating in this subspace, Ũ {n,n+1} = U{n,n+1}R†, U{n,n+1} =
Ũ {n,n+1}R. We let the U(2) matrix R depend on the momen-
tum k such that its two columns have the same singularity
as W i

n+1/2 in the original U{n,n+1}, and thus Ũ {n,n+1} does

not have singularity on W i
n+1/2 anymore. This way, Ũ {n,n+1}

carries the topological information about the separation of this
two-dimensional subspace from the remaining of the Hilbert
space, while R, the “effectively two-band” part, carries the
topological information about the separation within the two-
dimensional subspace.

Let rn and rn+1 be the two columns of R. Then un =
Ũ {n,n+1} rn, un+1 = Ũ {n,n+1} rn+1. The Abelian Berry con-
nection for un can be written as

An = −iu†
ndun = r†

n (−id + Ã {n,n+1})rn, (A1)

where Ã {n,n+1} = −iU †
{n,n+1} dU{n,n+1} is the U (2) Berry con-

nection on the two-band sub-bundle. Let’s denote the above as
An = A1

n + A2
n. The first term A1

n = −ir†
ndrn is an “effectively

two-band” U (1) Berry connection. We want to show that the
second term A2

n = r†
n Ã {n,n+1}rn only has a contribution to

(C2)n when W i
n+1/2 is linked with Wn−1/2, but has no contribu-

tion regarding whether W i
n+1/2 is linked with any component

of Wn+1/2.
Consider the following geometric setup. Let W i

n+1/2 =
∂	i

n+1/2 and let V be the 5D vicinity of 	n+1/2. We know An is
singular on 2D Wn±1/2. Let V∗ ≡ V\Wn±1/2 on which An is de-
fined. An is not continuous over V∗. Suppose V∗ is covered by
a set of charts which are 5D. Across the boundaries between
the charts (the boundaries are 4D), An in our expression (A1)
is subjected to transition function, i.e., gauge transformation,
of two kinds: the U(1) gauge transformation

rn → rn eiλ, (A2)

characterizing how the nth band separates from the (n + 1)th
band, and the U(2) gauge transformation

U{n,n+1} → U{n,n+1}�, (A3)

characterizing how these two bands as a whole separate
from the other bands. The discontinuity from the U(1) gauge
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transformation extends from the singularity Wn+1/2 and is seen
by A1

n, while the discontinuity from the U(2) gauge transfor-
mation extends from the singularity Wn−1/2 and is seen by A2

n

(note that Ã {n,n+1} sees the singularity Wn−1/2 ∪ Wn+3/2, but
when projected by rn, A2

n only sees the singularity Wn−1/2).
Thus, when considering the linking between W i

n+1/2 with
other components of Wn+1/2, we can limit ourselves to the
“effectively two-band” part A1

n = −ir†
ndrn and ignore A2

n.
Then, as mentioned in the main text, (dA1

n)2 = (dr†
n drn)2 = 0

because rn and r†
n together only have three real parameters

(fixing an unimportant overall phase).

APPENDIX B

In this Appendix we show (26). Although this is a special
case of the more general Whitney sum formula, the proof to
the formula is nontrivial, therefore we shall show this special
case via direct computation. It suffices to show the following.

Let A ⊂ {1, . . . , N} be some subset of bands, which further
separate into two disjoint subsets B ∩ C = ∅, B ∪ C = A. Let
UA be the N × |A| matrix whose columns are um, m ∈ A, and
its associated non-Abelian Berry curvature is

FA = −i dU †
A

(
1 − UAU †

A

)
dUA, (B1)

and likewise for B and C. We want to show

tr
(
FA

2
) = tr

(
FB

2
) + tr

(
FC

2
) − 2 dKB,C, (B2)

where KB,C is a smooth three-form except on values of mo-
menta k where the separation of A into B and C becomes
not well defined (i.e., Weyl degeneracies between B and
C). Choosing A = {1, . . . , n}, B = {n}, C = {1, . . . , n − 1}
leads to (26).

In summing over the m indices in (UA)αm for m ∈ A, we
separate the summation into summations for m ∈ B and m ∈
C. Thus,

tr
(
FA

2
) = tr[dUAdU †

A (1 − UAU †
A )dUAdU †

A (1 − UAU †
A )]

= tr[(dUBdU †
B + dUCdU †

C )(1 − UBU †
B − UCU †

C )(dUBdU †
B + dUCdU †

C )(1 − UBU †
B − UCU †

C )]

= tr
(
FA

2
) + tr

(
FC

2
) − 2 tr(dU †

B dUC dU †
C dUB) − 2 tr(dU †

C dUB U †
B dUB U †

B dUC ) − 2 tr(dU †
B dUC U †

C dUC U †
C dUB)

+ 2 tr(U †
C dUB dU †

B dUB U †
B dUC ) + 2 tr(U †

B dUC dU †
C dUC U †

C dUB) − 2 tr(U †
C dUB U †

B dUB dU †
B dUC )

− 2 tr(U †
B dUC U †

C dUC dU †
C dUB)

= tr
(
FA

2
) + tr

(
FC

2
) − 2 dKB,C, (B3)

KB,C = tr(U †
B dUC dU †

C dUB) + tr(U †
C dUB U †

B dUB U †
B dUC ) + tr(U †

B dUC U †
C dUC U †

C dUB), (B4)

where from the second line to the third line we expanded
the terms and many of them canceled because of dU †

BUB =
−U †

B dUB, dU †
CUB = −U †

C dUB (and likewise for B ↔ C).
It remains to show that if over a submanifold M ⊂ BZ

the separation of A into B and C is well defined, then KB,C is
smooth over M. Let M be covered by a set of charts. On each
chart UB, UC , and hence KB,C are smooth. But discontinuity
might arise at the boundary between two charts. Generally,
across each chart boundary, UB and UC are subjected to a
transition function, i.e., a gauge transformation in the gauge

group U (|B|) × U (|C|):
UB → UB�B, UC → UC�C . (B5)

But it is straightforward to verify that KB,C is invariant under
such gauge transformation (using U †

BUC = 0). Hence KB,C is
a smooth three-form over M. This completes the proof to the
claim (B2).

Such separation of topological characterization when a
vector bundle can be unambiguously separated into two sub-
bundles is the theme behind the general Whitney sum formula.
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