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The lattice construction of Euclidean path integrals has been a successful approach of deriving 2+1D field
theory dualities with a U(1) gauge field. In this work, we generalize this lattice construction to dualities with
non-Abelian gauge fields. We construct the Euclidean space-time lattice path integral for a theory with strongly
interacting SO(3) vector bosons and Majorana fermions coupled to an SO(3) gauge field and derive an exact
duality between this theory and the theory of a free Majorana fermion on the space-time lattice. We argue that
this lattice duality implies the desired infrared duality between the field theory with an SO(3) vector critical
boson coupled to an SO(3)1 Chern-Simons gauge theory, and a free massless Majorana fermion in 2+1D. We
also generalize the lattice construction of dualities to models with O(3) gauge fields.
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I. INTRODUCTION

The classic particle-vortex duality [1,2] of bosonic systems
revealed that different Lagrangians can secretly correspond to
the same conformal field theory in the infrared limit. Recently
the boson-fermion dualities [3–8], fermion-fermion dualities
[9–12], and many descendant 2+1D field theory dualities [8,
13–29] have attracted a lot of attentions. The importance of
these dualities are not just limited to their own theoretical
interests. They also have close connections to gauge-gravity
duality [5–7], mirror symmetry in supersymmetric field theory
[30–32], fractional quantum Hall systems [9,33–37], as well
as deconfined quantum critical points [13,38]. These dualities
have tremendously advanced our understandings of 2+1D
conformal field theories. In fact, a large class of them are
weaved into a duality web through SL(2,Z) transformations
on U(1) currents and on the Chern-Simons terms of the U(1)
gauge fields [8,39]. While the duality web itself provides
interesting cross-check among different dualities with U(1)
gauge fields, analytical derivation for certain members of the
web are also obtained using wire constructions [12,40], loop
model [41], deformation of exact supersymmetric dualities
[23,31,32], and lattice constructions [2,42] of Euclidean path
integrals.

Although some of the descendant dualities mentioned
above have received rather positive numerical evidences
[38,43], rigorously speaking most of the dualities are still
conjectures. Apart from the consistency check on global sym-
metries, anomalies and matching global phase diagrams [14,
16–28], rigorous analytical results are much harder to obtain
for dualities in the presence of non-Abelian gauge fields.
Exact results, say, on partition functions, operator scaling
dimensions, etc. in these dualities mostly rely on the large-
N limit [5–7,44–46] or well-established level-rank dualities
of Chern-Simons gauge theories without dynamical matter

fields [47–49]. More analytical treatments to dualities with
non-Abelian gauge group of finite rank and with dynamical
matter fields will be certainly of great importance.

Deriving the dualities via the lattice construction of the
Euclidean path integral [2,42] is an interesting and powerful
method for its exactness and explicitness in connecting the
degrees of freedom on the two sides of a duality without
using any large-N limit or supersymmetry. On the other hand,
this method often relies on the assumptions that the theories
defined on the lattice indeed flow under the renormalization
group to their expected continuum limit in the infrared (IR).
Such assumptions can be hard to justify within the lattice
models themselves especially in the presence of interactions.
Nevertheless, the lattice construction of dualities, for example
the Dasgupta-Halperin lattice construction for the particle-
vortex dualtiy, are still often viewed as very suggestive ev-
idence for the desired/conjectured dualities in the IR. Pre-
viously, the lattice construction has only been carried out
for dualities with U(1) gauge fields [2,42]. In this paper, we
generalize the lattice construction to dualities with orthogonal
non-Abelian gauge groups. We study a lattice construction
motivated by the IR duality between a critical SO(3) vec-
tor boson coupled to a SO(3)1 Chern-Simons gauge theory
and a free massless Majorana fermion in 2+1D, which was
proposed in Refs. [16,19]. We first construct the Euclidean
space-time lattice path integral of a theory with SO(3) vector
bosons and Majorana fermions coupled to a SO(3) gauge
field. As will be explained, a natural candidate of the IR
limit of this lattice path integral is the continuum theory of
a SO(3) vector boson coupled to a SO(3)1 Chern-Simons
gauge theory. We perform an exact mapping of this space-time
lattice path integral to that of a free Majorana fermion whose
continuum limit agrees with the expected dual of the critical
bosons. Generalizing this construction, we obtain a slightly
different lattice duality between an interacting model with
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O(3) vector bosons and Majorana fermions coupled to O(3)
gauge fields and the theory of free Majorana fermions.

II. LATTICE DUALITY WITH SO(3) GAUGE FIELDS

In Refs. [16,19], a duality between the SO(3) critical boson
coupled to SO(3)1 Chern-Simons gauge theory and the free
gapless Marjorana fermions in 2+1D was proposed. The
continuum description of the boson side of the duality is given
by the Lagrangian:

Lb = |(∂μ − iaμ)φ|2 + r|φ|2 + g|φ|4

+ i

2 · 4π
trSO(3)

(
a ∧ da − 2i

3
a ∧ a ∧ a

)
, (1)

where φ is a three-component real vector field coupled to an
SO(3) gauge field a. The SO(3) gauge field a is subject to a
Chern-Simons term at level 1 in which the trace “tr” is taken
in the vector representation of SO(3). This theory has an dual
description of a single two-component Majorana fermion ξ in
2 + 1D given by the simple Lagrangian

L f = ξ̄ γ μ∂μξ − mξ̄ ξ . (2)

This duality is directly shown to hold in the gapped phases
with r and m carrying the same sign [16,19]. It is further
conjectured to be valid even at the critical point where r =
m = 0. In this section, we will start with formulating a lattice
theory in close connection to the critical boson theory and
constructing its path integral on the Euclidean space-time
lattice. We will then map this path integral exactly to that
of a free Majorana fermion. As we will see later this exact
mapping is valid regardless of whether the resulting phases
are gapped or at the critical point. We will also refer to this
type of exact mapping between two lattice theories as a lattice
duality. After establishing the lattice duality, we will discuss
the correlation functions and the Z2 global symmetry across
the dualtiy.

A. Euclidean path integral on the lattice

We start with the basic ingredients for constructing the
space-time lattice path integral for the boson side of the
duality. We consider a discretized 3D Euclidean space-time
lattice, which is taken to be a cubic lattice for simplicity. On
each site n of the space-time lattice, there is a three-component
unit vector vn = (vn,1, vn,2, vn,3)ᵀ that represents the SO(3)
vector boson fields. The vector boson fields couple to their
nearest neighbors and to the SO(3) gauge field residing on the
links that connect them, leading to the following contribution
to the Euclidean action:

Sbg[v, O] =
∑

n

∑
μ=x,y,z

−J vn+μ,iO
nμ
i j vn, j, (3)

where μ = x, y, z is summed over the unit lattice vector along
the positive x, y, and z direction. J is the coupling constant
of the SO(3) vector bosons, which we assume to be always
positive. Onμ

i j is an SO(3) matrix that represents the SO(3)
gauge connection along the links between sites n and n + μ.
The repeated SO(3) vector/matrix indices i, j are implicitly
assumed to be summed automatically from 1 to 3.

According to the Lagrangian (1), we also need to introduce
a Chern-Simons term for the gauge field Onμ. While it is
difficult to directly write down the Chern-Simons term on the
lattice, we can circumvent the difficulty by coupling the SO(3)
gauge field to a massive Majorana fermion. This method is a
direct generalization of the construction of the U(1) Chern-
Simons term in a lattice duality studied in Ref. [42]. In this
method, the Chern-Simons term can be viewed as the outcome
of integrating out the massive Majorana fermions. Following
Wilson’s approach [50,51], we can write down the action for
lattice Majorana fermions coupled to the SO(3) gauge field:

Sfg[χ, O] =
∑

n

∑
μ=x,y,z

χ̄n+μ,i(σ
μ − R)Onμ

i j χn, j

+ M
∑

n

χ̄n,iχn,i, (4)

Again, the repeated SO(3) indices i, j are automatically
summed over. For each site n and each SO(3) color index
i, the fermion field χn,i = (χn,i,1, χn,i,2)ᵀ is a two-component
spinor consists of two real Grassmann numbers. σμ stands
for the Pauli matrices. χ̄n+μ,i is defined as χ̄n+μ,i = χᵀσ y.
When we turn off the gauge field Onμ, the action Eq. (4)
alone gives rise to 23 = 8 Majorana fermions in the IR whose
masses are controlled by the parameters R and M. The mass
configuration of the massive Majorana fermions determines
the Chern number C of the occupied bands of the Majorana
fermions. To be more precise, by the band structure of Majo-
rana fermions, we refer to the band structure obtained from
quantizing the eight Majorana fermions. And by occupied
bands, we mean all the negative energy states associated to the
eight IR Majorana fermions after the quantization. The Chern
number also serves as the level of the Chern-Simons term of
the SO(3) gauge field when the fermion field χn is integrated
out in the action Sfg[χ, O]. The relation between the Chern
number C and parameters R and M that control the bare band
structure of the Majorana fermions field χn is given by [52,53]

C =
⎧⎨
⎩

2sgn(R) 0 < |M| < |R|,
−sgn(R) |R| < |M| < 3|R|,
0 |M| > 3|R|.

(5)

Naively, by combining the action Eqs. (3) and (4), one would
have already had all the essential ingredients for a lattice
version of the field theory (1). However, for reasons that will
become clear later, we would also like to include the interac-
tion between the vector bosons and the Majorana fermions:

Sint[χ, v] = U1

4

∑
n,μ

εii′i′′ε j j′ j′′J nμ
i j J nμ

i′ j′ vn+μ,i′′vn, j′′

+ U2

36

∑
n,μ

εii′i′′ε j j′ j′′J nμ
i j J nμ

i′ j′ J
nμ

i′′ j′′ , (6)

where we have introduced the notation J nμ
i j ≡ χ̄n+μ,i(σμ −

R)χn, j for the fermion current. εii′i′′ and ε j j′ j′′ represent the
totally antisymmetric tensor. U1 and U2 are coupling constants
of these interactions in Sint. It is straightforward to verify that
Sint is invariant under the SO(3) gauge transformations.
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Now, we are ready to introduce our Euclidean space-time
lattice path integral for one side of the duality:

Zb =
∫

D[Onμ]
∫

D[χn,i]
∫

D[vn]e−Sbg−Sfg−Sint , (7)

where the integration of the gauge field
∫

D[Onμ] is imple-
mented as the integration of the matrix Onμ on each link over
the Haar measure of SO(3). The boson field vn on each site is
integrated over the unit 2-sphere S2, while the fermion fields
χn,i are integrated as real Grassmann numbers. As we dis-
cussed, when the coupling constants U1 and U2 are set to zero,
after the Majorana fermions are integrated out, this model
naturally realizes the theory of SO(3) vector bosons coupled
to a SO(3) gauge field with the Chern-Simons level given
by Eq. (5). When U1 and U2 are finite, the relation between
the Chern-Simons level generated by the Majorana fermions
and parameters M and R is expected to be modified. We will
address the effect of Sint and how it alters the interpretation of
the lattice path integral Zb as we proceed in obtaining its dual
theory.

B. Exact mapping of lattice path integral

We notice that the SO(3) gauge field Onμ in Eq. (7) can be
integrated out analytically. In order to do so, we only need to
consider the Sbg[v, O] and Sfg[χ, O] parts of the action:∫

D[Onμ] e−Sbg[v,O]e−Sfg[χ,O]

= exp

(
−

∑
n

Mχ̄n,iχn,i

)
×

∏
n,μ

[ ∞∑
l=0

∞∑
m=0

Jl

l!

(−1)m

m!

×
∫

dOnμ
(
vn+μ,iO

nμ
i j vn, j

)l(
χ̄n+μ,i(σ

μ − R)Onμ
i j χn, j

)m

]
,

(8)

From now on, we will set R = −1 which renders the matri-
ces σμ − R rank 1 and which combined with the fermionic
statistics of the Grassmann numbers leads to vanishing con-
tributions for all the terms with m > 3 (see Appendix A for a
more detailed explanation). Notice that the integration over
all gauge field configurations

∫
D[Onμ] factorizes into the

integration of SO(3) matrices Onμ under the Haar measure on
each link. After conducting a term by term integration, we
obtain that∫

D[Onμ] e−Sbg e−Sfg =
(

sinh J

J

)3Ns

e−Sbfg[v,χ] (9)

where Ns is the number of sites in the Euclidean space-time
lattice and the effective action Sbfg[v, χ ] takes the form:

Sbfg[v, χ ] =
∑

n

Mχ̄n,iχn,i

+
∑
n,μ

{
K (χ̄n+μ,ivn+μ,i )(σ

μ − R)(χn, jvn, j )

− K

4
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ vn+μ,i′′vn, j′′

+ 1 − K2

36
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ J
nμ

i′′ j′′

}
. (10)

with K = J cosh J−sinh J
J sinh J which is a positive number between 0

and 1 for all J > 0. The details of the derivation of Eq. (10)
can be found in Appendix A. Notice that the effective action
Sbfg[v, χ ] contains similar interactions to the ones we intro-
duce in Sint. We will choose

U1 = K, U2 = −1 + K2, (11)

so that the interactions in Sbfg[v, χ ] and in Sint[v, χ ] exactly
cancel off each other.

For every fixed configuration of the vector field vn, Sbfg +
Sint contains one and only one propagating Majorana fermion
field

ξn ≡
√

K
∑

i

χn,ivn,i. (12)

There are also two other Majorana fermion fields, denoted as
ξ ′

n and ξ ′′
n , orthogonal to ξn in the SO(3) “color space.” For

a fixed configuration of the vector boson vn, we can perform
a basis rotation from the χn field to ξn, ξ ′

n and ξ ′′
n in the path

integral. Notice that the fermion fields ξ ′
n and ξ ′′

n only have
local mass terms but not any kinetic terms [i.e., the (σμ − R)
term]. They can be directly integrated out producing a factor
that only depends on the mass parameter M. Therefore, after
integrating out ξ ′

n and ξ ′′
n , we can write∫

D[Onμ]
∫

D[χn,i]e
−Sbg−Sfg−Sint

= N
∫

D[ξn] exp

(
−

∑
n,μ

ξ̄n+μ(σμ − R)ξn −
∑

n

M ′ξ̄nξn

)
,

(13)

where N is an overall normalization constant and the mass
parameter M ′ for the Majorana fermion mode ξn is given by

M ′ = M/K. (14)

Now, we have arrived at the dual theory which exactly de-
scribes free Majorana fermions on the Euclidean space-time
lattice. Although Eq. (13) is derived on fixed configuration
of the boson field vn, its right-hand side does not depend on
vn. The independence on the vector boson configuration vn

is expected also from the fact that any fixed vector boson
configuration vn can be connected to any other by SO(3)
gauge transformations before we perform any integration on
the left-hand side. Therefore further integration over the boson
field vn in Eq. (13) will only introduce an extra overall
multiplicative factor and will not change the nature of the
duality. At this point, we have constructed an exact mapping
between the theory in Eq. (7) and free Majorana fermions
described by the action in Eq. (13). This exact mapping is
valid regardless of whether or not the model Zb (and its dual
Majorana fermion theory) is at the critical point or not.

Having already set R = −1, if we further take M ′ = 3,
the dual Majorana fermion ξn, based on the change of Chern
number for M ′ > 3 and M ′ < 3 givein in Eq. (5), is exactly at
a critical point described by a single free gapless Majorana
fermion in the IR. It implies that the model (7) with the
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following choices of parameter is also critical:

M = 3K, U1 = K, U2 = −1 + K2. (15)

Now, we would like to return to the discussion of the con-
tinuum limit of the model (7) at the criticality. First of all,
0 < K < 1 for any positive coupling J . Hence, M is always
smaller than 3 at the critical point. If we choose J such that
1 < M < 3 and neglect the effect of the interaction in Sint

as we first integrate out the fermions χn in the model (7),
we would naturally identify the resulting model as a SO(3)
critical bosons coupled to an SO(3)1 Chern-Simons gauge
theory. The presence of finite U1,2 complicates the integration
over the fermions field χn in Eq. (7). The difficulty arises
because when the bare mass of the Majorana fermion χn is
of order 1, namely when the deviation of M from 3 (as well
as 1) where the χn fermion becomes massless is of order 1,
Eq. (15) will require U1,2 to be also of order 1 at the same
time. We notice that the U1,2 interactions can be viewed as the
hopping of three-particle bound states (of two χn fermions and
a vector boson vn or of three χn fermions) from one space-time
lattice site to the neighboring sites. A possibility is that the
hoppings of three-particle bound states are irrelevant in the
continuum limit or their effects are small enough such that
the level of the Chern-Simons term (which is generated by the
integration over χn) is unchanged due to its quantized nature.
If this possibility is indeed correct, the Euclidean space-time
lattice path integral (7) will, even in the presence of U1,2, still
correspond to the field theory (1) in the IR with g flows to a
fixed point value.

C. Correlation functions and global symmetry

Regardless of the interpretation of the theory (7) in the
continuum limit, the mapping discussed above is explicit
and exact, which allow us to identify not only the partition
functions on both sides of the duality but also the correla-
tion functions. In particular, any correlation functions of the
Majorana fermion ξn can be exactly reproduced in the model
(7) by the operators defined in Eq. (12).

The exact mapping also helps us keep track of the global
symmetry on the two sides of the duality. The model (7)
possesses a global Z2 symmetry:

Z2 : vn → −vn, χn → −χn, (16)

while it is evident from Eq. (12) that the free Majorana
fermion ξn is neutral under this Z2 symmetry. This apparent
mismatch of the Z2 global symmetry on the two lattice the-
ories raises an potential subtlety in the IR duality of their
speculated continuum counterparts Eqs. (1) and (2), where
the Z2 symmetry in the continuum field theories acts as
Z2 : φ → −φ, ξ → ξ . This subtlety is not induced by the
lattice construction and was already noticed in Ref. [19]
for the continuum field theories. The conjectured resolution
of this symmetry mismatch is that the Z2 symmetry is not
spontaneously broken and the energy gap of the Z2 charged
excitations remains finite across the critical point on the boson
side of the duality.

If we assume that the lattice theory (7) correctly captures
in the continuum boson theory (1) in the IR, we can direct test
the aforementioned conjecture. In the lattice theory E(7), there

are two SO(3) gauge-invariant Z2-charged (local) operators:

εii′i′′vn,iχn,i′χn,i′′ and εii′i′′χn,iχn,i′χn,i′′ , (17)

where we have suppressed the spinor indices of the fermion
field χn. Being an bosonic operator that is SO(3) gauge-
invariant and odd under the Z2 symmetry, εii′i′′vn,iχn,i′χn,i′′ can
serve as an order parameter for any potential spontaneous
breaking of the global Z2 symmetry in the theory (7). Inter-
estingly, we notice that the operator εii′i′′vn,iχn,i′χn,i′′ is always
proportional to the product of the fermion fields ξ ′

n and ξ ′′
n

that are introduced after we integrate out the SO(3) gauge
field in Eq. (10) and that are orthogonal to the low-energy
fermion field ξn defined in Eq. (12). As stated previously,
unlike the fermion field ξn, the fields ξ ′

n and ξ ′′
n only have local

mass terms but no kinetic term. Therefore any correlation of
the fields ξ ′

n and ξ ′′
n is short-range, which implies that the

correlation of the operator εii′i′′vn,iχn,i′χn,i′′ is also short-range
and, consequently, that the Z2 global symmetry is unbroken.
This statement is in agreement with Ref. [19]. Furthermore,
it is evident directly from the derivation of the exact mapping
in the previous subsection, that the only low-energy field at
the critical point is the fermion field ξn which is neutral under
the global symmetry Z2. That in turn implies that all the Z2

charged excitations in the lattice theory (7) are gapped across
the critical point. This observation offers another strong evi-
dence for the conjecture on the Z2 global symmetry proposed
in Ref. [19].

D. An alternative dual model

In Sec. II B, we enforce the condition (11) to ensure that
the dual Majorana fermion ξn is exactly free. In this section,
we proceed with the lattice duality without this condition
(11). In fact, for generic values of U1,2 with U1 < K , the
path integral e−Sbfg−Sint (in a fixed background of vector boson
configuration vn) can be viewed as containing an SO(2) gauge
field in disguise on the dual side (see Appendix B). We will
discuss the physical meaning of this SO(2) gauge field later.
To elucidate the SO(2) gauge structure, we first introduce an
SO(2) gauge field represented by a 2 × 2 orthogonal matrix
U nμ

ab (with a, b = 1, 2) on each link (connecting site n and
site n + μ). Then, we construct the Majorana field ηn,a that
is charged under the SO(2) gauge field:

ηn,1 = (K − U1)
1
4

∑
i

w′
n,iχn,,

ηn,2 = (K − U1)
1
4

∑
i

w′′
n,iχn,i, (18)

where w′
n and w′′

n are two mutually orthogonal three-
component unit vectors that are both orthogonal to the fixed
vector bosons field background vn. The subscript a in ηn,a

represents the SO(2) “color” index. In fact, the fermion fields
ηn,a are essential the same as the fermion fields ξ ′

n and ξ ′′
n

discussed in Sec. II B but with an extra (K − U1)
1
4 prefactor

that makes the fields ηn,a well-defined only when K > U1. As
we will see, unlike the nonpropagating fermion fields ξ ′

n and
ξ ′′

n in Sec. II B, ηn,a can be interpreted as propagating fermion
fields in dual theory thanks to K > U1. Having introduced
these ingredients, we can rewrite e−Sbfg−Sint as (see Appendix B
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for detailed derivation)

e−Sbfg−Sint = exp

[
−

(∑
n

M ′ξ̄nξn +
∑
n,μ

ξ̄n+μ(σμ−R)ξn

)] ∫
D[U nμ] exp

[
−

(∑
n

M ′′η̄n,aηn,a +
∑
n,μ

η̄n+μ,a(σμ−R)U nμ

ab ηn,b

)]

× exp

[
−V

∑
n,μ

(ξ̄n+μ(σμ − R)ξn)(η̄n+μ,1(σμ−R)ηn,1)(η̄n+μ,2(σμ−R)ηn,2)

]
, (19)

where the repeated SO(2) indices a, b are automatically
summed from 1 to 2. The integration of the SO(2) gauge con-
figuration

∫
D[U nμ] should be understood as the integration

of the matrix U nμ over the Haar measure of SO(2) on every
link of the space-time lattice. The mass parameters M ′, M ′′ of
the fermion ξn and ηn are given by

M ′ = M/K, M ′′ = M(K − U1)−
1
2 , (20)

and the coupling constant V by

V = 1 + U2 − K2

(K − U1)K
(21)

We can see that the right-hand side of Eq. (19) is a theory that
describes a Majorana fermion ξn and Majorana fermions ηn,a

coupled to an SO(2) gauge field. The two types of fermions
interact with each other via the SO(2) gauge-invariant inter-
action given in the third line of Eq. (19).

Physically, the SO(2) gauge field introduced in the dual
theory in Eq. (19) essentially recovers the residue SO(2)
subgroup of the SO(3) gauge group in the original model
Eq. (7) in the presence of a fixed vector boson configuration
vn. The way to understand it is to notice that the fermions
ηn,1 and ηn,2 that are charged under the SO(2) gauge field are
essentially the two fermion fields orthogonal to ξn (as well as
the fixed vector field value vn) is the SO(3) color space. The
SO(2) gauge group can be viewed as the residue gauge group
of SO(3) that preserves the vector field configuration vn. As
we tune to the parameter regime where M ′ is close to 3, K
is close to U1 and V is small. The Majorana fermion χn will
have a small bare mass, while the mass parameter M ′′ of the
Majorana fermion ηn can be set to be M ′′ � 3 which ensures
not only a big energy gap but also a trivial bare band stucture
of ηn. Furthermore, if V is tuned to a small value by tuning
U2, the dual theory will only have an “almost free” (or weakly
interacting) Majorana fermion ξn at low energy. Since the dual
low-energy Majorana fermion ξn is now weakly interacting,
the exact position of the critical point of the dual theory (19)
[as well as the original model (7)] is expected to be shifted
from M ′ = 3.

III. LATTICE DUALITY WITH O(3) GAUGE FIELDS

In this section, we generalize the model (7) studied in
the previous section to the case with O(3) gauge fields. The
action Sbg[v, O] given in Eq. (3) and Sfg[χ, O] in Eq. (4)
can be directly promoted to accommodate O(3) gauge field
Onμ. We will rename them as S′

bg[v, O] and S′
fg[χ, O] in order

to distinguish them from their SO(3)-gauge-group counter-
part. All the interactions in Sint are not invariant under the

O(3) gauge transforms. Although one can always consider a
“O(3)-gauged” version of Sint , we will exclude them from the
generalized model for simplicity. The Euclidean lattice path
integral of the generalized model is given by

Z ′
b =

∫
D[Onμ]

∫
D[χn,i]

∫
D[vn]e−S′

bg−S′
fg , (22)

where the integration of the boson field vn and the fermion
field χn follow the same rules as before. The integration of the
gauge field

∫
D[Onμ] is now carried over the Haar measure of

O(3) instead of SO(3). However, since we can write O(3) =
SO(3) × Z2, the integration over O(3) can be viewed as the
integration over the Haar measure of SO(3) together with an
“integration” over the Z2 subgroup.

Similar to the treatment of the previous section, we can first
integrate out the O(3) gauge field∫

D[Onμ] e−S′
bg e−S′

fg =
(

2 sinh J

J

)3Ns

e−S′
bfg[v,χ], (23)

where the effective action S′
bfg[v, χ ] takes the form

S′
bfg[v, χ ] =

∑
n

Mχ̄n,iχn,i

+
∑
n,μ

K (χ̄n+μ,ivn+μ,i )(σ
μ − R)(χn, jvn, j ),

(24)

which is much simpler compared to Eq. (10) of the SO(3)
case. Again, we introduce the fermion field ξn given in
Eq. (12) and integrate out the orthogonal fermion fields ξ ′

n and
ξ ′′

n to obtain the following exact mapping∫
D[Onμ] e−S′

bg e−S′
fg

= N ′
∫

D[ξ ] exp

(
−

∑
n,μ

ξ̄n+μ(σμ − R)ξn −
∑

n

M ′ξ̄nξn

)
,

(25)

where N ′ is an overall normalization constant and the mass
parameter M ′ given by

M ′ = M/K. (26)

Now, we have established an exact mapping from the
model (22) to a model with the free Majorana freemion ξn

on the dual side. Again, we emphasize that this lattice duality
is exact and is valid for any choice of coupling constant J and
mass parameter M. Based on the exact mapping, by setting
M ′ = M/K = 3, we can tune both sides of the duality to the
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critical point where one side of the duality is captured by a
massless free Majorana fermion in the IR.

While one side of the duality is naturally identified with the
free massless Majorana fermion in the continuum limit, the
IR nature of the model (22) remains unclear. One may follow
the same strategy as the previous section to integrate over the
fermion field χ first and interpret the continuum theory as a
vector boson coupled to a Chern-Simons term. However, it is
unclear how the Z2 part of the O(3) gauge field behaves after
we integrate out the fermions field χn. A possible reconcili-
ation with the duality studied in the previous section and the
IR duality between the continuum field theories (1) and (2)
is that only the SO(3) subgroup of the O(3) is deconfined.
Another puzzling feature of this lattice duality with O(3)
gauge field is that while the dual Majorana fermion stays at the
critical point, we can freely tune the parameters K such that
the bare band structure of the fermions χn in the model (22)
can have different Chern numbers (and the naively expected
Chern-Simons levels): C = 1 when 1 < M < 3 and C = −2
when M < 1. We will defer resolution of these puzzles to
future studies.

Similar boson-fermion lattice duality with different gauge
groups can also be constructed following the same method
we discussed here. For example, as detailed in Appendix C,
when the gauge group is reduced to Z2, we can obtain a lattice
duality between a free massless Majorana fermion and a Z2

matter field coupled to a Z2 gauge field.
The lattice duality constructed in this section has an O(3)

gauge field on one side and a single Majorana fermion on
the other. Interestingly, Ref. [28] propose an IR duality with
similar but yet distinct features. The proposed IR duality is
between a critical vector boson coupled to an O(3)0

1,1 Chern-
Simons gauge theory (following the notations of Ref. [28])
and a single Majorana fermion plus a decoupled Z2 gauge
theory. In fact, as detailed in Appendix D, a modified version
of the model (22), can be exactly mapped to a free Majorana
fermion plus a decoupled Z2 gauge theory on the lattice. The
modified model is on its own is speculated to be connected
to in the IR the critical vector boson coupled to an O(3)0

1,1
Chern-Simons gauge theory.

IV. SUMMARY AND DISCUSSION

In this work, we construct the Euclidean space-time lattice
path integral of a theory with strongly interacting bosons and
Majorana fermions coupled to SO(3) gauge field and exactly
map this theory to the theory of free Majorana fermions. This
exact mapping or lattice duality is argued to be potentially
connected to the IR duality between critical bosons coupled
to a SO(3)1 Chern-Simons term and a single free Majo-
rana fermion proposed in Ref. [16,19]. This lattice duality
provides an exact mapping of the Euclidean path integrals
and correlation functions between both sides of the duality,
which allows us to obtain another suggestive evidence for the
conjecture in Ref. [19] regarding the apparent mismatch of a
global Z2 symmetry on the two sides of the IR duality. This
model is also generalized to lattice theories with O(3) gauge
fields and with Z2 gauge fields, respectively, which are both
again exactly dualized to a free Majorana fermion. A different
generalization of the lattice model with O(3) gauge fields is

shown to be dual to a free Majorana fermion plus a decoupled
Z2 gauge field.

While the lattice dualities are exact, the fate of these
strongly interacting lattice theories in the IR still needs more
attention. In Sec. II, we argue that the model (7) with strongly
interacting boson and fermions coupled to SO(3) gauge field
should be related to the critical boson coupled to a Chern-
Simons term in the IR. To solidify this argument, we need
to understand the effect of Sint, in particular, on the Chern-
Simons level when we integrate out the fermion fields χn in
Eq. (7). Knowing that the gauge invariant fermion in the lattice
duality has a critical point, the bosonic side of the duality
should certainly also have a critical point, but whether this
critical point really corresponds to the one described by the
field theory (1) is difficult to prove. This is certainly a question
to be answered in the future. Similarly, as we discussed in
Sec. III, the IR nature of the theory of strongly-interacting
boson and fermions coupled to the O(3) gauge field given in
Eq. (22) also remains unclear. In particular, the role of the Z2

subgroup of the O(3) gauge group and the Chern number of
the bare band structure of the fermion fields χn both require
further investigation.

In a broader picture, it is an interesting direction to gener-
alize the lattice construction of dualities to interacting theories
with more general non-Abelian gauge groups and more flavors
of interacting bosons or fermions. While being exact without
the use of any large-N limit, holography or supersymme-
try, the lattice construction is potentially a powerful tool in
deriving previously proposal IR dualities with non-Abelian
gauge fields as well as discovering new ones. Once the lattice
construction of these duality is constructed, one should be able
to read out the correspondence between the operators on both
sides of the duality.

Note added. After the completion of this work, we learned
of Ref. [54], which is a similar and independent attempt to
generalize the lattice construction to tackle dualities with non-
Abelian gauge fields.
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APPENDIX A: INTEGRATION OVER
THE SO(3) GAUGE FIELD

To integrate out the SO(3) gauge field in the action (7), we
only need to focus on the Sbg and Sfg parts of the action:

∫
D[Onμ] e−Sbg[v,O]e−Sfg[χ,O]

= exp

(
−

∑
i

∑
n

Mχ̄n,iχn,i

) ∏
n

∏
μ=x,y,z

075109-6



LATTICE CONSTRUCTION OF DUALITY WITH … PHYSICAL REVIEW B 100, 075109 (2019)

×
⎛
⎝ ∞∑

l=0

3∑
m=0

Jl

l!

(−1)m

m!

∫
SO(3)

dOnμ
(
vn+μ,iO

nμ
i j vn, j

)l

× (
χ̄n+μ,i(σ

μ − R)Onμ
i j χn, j

)m

⎞
⎠. (A1)

Generically, since the fermion field χn on each site carries
a twofold spinor index and a threefold SO(3) color index,
the terms in the expansion are expected to vanish because of
Fermi statistics only when m > 6. However, when we take
R = −1 (as we did in the main text), all the terms with m > 3
will vanish. The simplification comes from the fact that

σμ − R for any fixed μ is a rank-1 matrix acting on the spinor
space of the fermion χn when R = −1. In another word, for
a specific link labeled by n and μ, (σμ − R) only “hops” a
single spinor mode of χn,i out of its two dimensional spinor
space from site n to n + μ. Therefore the terms with m > 3
all vanish because of Fermi statistics in Eq. (A1). Since the
one spinor mode that is singled out by σμ − R for is different
in different directions μ, the fermion kinetic term σμ − R
overall does not leave any fermion mode nonpropagating. We
will choose R = −1 throughout the discussion.

In the following, we will tackle the integration in Eq. (A1)
for the terms with m = 0, 1, 2, 3 separately. The following
identity on the integration over the SO(3) group will be
helpful:

∫
SO(3)

dO (yᵀOx)n(vᵀOu)(sᵀOr)

=
{

1
2(n+2) [x · (u × r)][y · (v × s)] n odd

1
2(n+1)(n+3) {(n + 2)(uᵀr)(vᵀs) − n[(xᵀu)(xᵀr)(vᵀs) + (yᵀv)(yᵀs)(uᵀr)] + 3n(xᵀu)(xᵀr)(yᵀv)(yᵀs)} n even

. (A2)

Here, the SO(3) matrix O is being integrated under the Haar measure of SO(3). x, y ∈ R3 are three-component vectors of unit
length, while r, s, v, u ∈ R3 are any three-component vectors of arbitrary length.

For the terms with m = 0 in Eq. (A1), we have
∞∑

l=0

Jl

l!

∫
SO(3)

dOnμ
(
v
ᵀ
n+μOnμvn

)l =
∑
l even

Jl

l!

1

l + 1
= sinh J

J
. (A3)

For m = 1, we have
∞∑

l=0

−Jl

l!

∫
SO(3)

dOnμ
(
v
ᵀ
n+μOnμvn

)l(
χ̄n+μ,i(σ

μ − R)Onμ
i j χn, j

)

=
∑
l odd

−Jl

l!

1

l + 2
((χ̄n+μ,ivn+μ,i )(σ

μ − R)(χn, jvn, j )) = −J cosh J − sinh J

J2
(χ̄n+μ,ivn+μ,i )(σ

μ − R)(χn, jvn, j ). (A4)

For m = 2, we have
∞∑

l=0

Jl

l!

1

2

∫
SO(3)

dOnμ
(
v
ᵀ
n+μOnμvn

)l(
χ̄n+μ,i(σ

μ − R)Onμ
i j χn, j

)2

=
∑
l odd

Jl

l!

1

2

1

2(l + 2)
εii′i′′ε j j′ j′′ (χ̄n+μ,i(σ

μ − R)χn, j )(χ̄n+μ,i′ (σ
μ − R)χn, j′ )vn+μ,i′′vn, j′′

= J cosh J − sinh J

4J2
εii′i′′ε j j′ j′′ (χ̄n+μ,i(σ

μ − R)χn, j )(χ̄n+μ,i′ (σ
μ − R)χn, j′ )vn+μ,i′′vn, j′′ .

= J cosh J − sinh J

4J2
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ vn+μ,i′′vn, j′′ . (A5)

Notice that the even l contributions in the equation above all vanish because of fermion statistics. Lastly, for m = 3, we have
∞∑

l=0

−Jl

l!

1

6

∫
SO(3)

dOnμ
(
v
ᵀ
n+μOnμvn

)l(
χ̄n+μ,i(σ

μ − R)Onμ
i j χn, j

)3

=
∞∑

l=0

−Jl

l!

1

6

∫
SO(3)

dOnμ
(
v
ᵀ
n+μOnμvn

)l
(χ̄n+μ,i(σ

μ − R)χn,i )
3

= −1

6

sinh J

J
(χ̄n+μ,i(σ

μ − R)χn,i )
3,

= − 1

36

sinh J

J
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ J
nμ

i′′ j′′ , (A6)
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where we have used the fact that (χ̄n+μ,i(σμ − R)Onμ
i j χn, j )

3 = (det Onμ)(χ̄n+μ,i(σμ − R)χn,i )3 for R = −1 and det Onμ = 1.
Now, we can conclude that∫

D[Onμ] e−Sbg[v,O]e−Sfg[χ,O] = exp

(
−

∑
n

Mχ̄n,iχn,i

)
×

∏
n,μ

[
sinh J

J
− J cosh J − sinh J

J2
(χ̄n+μ,ivn+μ,i )(σ

μ − R)(χn, jvn, j )

+ J cosh J − sinh J

4J2
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ vn+μ,i′′vn, j′′ − 1

36

sinh J

J
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ J
nμ

i′′ j′′

]

= e−Sbfg[v,χ] ×
∏
n,μ

sinh J

J
(A7)

with the effective action Sbfg[v, χ ]:

Sbfg[v, χ ] =
∑

n

{
Mχ̄n,iχn,i + K (χ̄n+μ,ivn+μ,i )(σ

μ − R)(χn, jvn, j )

− K

4
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ vn+μ,i′′vn, j′′ + 1 − K2

36
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ J
nμ

i′′ j′′

}
, (A8)

where we have defined the variable K = J cosh J−sinh J
J sinh J . In obtaining this effective action, we have applied the identity

(χ̄n+μ,ivn+μ,i )(σμ − R)(χn, jvn, j ) × (εii′i′′ε j j′ j′′J nμ
i j J nμ

i′ j′ vn+μ,i′′vn, j′′ ) = 1
9εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ J
nμ

i′′ j′′ for R = −1.

APPENDIX B: DERIVATION OF THE ALTERNATIVE DUAL MODEL

Without the cancellation condition (11), we can generally write e−Sbfg[v,χ]−Sint [v,χ] as

e−Sbfg[v,χ]−Sint [v,χ] = exp

(
−

∑
n

Mχ̄n,iχn,i

)
×

∏
n,μ

{
1 − K (χ̄n+μ,ivn+μ,i )(σ

μ − R)(χn, jvn, j )

+ K − U1

4
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ vn+μ,i′′vn, j′′ − 1 + U2 − U1K

36
εii′i′′ε j j′ j′′J nμ

i j J nμ

i′ j′ J
nμ

i′′ j′′

}
, (B1)

We have introduced the fermion field ξn in Eq. (12) and fermion field ηn,a (with a = 1, 2) in Eq. (18). These three fermion fields
are orthogonal to each other in the SO(3) color space. Under a fixed configuration of the vector boson vn, we can write

e−Sbfg−Sint = exp

[∑
n

(M ′ξ̄n,iξn,i + M ′′η̄n,1ηn,1 + M ′′η̄n,2ηn,2)

]

×
∏
n,μ

{
1 − ξ̄n+μ(σμ − R)ξn + (η̄n+μ,1(σμ − R)ηn,1)(η̄n+μ,2(σμ − R)ηn,2)

− 1 + U2 − U1K

(K − U1)K
(ξ̄n+μ(σμ − R)ξn)(η̄n+μ,1(σμ − R)ηn,1)(η̄n+μ,2(σμ − R)ηn,2)

}
, (B2)

where

M ′ = M/K, M ′′ = M(K − U1)−
1
2 . (B3)

Notice that we have been assuming that K > U1 in this discussion. To simplify the expression further, a trick is to introduce an
SO(2) gauge field U nμ, represented by a 2 × 2 orthogonal matrix U nμ

ab with a, b = 1, 2, on every link:

e−Sbfg−Sint = exp

[
−

∑
n

(M ′ξ̄nξn + M ′′η̄n,aηn,a)

]
×

∏
n,μ

{∫
dU nμ exp(−ξ̄n+μ(σμ − R)ξn) × exp

( − η̄n+μ,a(σμ − R)U nμ

ab ηn,b
)

× exp(−V (ξ̄n+μ(σμ − R)ξn)(η̄n+μ,1(σμ − R)ηn,1)(η̄n+μ,2(σμ − R)ηn,2))

}
(B4)

with V = 1+U2−K2

(K−U1 )K . Here, the repeated SO(2) indices a, b are
automatically summed from 1 to 2. Although this rewriting

is introduced as a trick, its physical meaning is discussed in
Sec. II D. To show that Eq. (B4) is equivalent to Eq. (B2), we
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simply need to perform a Taylor expansion to the exponential
term exp ( − η̄n+μ,a(σμ − R)U nμ

ab ηn,b) in Eq. (B4). Here, we
have also chosen R = −1 which in this case leads to only three
nonvanishing terms, i.e., the zeroth-, the first-, and the second-
order terms, in the expansion. Other terms vanish because of
Fermi statistics. Now, we can perform the integration

∫
dU nμ

term by term. The first order term further vanishes because it
contains an odd power of U nμ. The integration for the zeroth-
and the second-order terms are also simple because they are in
fact independent of U nμ. Putting these together, we can verify
that Eq. (B4) is consistent with Eq. (B2). Equation (B4) is
essentially Eq. 19 after regrouping different terms on the right-
hand side of the equation.

APPENDIX C: LATTICE DUALITY WITH
Z2 GAUGE FIELD

In this Appendix, we provide the lattice construction of a
similar boson-fermion duality with the gauge group (on the
boson side) reduced from O(3) to Z2. Loosely speaking, we
will show that a single-component real scalar boson coupled
to an “O(1)1 Chern-Simons” gauge field is dual to a free
Majorana fermion in 2+1D. The precise meaning of the
“O(1)1 Chern-Simons” term is actually a Z2 gauge field
coupled to massive Majorana fermions in a Chern band with
Chern number C = 1, which is also known as the Ising
topological order.

We start with the path integral formulation on the 3D Eu-
clidian space-time lattice. On the bosonic side of the duality,
we introduce on each site n a single-component scalar boson
σn (which can treated as a Z2 variable σn = ±1) and two real
Grassmanian variables χn = (χn1, χn2)ᵀ. They both couple to
a Z2 gauge field Bnμ = ±1 on the link nμ that connects site
n and n + μ (where μ = 0, 1, 2 labels the link direction).
The partition function of the Euclidean lattice path integral is
given by

Zb =
∫

D[χ ]
∑
[σ,B]

e−Sbg[σ,B]−Sfg[χ,B], (C1)

where the actions Sbg and Sfg are given by

Sbg[σ, B] = −J
∑
nμ

σn+μBnμσn,

Sfg[χ, B] =
∑
nμ

χ̄n+μ(γ μ − R)Bnμχn +
∑

n

Mχ̄nχn. (C2)

Here the gamma matrices are defined as (γ 0, γ 1, γ 2) =
(σ 2, σ 3, σ 1) and χ̄n ≡ χᵀ

n γ 0. The Majorana Chern number
of the lattice fermion χ is still given by Eq. (5). The theory
describes the an Ising Higgs model twisted by auxiliary
Majorana fermions. The interaction among auxiliary fermions
χ can be circumvented when the gauge group is Z2, which
simplifies the derivation of the duality, similar to the case of
O(3) gauge group in Eq. (22). The partition function Zb in
Eq. (C1) can be expanded on the lattice to the following form:

Zb =
∫

D[χ ]
∑
[σ,B]

∏
nμ

Tnμ(R)[χ, B]Wnμ(J )[σ, B]

×
∏

n

Vn(M )[χ ],w

Tnμ(R)[χ, B] = e−χ̄n+μ(γ μ−R)Bnμχn

= 1 − χ̄n+μ(γ μ − R)Bnμχn,

Wnμ(J )[σ, B] = eJσn+μBnμσn ∝ 1 + (tanh J )σn+μBnμσn,

Vn(M )[χ ] = e−Mχ̄nχn . (C3)

In the expansion of Tnμ(R)[χ, B], we have assumed R = −1
such that the expansion terminates at the quadratic order. On
each link nμ, we can first integrating out the Z2 gauge field
Bnμ = ±1, and arrive at a new link term

T ′
nμ(R, J )[χ, σ ] =

∑
Bnμ

Tnμ(R)[χ, B]Wnμ(J )[σ, B]

= 1 − (tanh J ) σn+μχ̄n+μ(γ μ − R)χnσn.

(C4)

With this, the partition function in Eq. (C3) reduces to

Zb =
∫

D[χ ]
∑
[σ ]

∏
nμ

T ′
nμ(R, J )[χ, σ ]

∏
n

Vn(M )[χ ]. (C5)

Integrating out the scalar (Ising) field σn simply imposes the
current conservation of the fermion χn, which is already built-
in in the fermion path integral formalism. If we redefine a new
set of real Grassmannian variables

ξn =
√

tanh J χnσn, (C6)

the partition function in Eq. (C5) will simply become a theory
of ξn fermion with renormalized mass,

Z f =
∫

D[ξ ]
∏
nμ

Tnμ(R)[ξ ]
∏

n

Vn(M ′)[ξ ],

Tnμ(R)[ξ ] = 1 − ξ̄n+μ(γ μ − R)ξn = e−ξ̄n+μ(γ μ−R)ξn ,

Vn(M ′)[ξ ] = e−M ′ ξ̄nξn , (C7)

where the renormalized mass M ′ is given by

M ′ = M/ tanh J. (C8)

Now we have arrived at a theory that exactly describes a free
Majorana on the Euclidean space-time lattice, which can be
equivalently written in the action form as follows:

Z f =
∫

D[ξ ]e−Sf[ξ ],

Sf[ξ ] =
∑
nμ

ξ̄n+μ(γ μ − R)ξn +
∑

n

M ′ξ̄nξn. (C9)

Thus we have established an exact lattice duality between
the twisted Ising Higgs model Zb in Eq. (C1) and the free
Majorana model Z f in Eq. (C9). This exact mapping is valid
regardless whether the model Zb (or its dual model Z f ) is at the
critical point or not. Knowing that the dual Majorana fermion
ξ has a critical point at R = −1 and M ′ = 3, the original
model Zb should have the same critical point at R = −1, M =
M ′ tanh J = 3 tanh J . For any positive coupling J , M is always
smaller than 3. If we choose J such that 1 < M < 3, as we
integrate out the fermion χ , the model Zb can be interpreted
as a Z2 matter field coupled to a Z2 gauge field (with Ising
topological order).
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APPENDIX D: DUALITY TOWARDS A FREE MAJORANA
FERMION PLUS A DECOUPLED Z2 GAUGE FIELD

In Ref. [28], an IR duality between the critical vector
boson coupled to an O(3)0

1,1 Chern-Simons gauge theory
(following the notation of Ref. [28]) and the theory with a
free Majorana fermion plus a decoupled Z2 gauge theory
is proposed. Before we discuss a related lattice duality, a
brief explanation of the O(3)0

1,1 Chern-Simons term is in
order. In the convention of Ref. [28], O(3)0

1,1 Chern-Simons
term is an O(3) Chern-Simons term at level 1 plus another
topological term f [w1] at level 1. Here, w1 is the first
Stiefel-Whitney class of the O(3) gauge bundle, which in
this case can be identified with the Z2 gauge fields obtained
from restricting the O(3) = SO(3) × Z2 gauge group to
its Z2 subgroup. When we viewed w1 as a Z2 gauge field,
f [w1] is the topological term generated by coupling the
Z2 gauge field w1 to a single copy of Z2-charged massive
Majorana fermion in a band structure with Chern number 1 (or
equivalently to a single copy of p + ip superconductor with
the fermions carrying a Z2 charge). Since we can decompose
the gauge group according to O(3) = SO(3) × Z2, we can
rewrite following Ref. [28] that O(3)0

1,1 Chern-Simons term =
SO(3)1 Chern-Simons term + πw2[SO(3)] ∪ w1 + 3 f [w1],
where w1 is identified with the Z2 subgroup of the O(3) gauge
group and w2[SO(3)] is the second Stiefel-Whitney class of
the SO(3) part of the gauge field. From this relation, one can
see that the O(3)0

1,1 Chern-Simons term can be generated by
coupling three copies of massive Majorana fermions (forming
an vector representation under the O(3) gauge group) each
in a band structure with Chern number 1 to an O(3) gauge
field. As we will see, this understanding of the O(3)0

1,1
Chern-Simons term will also be helpful in understanding
the IR nature of the lattice model we will discuss in the
following.

This proposed IR duality in Ref. [28] is similar to the
lattice duality studied in Sec. III on the corresponding “boson
sides” as they both describe a vector boson coupled to an
O(3) Chern-Simons gauge theory. However, on the “fermion
side,” while both studies contain the theory of a free Majorana
fermion, the proposed duality of Ref. [28] also includes an
extra decoupled Z2 gauge theory. Inspired by the proposed
IR duality, we will introduce a lattice model that is slightly
different from Eq. (22) and construct an exact mapping to a
dual theory containing a free Majorana fermion and a decou-
pled Z2 gauge theory. We will agree that this lattice duality is
connected to the IR duality between the critical vector boson
coupled to an O(3)0

1,1 Chern-Simons gauge theory and a free
Majorana fermion plus a decoupled Z2 gauge theory.

Now, we introduce the ingredients of the lattice model. We
consider a model with the same degrees of freedom as the
model (22): a vector boson field vn and a Majorana fermion
field χn on each site both coupled to the O(3) gauge field
Onμ on the links. Since O(3) = SO(3) × Z2, we can always
decompose the O(3) gauge field as Onμ = BnμÕnμ, where
Bnμ = ±1 describes a Z2 gauge field and Õnμ is an SO(3)
matrix that describes a SO(3) gauge field on the link nμ. The
integration over the O(3) gauge field Onμ is equivalent to the
integration over the SO(3) gauge field Õnμ under the Haar
measure of SO(3) followed by the summation over Bnμ = ±1,

i.e.,
∫

D[Onμ] = ∫
D[Õnμ]

∑
[Bnμ], where

∑
[Bnμ] represents

the summation over all configuration of Bnμ = ±1. We will
include the actions S′

bg and S′
fg introduced in Sec. III in the

current lattice model. Using these new gauge field variables,
we can rewrite them as

S′
bg[v, O] = S′

bg[v, Õ, B] =
∑

n

∑
μ=x,y,z

−J vn+μ,iB
nμÕnμ

i j vn, j

(D1)

and

S′
fg[χ, O] = S′

fg[χ, Õ, B] =
∑

n

∑
μ=x,y,z

χ̄n+μ,i(σ
μ − R)

× BnμÕnμ
i j χn, j + M

∑
n

χ̄n,iχn,i. (D2)

While the model studied in Sec. III only contains the terms
S′

bg and S′
fg, we will further introduce an interaction term S′

int

and a gauge field term S′
Z2

for the current model of interest.
The interaction terms S′

int is given by

S′
int[χ, v, B] = U1

4

∑
n,μ

εii′i′′ε j j′ j′′B
nμJ nμ

i j J nμ

i′ j′ vn+μ,i′′vn, j′′

+ U2

36

∑
n,μ

εii′i′′ε j j′ j′′B
nμJ nμ

i j J nμ

i′ j′ J
nμ

i′′ j′′ . (D3)

Notice that even though S′
int[χ, v, B] only depends on the Z2

gauge field Bnμ, it is fully O(3) gauge-invariant. In fact, one
can view S′

int as the “O(3)-gauged” version of Eq. (6). The Z2

gauge field Bnμ can have its only dynamics described by the
standard Z2 lattice gauge theory action:

S′
Z2

[B] =
∑

plaquette p

t
∏

link l∈p

Bl , (D4)

where p labels the two-dimensional square plaquettes of the
3D space-time cubic lattice, the product

∏
link l∈p represents

the product over all links l that belong to the plaquette p, and
t denotes the coupling constant of the Z2 gauge field Bnμ. No-
tice that such a pure gauge dynamical term was not introduced
in any previous lattice models studied in the main text where
the only gauge field dynamics were thought of as generated by
the coupling to the Majorana fermions. In the discussion here,
we not only couple the gauge field to the fermions χn, but also
include the term S′

Z2
[B] into consideration. As we will see,

such a gauge dynamical term will help keeping the Z2 gauge
field deconfined across the duality. Having introduced all the
ingredients, we can write down the model of interest

Z ′′
b =

∑
[Bnμ]

∫
D[Õnμ]

∫
D[χn,i]

∫
D[vn]e−S′

bg−S′
fg−S′

int−S′
Z2 .

(D5)

To construct the lattice duality, we first integrate out the
SO(3) gauge field Õnμ in Eq. (D5). The technical details
of this integration very much follow those in Sec. II and
Appendix A. Similar to Sec. II, by choosing the parameters
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Eq. 11, we have

∫
D[Õnμ]e−S′

bg−S′
fg−S′

int = exp

(
−

∑
n

Mχ̄n,iχn,i

)

×
∏
n,μ

[1 − K (χ̄n+μ,ivn+μ,i )(σ
μ − R)(χn, jvn, j )]. (D6)

Interestingly, even though all of S′
bg, S′

fg and S′
int depend on

the Z2 gauge field Bnμ, the right-hand side of this equation is
independent of Bnμ as the result of both the integration over
the SO(3) gauge field Õnμ and the parameter choice Eq. (11).
Again, we introduce the Majorana fermion field ξn following
Eq. (12) and integrate out the Majorana fermion fields ξ ′

n and
ξ ′′

n that are orthogonal to ξ ′
n in the O(3) color space. We obtain

that

∑
[Bnμ]

∫
D[Õnμ]

∫
D[χn,i]e

−S′
bg−S′

fg−S′
int−S′

Z2

= N ′′ ∑
[Bnμ]

∫
D[ξn] exp

(
−

∑
n,μ

ξ̄n+μ(σμ−R)ξn

−
∑

n

M ′ξ̄nξn

)
× exp

( − S′
Z2

)
, (D7)

where M ′ = M/K and N ′′ is an overall normalization con-
stant. We notice that the right-hand side of Eq. (D7) describes
a dual theory with a free Majorana fermion plus a decoupled
Z2 gauge theory. In fact, this lattice duality can be viewed
as the one studied in Sec. II B with the Z2 global symmetry
(introduced in Sec. II C) promoted to a dynamical Z2 gauge
theory.

When we tune M ′ = 3 and keep the coupling constant t in
Eq. (D4) of the Z2 gauge field sufficiently large (and positive),
the dual theory is at a critical point that contains a massless
Majorana fermion and a decoupled deconfined Z2 gauge the-
ory in the IR. Now, we turn to the discussion of the IR nature
of the model (D5) at this critical point. When M ′ = 3, the
mass parameter M is always M < 3. When we choose the
coupling constant J such that 1 < M < 3, the Chern number
C of the bare band structure of the Majorana fermion fields
χn in the model (D5) becomes C = 1. In this regime, if we
integrate out the Majorana fermions χn in Eq. (D5), while
neglecting the effect of S′

int in this integration, an O(3)0
1,1

Chern-Simons term will be generated and the resulting theory
will be naturally identified as a vector boson coupled to an
O(3)0

1,1 Chern-Simons gauge theory. However, it is unclear
how exactly the interaction terms S′

int, which is inevitable by
the condition (11), affects this statement. An observation is
that, in a naively continuum limit, all the terms in S′

int contain
high powers of space-time derivatives and may be considered
irrelevant in a continuum field theory. Also, we notice that
the O(3)0

1,1 Chern-Simons term does not have any continuous
tuning parameters. These two observations make it plausible
that the O(3)0

1,1 Chern-Simons term is not affected by the
interactions S′

int when we integrate out the fermion χn with a
bare mass 3 − M of order 1 (and with M − 1 order 1 as well)
in the model (D5). Therefore we speculate that the theory (D5)
still corresponds to the theory of a vector boson coupled to
an O(3)0

1,1 Chern-Simons gauge theory in the IR despite of
the interactions S′

int. If this speculation is correct, the lattice
duality discussed in this Appendix can be viewed as an UV
regulated version of the IR duality between a critical vector
boson coupled to an O(3)0

1,1 Chern-Simons gauge theory and
a free Majorana fermion plus a decoupled Z2 gauge field
proposed in Ref. [28].

[1] M. E. Peskin, Ann. Phys. 113, 122 (1978).
[2] C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47, 1556

(1981).
[3] A. M. Polyakov, Mod. Phys. Lett. A 3, 325 (1988).
[4] W. Chen, M. P. A. Fisher, and Y.-S. Wu, Phys. Rev. B 48, 13749

(1993).
[5] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia,

and X. Yin, Eur. Phys. J. C 72, 2112 (2012).
[6] O. Aharony, G. Gur-Ari, and R. Yacoby, J. High Energy Phys.

12 (2012) 028.
[7] O. Aharony, G. Gur-Ari, and R. Yacoby, J. High Energy Phys.

03 (2012) 037.
[8] N. Seiberg, T. Senthil, C. Wang, and E. Witten, Ann. Phys. 374,

395 (2016).
[9] D. Thanh Son, Phys. Rev. X 5, 031027 (2015).

[10] M. A. Metlitski and A. Vishwanath, Phys. Rev. B 93, 245151
(2016).

[11] C. Wang and T. Senthil, Phys. Rev. X 5, 041031 (2015).
[12] D. F. Mross, J. Alicea, and O. I. Motrunich, Phys. Rev. Lett.

117, 016802 (2016).
[13] C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and T. Senthil,

Phys. Rev. X 7, 031051 (2017).

[14] P.-S. Hsin and N. Seiberg, J. High Energy Phys. 09 (2016) 095.
[15] C. Xu and Y.-Z. You, Phys. Rev. B 92, 220416(R) (2015).
[16] O. Aharony, F. Benini, P.-S. Hsin, and N. Seiberg, J. High

Energy Phys. 02 (2017) 072.
[17] O. Aharony, J. High Energy Phys. 02 (2016) 093.
[18] A. Karch and D. Tong, Phys. Rev. X 6, 031043 (2016).
[19] M. A. Metlitski, A. Vishwanath, and C. Xu, Phys. Rev. B 95,

205137 (2017).
[20] D. Gaiotto, Z. Komargodski, and N. Seiberg, J. High Energy

Phys. 01 (2018) 110.
[21] J. Gomis, Z. Komargodski, and N. Seiberg, SciPost Phys. 5, 007

(2018).
[22] A. Karch, B. Robinson, and D. Tong, J. High Energy Phys. 01

(2017) 017.
[23] G. Gur-Ari and R. Yacoby, J. High Energy Phys. 11 (2015) 013.
[24] F. Benini, J. High Energy Phys. 02 (2018) 068.
[25] K. Jensen and A. Karch, J. High Energy Phys. 11 (2017) 018.
[26] K. Jensen, J. High Energy Phys. 01 (2018) 031.
[27] C. Cordova, P.-S. Hsin, and N. Seiberg, SciPost Phys. 5, 006

(2018).
[28] C. Cordova, P.-S. Hsin, and N. Seiberg, SciPost Phys. 4, 021

(2018).

075109-11

https://doi.org/10.1016/0003-4916(78)90252-X
https://doi.org/10.1016/0003-4916(78)90252-X
https://doi.org/10.1016/0003-4916(78)90252-X
https://doi.org/10.1016/0003-4916(78)90252-X
https://doi.org/10.1103/PhysRevLett.47.1556
https://doi.org/10.1103/PhysRevLett.47.1556
https://doi.org/10.1103/PhysRevLett.47.1556
https://doi.org/10.1103/PhysRevLett.47.1556
https://doi.org/10.1142/S0217732388000398
https://doi.org/10.1142/S0217732388000398
https://doi.org/10.1142/S0217732388000398
https://doi.org/10.1142/S0217732388000398
https://doi.org/10.1103/PhysRevB.48.13749
https://doi.org/10.1103/PhysRevB.48.13749
https://doi.org/10.1103/PhysRevB.48.13749
https://doi.org/10.1103/PhysRevB.48.13749
https://doi.org/10.1140/epjc/s10052-012-2112-0
https://doi.org/10.1140/epjc/s10052-012-2112-0
https://doi.org/10.1140/epjc/s10052-012-2112-0
https://doi.org/10.1140/epjc/s10052-012-2112-0
https://doi.org/10.1007/JHEP12(2012)028
https://doi.org/10.1007/JHEP12(2012)028
https://doi.org/10.1007/JHEP12(2012)028
https://doi.org/10.1007/JHEP12(2012)028
https://doi.org/10.1007/JHEP03(2012)037
https://doi.org/10.1007/JHEP03(2012)037
https://doi.org/10.1007/JHEP03(2012)037
https://doi.org/10.1007/JHEP03(2012)037
https://doi.org/10.1016/j.aop.2016.08.007
https://doi.org/10.1016/j.aop.2016.08.007
https://doi.org/10.1016/j.aop.2016.08.007
https://doi.org/10.1016/j.aop.2016.08.007
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevB.93.245151
https://doi.org/10.1103/PhysRevB.93.245151
https://doi.org/10.1103/PhysRevB.93.245151
https://doi.org/10.1103/PhysRevB.93.245151
https://doi.org/10.1103/PhysRevX.5.041031
https://doi.org/10.1103/PhysRevX.5.041031
https://doi.org/10.1103/PhysRevX.5.041031
https://doi.org/10.1103/PhysRevX.5.041031
https://doi.org/10.1103/PhysRevLett.117.016802
https://doi.org/10.1103/PhysRevLett.117.016802
https://doi.org/10.1103/PhysRevLett.117.016802
https://doi.org/10.1103/PhysRevLett.117.016802
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1103/PhysRevB.92.220416
https://doi.org/10.1103/PhysRevB.92.220416
https://doi.org/10.1103/PhysRevB.92.220416
https://doi.org/10.1103/PhysRevB.92.220416
https://doi.org/10.1007/JHEP02(2017)072
https://doi.org/10.1007/JHEP02(2017)072
https://doi.org/10.1007/JHEP02(2017)072
https://doi.org/10.1007/JHEP02(2017)072
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1103/PhysRevB.95.205137
https://doi.org/10.1103/PhysRevB.95.205137
https://doi.org/10.1103/PhysRevB.95.205137
https://doi.org/10.1103/PhysRevB.95.205137
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.21468/SciPostPhys.5.1.007
https://doi.org/10.21468/SciPostPhys.5.1.007
https://doi.org/10.21468/SciPostPhys.5.1.007
https://doi.org/10.21468/SciPostPhys.5.1.007
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP11(2015)013
https://doi.org/10.1007/JHEP11(2015)013
https://doi.org/10.1007/JHEP11(2015)013
https://doi.org/10.1007/JHEP11(2015)013
https://doi.org/10.1007/JHEP02(2018)068
https://doi.org/10.1007/JHEP02(2018)068
https://doi.org/10.1007/JHEP02(2018)068
https://doi.org/10.1007/JHEP02(2018)068
https://doi.org/10.1007/JHEP11(2017)018
https://doi.org/10.1007/JHEP11(2017)018
https://doi.org/10.1007/JHEP11(2017)018
https://doi.org/10.1007/JHEP11(2017)018
https://doi.org/10.1007/JHEP01(2018)031
https://doi.org/10.1007/JHEP01(2018)031
https://doi.org/10.1007/JHEP01(2018)031
https://doi.org/10.1007/JHEP01(2018)031
https://doi.org/10.21468/SciPostPhys.5.1.006
https://doi.org/10.21468/SciPostPhys.5.1.006
https://doi.org/10.21468/SciPostPhys.5.1.006
https://doi.org/10.21468/SciPostPhys.5.1.006
https://doi.org/10.21468/SciPostPhys.4.4.021
https://doi.org/10.21468/SciPostPhys.4.4.021
https://doi.org/10.21468/SciPostPhys.4.4.021
https://doi.org/10.21468/SciPostPhys.4.4.021


CHAO-MING JIAN, ZHEN BI, AND YI-ZHUANG YOU PHYSICAL REVIEW B 100, 075109 (2019)

[29] M. Cheng and C. Xu, Phys. Rev. B 94, 214415 (2016).
[30] S. Kachru, M. Mulligan, G. Torroba, and H. Wang, Phys. Rev.

Lett. 118, 011602 (2017).
[31] S. Kachru, M. Mulligan, G. Torroba, and H. Wang, Phys. Rev.

D 94, 085009 (2016).
[32] A. Karch, D. Tong, and C. Turner, J. High Energy Phys. 07

(2018) 059.
[33] E. Fradkin and S. Kivelson, Nucl. Phys. B 474, 543 (1996).
[34] D. Radicevic, D. Tong, and C. Turner, J. High Energy Phys. 12

(2016) 067.
[35] A. Hui, M. Mulligan, and E.-A. Kim, Phys. Rev. B 97, 085112

(2018).
[36] C. Wang and T. Senthil, Phys. Rev. B 94, 245107 (2016).
[37] I. Sodemann, I. Kimchi, C. Wang, and T. Senthil, Phys. Rev. B

95, 085135 (2017).
[38] Y. Q. Qin, Y.-Y. He, Y.-Z. You, Z.-Y. Lu, A. Sen, A. W. Sandvik,

C. Xu, and Z. Y. Meng, Phys. Rev. X 7, 031052 (2017.
[39] E. Witten, arXiv:hep-th/0307041.
[40] D. F. Mross, J. Alicea, and O. I. Motrunich, Phys. Rev. X 7,

041016 (2017).
[41] H. Goldman and E. Fradkin, Phys. Rev. B 97, 195112

(2018).

[42] J.-Y. Chen, J. H. Son, C. Wang, and S. Raghu, Phys. Rev. Lett.
120, 016602 (2018).

[43] N. Karthik and R. Narayanan, Phys. Rev. D 96, 054509 (2017).
[44] S. Banerjee and D. Radicevic, J. High Energy Phys. 06 (2014)

168.
[45] S. Jain, S. Minwalla, and S. Yokoyama, J. High Energy Phys.

11 (2013) 037.
[46] O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena, and R.

Yacoby, J. High Energy Phys. 03 (2013) 121.
[47] S. Naculich, H. Riggs, and H. Schnitzer, Phys. Lett. B 246, 417

(1990).
[48] E. J. Mlawer, S. G. Naculich, H. A. Riggs, and H. J. Schnitzer,

Nucl. Phys. B 352, 863 (1991).
[49] S. G. Naculich and H. J. Schnitzer, J. High Energy Phys. 06

(2007) 023.
[50] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[51] K. G. Wilson, New Phenomena in Subnuclear Physics edited by

A. Zichichi (Plenum, New York, 1977).
[52] M. F. Golterman, K. Jansen, and D. B. Kaplan, Phys. Lett. B

301, 219 (1993).
[53] A. Coste and M. Lüscher, Nucl. Phys. B 323, 631 (1989).
[54] J.-Y. Chen and M. Zimet, J. High Energy Phys. 08 (2018) 015.

075109-12

https://doi.org/10.1103/PhysRevB.94.214415
https://doi.org/10.1103/PhysRevB.94.214415
https://doi.org/10.1103/PhysRevB.94.214415
https://doi.org/10.1103/PhysRevB.94.214415
https://doi.org/10.1103/PhysRevLett.118.011602
https://doi.org/10.1103/PhysRevLett.118.011602
https://doi.org/10.1103/PhysRevLett.118.011602
https://doi.org/10.1103/PhysRevLett.118.011602
https://doi.org/10.1103/PhysRevD.94.085009
https://doi.org/10.1103/PhysRevD.94.085009
https://doi.org/10.1103/PhysRevD.94.085009
https://doi.org/10.1103/PhysRevD.94.085009
https://doi.org/10.1007/JHEP07(2018)059
https://doi.org/10.1007/JHEP07(2018)059
https://doi.org/10.1007/JHEP07(2018)059
https://doi.org/10.1007/JHEP07(2018)059
https://doi.org/10.1016/0550-3213(96)00310-0
https://doi.org/10.1016/0550-3213(96)00310-0
https://doi.org/10.1016/0550-3213(96)00310-0
https://doi.org/10.1016/0550-3213(96)00310-0
https://doi.org/10.1007/JHEP12(2016)067
https://doi.org/10.1007/JHEP12(2016)067
https://doi.org/10.1007/JHEP12(2016)067
https://doi.org/10.1007/JHEP12(2016)067
https://doi.org/10.1103/PhysRevB.97.085112
https://doi.org/10.1103/PhysRevB.97.085112
https://doi.org/10.1103/PhysRevB.97.085112
https://doi.org/10.1103/PhysRevB.97.085112
https://doi.org/10.1103/PhysRevB.94.245107
https://doi.org/10.1103/PhysRevB.94.245107
https://doi.org/10.1103/PhysRevB.94.245107
https://doi.org/10.1103/PhysRevB.94.245107
https://doi.org/10.1103/PhysRevB.95.085135
https://doi.org/10.1103/PhysRevB.95.085135
https://doi.org/10.1103/PhysRevB.95.085135
https://doi.org/10.1103/PhysRevB.95.085135
https://doi.org/10.1103/PhysRevX.7.031052
https://doi.org/10.1103/PhysRevX.7.031052
https://doi.org/10.1103/PhysRevX.7.031052
https://doi.org/10.1103/PhysRevX.7.031052
http://arxiv.org/abs/arXiv:hep-th/0307041
https://doi.org/10.1103/PhysRevX.7.041016
https://doi.org/10.1103/PhysRevX.7.041016
https://doi.org/10.1103/PhysRevX.7.041016
https://doi.org/10.1103/PhysRevX.7.041016
https://doi.org/10.1103/PhysRevB.97.195112
https://doi.org/10.1103/PhysRevB.97.195112
https://doi.org/10.1103/PhysRevB.97.195112
https://doi.org/10.1103/PhysRevB.97.195112
https://doi.org/10.1103/PhysRevLett.120.016602
https://doi.org/10.1103/PhysRevLett.120.016602
https://doi.org/10.1103/PhysRevLett.120.016602
https://doi.org/10.1103/PhysRevLett.120.016602
https://doi.org/10.1103/PhysRevD.96.054509
https://doi.org/10.1103/PhysRevD.96.054509
https://doi.org/10.1103/PhysRevD.96.054509
https://doi.org/10.1103/PhysRevD.96.054509
https://doi.org/10.1007/JHEP06(2014)168
https://doi.org/10.1007/JHEP06(2014)168
https://doi.org/10.1007/JHEP06(2014)168
https://doi.org/10.1007/JHEP06(2014)168
https://doi.org/10.1007/JHEP11(2013)037
https://doi.org/10.1007/JHEP11(2013)037
https://doi.org/10.1007/JHEP11(2013)037
https://doi.org/10.1007/JHEP11(2013)037
https://doi.org/10.1007/JHEP03(2013)121
https://doi.org/10.1007/JHEP03(2013)121
https://doi.org/10.1007/JHEP03(2013)121
https://doi.org/10.1007/JHEP03(2013)121
https://doi.org/10.1016/0370-2693(90)90623-E
https://doi.org/10.1016/0370-2693(90)90623-E
https://doi.org/10.1016/0370-2693(90)90623-E
https://doi.org/10.1016/0370-2693(90)90623-E
https://doi.org/10.1016/0550-3213(91)90110-J
https://doi.org/10.1016/0550-3213(91)90110-J
https://doi.org/10.1016/0550-3213(91)90110-J
https://doi.org/10.1016/0550-3213(91)90110-J
https://doi.org/10.1088/1126-6708/2007/06/023
https://doi.org/10.1088/1126-6708/2007/06/023
https://doi.org/10.1088/1126-6708/2007/06/023
https://doi.org/10.1088/1126-6708/2007/06/023
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/0370-2693(93)90692-B
https://doi.org/10.1016/0370-2693(93)90692-B
https://doi.org/10.1016/0370-2693(93)90692-B
https://doi.org/10.1016/0370-2693(93)90692-B
https://doi.org/10.1016/0550-3213(89)90127-2
https://doi.org/10.1016/0550-3213(89)90127-2
https://doi.org/10.1016/0550-3213(89)90127-2
https://doi.org/10.1016/0550-3213(89)90127-2
https://doi.org/10.1007/JHEP08(2018)015
https://doi.org/10.1007/JHEP08(2018)015
https://doi.org/10.1007/JHEP08(2018)015
https://doi.org/10.1007/JHEP08(2018)015

