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By extending our victory implementation of the parquet approach to include nonlocal Coulomb interactions,
we study the extended Hubbard model on the two-dimensional square lattice with a particular focus on
the competition of the nonlocal charge and spin fluctuations. Surprisingly, we find that their competition,
as the mechanism driving the phase transition towards the charge density wave, dominates only in a very
narrow parameter regime in the immediate vicinity of the phase transition. Due to the special geometry and
the Fermi surface topology of the square lattice, antiferromagnetic fluctuations dominate even for sizable
next-nearest-neighbor interactions. Our conclusions are based on the consistent observations in both the single-
and two-particle quantities, including the self-energy, the single-particle spectral function, the two-particle
susceptibility, the density-density vertex function, and the optical conductivity. Our work unbiasedly establishes
the connection of these quantities to the charge fluctuations, and the way of interpretation can be readily applied
to any many-body method with access to the two-particle vertex.
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I. INTRODUCTION

The study of strongly correlated electron systems is noto-
riously difficult and represents one of the greatest challenges
in contemporary condensed matter physics. The competition
of the various entangled degrees of freedom, such as the
charge, spin, and orbital contributions, is often the source
of emerging exotic physics. On the other hand, it imposes a
great challenge to theory. The interest in correlated electron
models, especially the Hubbard model with an interaction
strengths comparable to the bandwidth, is highly motivated by
the unconventional physics beyond the simple itinerant or lo-
calized picture discovered in high-temperature superconduc-
tors [1–6]. The half-filled, two-dimension Cu-O plane shows
magnetic long-range order, which can be gradually removed
by electron or hole doping, necessary for the emergence of
superconductivity.

Besides magnetic order and fluctuations also the relevance
of charge density wave fluctuations and order is discussed—
already in the early days of high-temperature superconduc-
tivity [7] but more intensively after experimental evidence
thereof [8–10]. These charge density wave fluctuations are
fostered by nonlocal Coulomb interactions, leading to the so-
called extended Hubbard model (EHM) [11–16] as a minimal
model. The EHM Hamiltonian reads

H = − t
∑
〈i j〉,σ

c†
iσ c jσ − μ

∑
i,σ

niσ

+ U
∑

i

ni↑ni↓ + V

2

∑
〈i j〉,σσ ′

niσ n jσ ′ , (1)
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where c(†)
iσ is the annihilation (creation) of electrons with

spin σ ∈ {↑,↓} at lattice site i. The particle density is hence
given by niσ = c†

iσ ciσ . The kinetic term of the Hamiltonian
(1) describes the hopping of electrons with amplitude t to
neighboring sites only, via 〈i j〉; the screened long-range
Coulomb potential is described by an on-site density-density
interaction with strength U and by a V term including inter-
action between electrons on neighboring sites. In this paper
we restrict ourselves to the case of only positive U and V
since the Coulomb interaction is repulsive, albeit low-energy
effective models may also be attractive and show interesting
physics [17].

As already mentioned, the presence of nonlocal interaction
term introduces, in addition to the antiferromagnetic corre-
lation caused by the on-site interaction, the intersite charge
density correlations. The competition of the two types of cor-
relations leads to a phase transition between the spin density
wave (SDW) and the charge density wave (CDW) in the low-
temperature regime. From the low-energy effective theory
point of view, a weak nonlocal interaction can be viewed as
an additional screening of the local interaction. An effective
local interaction, after integrating out the nonlocal interaction,
can then be obtained. However, the intersite fluctuations (or
the nonlocal charge fluctuations) are absent in such effective
theory. That is, in the effective theory the bare interaction is
renormalized by the frequency/energy dependent dielectric
function determined from the charge-charge correlation func-
tion and the effective local interaction becomes dynamic, i.e.,
U (ω) [18–21]. With the increase of the nonlocal interactions,
the “screening” picture is, however, no longer appropriate due
to the underestimation of the nonlocal interaction effect and a
more complete description of the two interactions in the EHM
is required.
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FIG. 1. Phase diagram of the EHM in the Hartree-Fock [29]
(solid line) and the DMFT [29] (dashed line with circles) approxi-
mations. Antiferromagnetic, charge density wave, and paramagnetic
solution are denoted as AFM, CDW, and PM. The last occurs because
of the finite temperature, i.e., T = 1/4t , in the DMFT calculation
[29,32]. The triangles represent the parameters at which the cal-
culations of the present paper were performed using the parquet
approximation (denoted as PA, light blue for U = 2t and dark blue
for U = 4t).

It is, however, difficult to treat the two types of interaction
in Eq. (1) simultaneously. Let us start with the exact solution
in the atomic limit, i.e., for ti j = 0. In one dimension at
half-filing, the ground states of the atomic EHM is in a CDW
ordered phase when U < 0 irrespective the value of V . This
phase is characterized by the alternative appearance of the
empty and the doubly occupied states, forming the CDW with
two-site periodicity. It extends to the positive value of U as
long as U/2 < V , otherwise the Mott phase is realized where
only singly occupied states are allowed [22]. Similar analysis
can be carried over to higher dimensions, and the transition
to the CDW phase was found to occur at U = 2ndimV , where
ndim is the system dimensionality [23,24].

Wherever the electronic hopping process is recovered, the
EHM loses its exactly solvable limit. Either approximations or
numerical methods have to be consulted [23,25–28]. Figure 1
displays the phase diagram obtained in the Hartree-Fock ap-
proximation and the dynamical mean-field theory (DMFT) for
the two-dimensional EHM [29]. A strong coupling expansion
around the atomic limit predicts the transition to occur at
values of V > U/4 [23], i.e., for V ’s larger than in the atomic
limit. In DMFT, the nonlocal interaction V reduces to its
Hartree contribution [30] but the difference to the Hartree-
Fock solution of the EHM is that the local interaction U
remains dynamic. This DMFT solution [29] predicts the tran-
sition at a larger V value than in the Hartree-Fock or atomic
limit solution and it increases with the increase of U as shown
in Fig. 1. The light/dark blue triangles in Fig. 1 denote the
parameters at which our calculations were performed, which
will be discussed later in Sec. III. The shift of the phase
transition line towards a larger value of V was confirmed by
exact numerical simulations of DQMC [25].

In contrast to the DMFT, the extended DMFT (EDMFT)
[14] contains the nonlocal V term in its construction and
treats it self-consistently in the effective polarization function.

In EDMFT the transition was also found at 4V/U > 1 in
the strong coupling regime, which is similar to the DMFT
solution. The similarity is partially due to the fact that the
EDMFT approximation also neglects the nonlocal fluctua-
tions which become crucial in low-dimensional systems. The
diagrammatic extensions of EDMFT, i.e., the dual boson
approach [31], captures the nonlocal fluctuations and hints to a
transition closer to 4V/U = 1 (still however with 4V/U > 1)
in the intermediate coupling regime as well. The transition
boundary in the dual boson approach lies in between the solid
and dashed lines in Fig. 1.

To go beyond the DMFT/EDMFT local approximations,
either a cluster [33] or a diagrammatic extension [34] of
DMFT is required. In a recent dynamical cluster approach
(DCA) study [35,36], a similar tendency was confirmed. In
this study, a momentum cluster of 20 sites was considered
where the short-range fluctuations within the cluster were
fully taken into account. Note, however, that for the larger
values of U used in this DCA study, the system without or
with weak nonlocal interaction V is in the ordered antifer-
romagnetic (AFM) phase, which is a finite-size effect. This
AFM ordering is suppressed within the parquet approach used
here already for the finite lattices considered.

The aim of this paper is to provide an unbiased study of the
EHM with both local and short-range fluctuations included in
a way that both the single- and two-particle Green’s functions
are self-consistently determined. We study, for a wide range
of nonlocal interactions, the competition between magnetic
and charge fluctuations before the phase transition. Both the
one- and two-particle quantities indicate that the charge fluc-
tuations dominate only in the vicinity of the transition, leading
to a suppression of the AFM fluctuations. But otherwise, even
for sizable nonlocal interactions, AFM fluctuations prevail.
The precise transition boundary is not the prime interest of
this work, instead we want to show how the transition is
approached and how it is probed in the parquet approach,
which is also of interest to many other cluster methods that
have the access to the two-particle vertex functions. This
work also represents a methodological progress which further
extends the victory solver of the parquet equations [37–39] to
include the nonlocal Coulomb interactions in a lattice model.

Throughout the paper, t ≡ 1, h̄ ≡ 1, and kB ≡ 1 are set as
the units of energy, frequencies, and temperature. The square
lattice with average number of electrons per site n ≡ 1 will
be studied at temperature T = t/6 and on-site interactions are
taken as U = 2t or U = 4t . The nearest-neighbor interaction
V , which reads Vq = 2V [cos(qx ) + cos(qy)] in momentum
space, will be varied as fractions of U/4 for a given U to
gradually approach the transition.

Section II recapitulates the parquet equations and explains
the methodological development of the present paper. Sec-
tion III presents the results obtained, except for the optical
conductivity which is discussed in Sec. IV.

II. METHOD: PARQUET APPROXIMATION TO THE EHM

First, we will explain the methodological development of
the victory package [39] with respect to the nonlocal inter-
action. The extension is straightforward in the sense that the
kernel approximation, which is the key concept of the victory

075108-2



COMPETITION BETWEEN ANTIFERROMAGNETIC AND … PHYSICAL REVIEW B 100, 075108 (2019)

implementation of the parquet approach, can still be applied.
However, due to the nonlocal interaction the various two-
particle vertex functions become more strongly momentum
dependent. Thus, one has to introduce the two-level kernel
approximations [38] in each momentum patch, as will be
explained in this section.

In the parquet approach, a set of exact equations that couple
the one- and two-particle vertex functions is solved iteratively
until a self-consistency in both levels is achieved. This is
conceptually different from any single-particle theory, where
only the self-consistency imposed by the Dyson equation,
such as the DMFT. In the parquet approach, all the single-
particle quantities including the Green’s function and the self-
energy are determined by the two-particle vertex functions in
all fluctuating channels. As a result, it allows for an unbiased
treatment of all fluctuations simultaneously. This is also in
sharp contrast to any ladder approximation where only a set
of a priori chosen ladder diagrams are considered in favor
of only certain type of fluctuations. More details about the
parquet approach can be found in Refs. [37–48]. Here we
would like to concentrate on the extension of it to the EHM.
Thus, only the most relevant formulas will be given.

In the parquet approach, the only input needed is the fully
irreducible two-particle vertex �kk′q. Here the four-vector
notation with k = (k, νn) and q = (q, ωn) is used with the
momenta k and q, the discrete Matsubara frequencies are
νn = π

β
(2n + 1) (fermionic) and ωn = π

β
2n (bosonic) with

n ∈ Z and the inverse temperature is β = 1/T . In this work
we employ the parquet approximation (PA) [37], in which the
fully irreducible two-particle vertex �kk′q is approximated by
its frequency independent lowest-order contribution, namely
the bare interaction. Compared to the Hubbard model, the
inclusion of the nearest-neighboring Coulomb interaction V
leads to additional terms in the lowest-order vertex functions:

U kk′q
d = U + 2Vq − Vk′−k, (2)

U kk′q
m = −U − Vk′−k, (3)

U kk′q
s = −2U − Vk′−k − Vq−k−k′ , (4)

U kk′q
t = Vk′−k − Vq−k−k′ , (5)

in the respective spin channels: Density (d), magnetic (m),
singlet (s), and triplet (t). (For details of the spin-diagonalized
notation used throughout this paper see, e.g., Ref. [34]). More
complicated than the case of the Hubbard model, all three bare
vertex functions become momentum dependent. As a result,
the reducible vertex functions �d/m/s/t depend not only on q
but also k and k′ even in the first iteration:

�
kk′q
d/m →

∑
k1

U kk1q
d/m Gk1 Gq+k1U

k1k′q
d/m , (6)

�
kk′q
s/t → ∓1

2

∑
k1

U kk1q
s/t Gk1 Gq−k1U

k1k′q
s/t . (7)

The crucial observation of the victory implementation is
the simpler structure of the reducible vertex functions which
are used for extrapolation to reach the frequency asymp-
totic of various two-particle vertex functions. In the Hubbard
model, different momentum patches have essentially the same

frequency asymptotics [38] (known as kernel-I approximation
in our notation) as can be seen from the only q dependence
of �d/m/s/t calculated in the first iteration of Eqs. (6) and (7)
if U kk1q is momentum independent for the Hubbard model,
cf. Eqs. (2)–(5). With the presence of the V interaction, this
changes and �d/m/s/t depend on all three momenta. As a
result, the reducible vertex functions display a k, k′ depen-
dence even in the kernel-I function. We, therefore, modified
the kernel-I function to faithfully incorporate such a difference
in different momentum patches. Instead of just taking one
background value of the reducible vertex function, in each
momentum patch (characterized by the different combinations
of k and k′) we take a different background value to represent
the kernel-I function of this momentum patch.

The change of the bare vertex function also affects the
evaluation of the self-energy 	k in the Dyson-Schwinger
equation

	k = − 1

(Nβ )2

∑
k′q

Gk+qGk′Gk′+q

[
U

2
[Fd − Fm]kk′q

+ VqF kk′q
d

]
+ 1

Nβ

∑
k′

Gk[U + 2Vq=0 − Vk′−k], (8)

with F being the full vertex in d/m channels. The other
parquet equations formally remain unchanged.

Following Ref. [49], we also improve the evaluation of
Bethe-Salpeter equations by including, in the frequency part
of the k1 sum, the exactly known high frequency asymptotics
of the full vertex F and the irreducible vertex 
 [34,50]. A
similar regularization (extension to high frequencies) is em-
ployed for the Dyson-Schwinger equation (8). Furthermore,
victory also benefits from the point group symmetry of the
square lattice, where only the transfer momentum q in the
irreducible Brillouin zone (BZ) need to be stored in memory.
With these changes victory can be used efficiently to study
single-band correlated many-body systems with nonlocal in-
teractions.

III. RESULTS

The evaluation of the parquet equations is numerically very
demanding [38,39,51] and, at the moment, only possible for
small clusters. All the results presented in this work were
obtained on a 6 × 6 momentum cluster (corresponding to a
6 × 6 cluster in real space with periodic boundary condi-
tions), which, nevertheless, represents the state of the art in
the solution of the parquet equation. Whenever possible, we
used a finer grid for the Green’s function, as explained in
Ref. [51]. Since the bottleneck of the calculations is the mem-
ory consumption, only a relatively small number of Matsubara
frequencies can be taken, which restricts the computations
to rather high temperatures. Here the temperature was set to
T = t/6 and Nf = 96 Matsubara frequencies were used.

A. Single-particle self-energy and spectral function

In Fig. 2 we first show the single-particle self-energy 	(k)
as a function of the Matsubara frequency. Two different values
of U were considered in these calculations, i.e., U = 4t in
Figs. 2(a)– 2(c) and U = 2t in Figs. 2(d)– 2(f). Each row of
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FIG. 2. (a) and (d) Imaginary part of the self-energy 	k as
a function of the Matsubara frequency νn at k = (0, 0) and the
following two k points on the Fermi surface: (b) and (e) (0, π ) and
(c) and (f) ( π

3 , 2π

3 ). The first column displays the results for U = 4t
and the second column for U = 2t . Different symbols and colors
denote different values of V . The largest value of V , indicated by
a dashed line, is close to the phase transition for a given U .

Fig. 2 corresponds to a different k point in the BZ, i.e., (0, 0),
(0, π ), and ( π

3 , 2π
3 ). The latter two k points, i.e., (0, π ) and

( π
3 , 2π

3 ), reside on the Fermi surface at half-filling. We vary
the values of V to probe the competition between the local and
nonlocal Coulomb interactions in the EHM occurring around
the transition boundary. We denote the results corresponding
to different V by different symbols and colors in Fig. 2.

As can be clearly seen in Figs. 2(a) and 2(d), away from the
Fermi surface, the self-energy becomes smaller (in absolute
terms) with the increase of V , in nice agreement with the
expectation of the nonlocal interaction effect. As we know, if
interaction between any two electrons becomes a constant re-
gardless of their distance, the system is only determined by the
single-particle hopping. The self-energy becomes frequency
independent, i.e., a constant for the occupied and unoccupied
k points. The EHM with only nearest-neighbor V interpolates
the Hubbard model and the above-mentioned infinite-range
interaction model. Consequently, it will display a finite but
less correlated self-energy compared to that of the Hubbard
model, cf. Ref. [49].

A similar reduction is observed for the points on the
Fermi surface, i.e., for k = (0, π ) and k = ( π

3 , 2π
3 ), as long

as 4V/U < 1. Calculations with parameters 4V/U = 0.2 and
4V/U = 0.4 at U = 4t and U = 2t (not shown here) also
confirm this trend.

However, close to the transition boundary at 4V/U ∼ 1
and U = 4t (and at a slightly smaller V for U = 2t) the
self-energy changes dramatically, i.e., the first few lowest-
frequency points of Im	 clearly deviate from those for
smaller V values. They even start to increase in absolute

FIG. 3. Local spectral functions Aloc for different values of V at
U = 4t (top) and U = 2t (bottom) obtained by analytical continua-
tion with MEM. The violet dashed-dotted line in the bottom panel
corresponds to a Padé interpolation. The insets show Fermi liquid
parameters as a function of V : The renormalization factor Zk (upper
inset) and the scattering rate 
k (lower inset) for k = ( π

3 , 2π

3 ) which
lies on the Fermi edge. The estimated error bars are also shown.

values for U = 2t and 4V/U = 1.2, see Figs. 2(e) and 2(f).
At 4V/U = 1.2 and U = 2t the curvature of the self-energy
changes completely, leading to a large negative Im	 at
νn → 0. This indicates a pseudogap or at least bad metallic
paramagnetic phase close to the CDW transition. As it will
become clear later, this is due to the enhanced charge fluctu-
ations caused by the nonlocal Coulomb interaction V (cf. the
eigenvalues and susceptibilities in Fig. 4). We hence interpret
the large negative Im	 in Figs. 2(e) and 2(f) as a precursor of
the insulating CDW phase, which would be further enhanced
at lower temperatures. That is, we do not yet have CDW
order yet but already long-range CDW correlations, which
leads to a (pseudo)gap similar to the case of antiferromagnetic
fluctuations in the Hubbard model [52].

Figure 3 shows the local spectral function Aloc obtained
from the k-integrated spectral function Ak = − 1

π
ImGk(ω) for

real frequencies ω. The analytical continuation was done with
the maximum entropy method (MEM) [53,54]. In accordance
with the self-energy calculations, Aloc(ω) is shown for the
same parameters as in Fig. 2. For 4V/U = 1.2t at U = 2t the
Padé interpolation [55] is also shown as it results in a slightly
different spectrum.

Independent of the values of V , at U = 4t Aloc(ω) con-
sists of three contributions stemming from the dominant
quasiparticle peak at zero frequency and the upper/lower
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FIG. 4. Leading eigenvalues (top) and inverse static susceptibil-
ities (bottom) of the EHM within the PA for the density (green
circles), magnetic (orange diamonds), and particle-particle (blue
triangles) channel as a function of nonlocal interaction V . The dark
symbols and solid lines correspond to data for U = 4t and the light
symbols and dashed lines to U = 2t , respectively.

Hubbard bands at ω ∼ ±U/2 indicating the overall metallic
nature of the solutions. In case of U = 2t , the peak positions
of the Hubbard bands are slightly displaced at ω ∼ ±2t .
Increasing V suppresses and broadens the quasiparticle peak.
This suppression can be assigned to the increase of charge
fluctuations (cf. Fig. 4 below). The effect is however small for
the case of 4V/U � 1.

For a better comparison, the Fermi liquid pa-
rameters, namely the renormalization factor Zk =
[1 − Im	k/νn|νn→0]−1 and the scattering rate 
k =
|Im	k|νn→0, are extracted from the self-energy and are
shown for k = ( π

3 , 2π
3 ) in the upper and lower insets of Fig. 3,

respectively. To do this, the imaginary part of self-energy
was fitted with a second order polynomial for the first
three Matsubara frequencies and the error estimate was
obtained from the comparison to a fit with a third order
polynomial. The quasiparticle renormalization Zk=( π

3 , 2π
3 )

slightly grows with increasing V up to 4V/U ∼ 1 above
which the growth becomes much sharper. Similarly, the
scattering rate 
k=( π

3 , 2π
3 ) slightly decreases with increasing

V until 4V/U ∼ 1. Afterwards, it substantially grows. The
particular behavior of the Fermi liquid parameters is another
evidence of the charge fluctuations that only appear in the
close vicinity of the CDW phase transition. For all other

values of V with 4V/U � 1, the CDW fluctuations have very
little impact on the one-particle properties.

For 4V/U = 1.2 and U = 2t , the spectral function is sup-
pressed at small frequencies. For these parameters the analytic
continuation by means of Padé interpolation resulted in a
dip at the Fermi energy, cf. Fig. 3, indicating a tendency to
opening of a gap. Despite the different solutions from the
MEM and the Padé for this parameter, both qualitatively agree
with the expectation of the charge fluctuations effect, and
they are consistent with the large negative Im	 at the Fermi
surface (see Fig. 2). We believe that with the further reduction
of temperature a full gap can be obtained which smoothly
evolves into the CDW gap in the ordered phase.

B. Two-particle susceptibilities and eigenvalues

A more direct measure of the fluctuations is the suscepti-
bility in various channels. As the parquet approach determines
the single- and two-particle quantities simultaneously, the
signals of the CDW observed in the self-energy (Fig. 2) and
the spectral function (Fig. 3) will also leave their fingerprints
in the two-particle vertex functions. Actually, as it will be
seen soon the characterization of the phase transition can be
more conveniently done in the two-particle level, as the two-
particle susceptibilities are the fluctuations of the correspond-
ing single-particle quantities. These fluctuations become more
significant in the vicinity of the phase transition, and are
not directly accessible in any single-particle self-consistent
theory. In the parquet approach, the susceptibilities in the
magnetic, density (charge), and particle-particle (including
both singlet s and triplet t) channels are given as

χd/m(q) = −
∑

k

GkGq+k

[
1 +

∑
k′

F kk′q
d/m Gk′Gq+k′

]
, (9)

χpp(q) = −
∑

k

GkGq−k

[
1 +

∑
k′

F kk′q
p↑↓ Gk′Gq−k′

]
, (10)

with F kk′q
p↑↓ = 1

2 [Fs − Ft ]kk′q. The divergence of the susceptibil-
ity in a given channel signals the phase transition towards the
breaking of the corresponding symmetry of this channel. Sim-
ilarly, Eqs. (9) and (10) also indicate that the phase transition
can be equivalently characterized by the leading eigenvalue λ

of a corresponding Bethe-Salpeter equation which reaches the
value of 1. Therefore the eigenvalues themselves constitute
another measure of the fluctuation strength in a given channel
close to a phase transition. The corresponding eigenvalue
equations read

λ
q
d/mφ

kq
d/m =

∑
k1



kk1q
d/m Gk1 Gk1+qφ

k1q
d/m, (11)

λq
ppφ

kq
pp =

∑
k1



kk1q
p↑↓ Gk1 Gq−k1φ

k1q
pp , (12)

where 
 denotes the irreducible vertex in a given channel
and φ is the eigenvector. Since the Bethe-Salpeter equations
are diagonal in transfer momentum q and frequency ωn, the
above eigenvalues λ

q
d/m/pp also inherit this dependence. In the

following we discuss eigenvalues only for the zeroth bosonic
frequency (ωn = 0), q = (π, π ) for λd/m, and q = (0, 0) for
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λpp, where the eigenvalues in the respective channels are
dominant.

In Fig. 4 the eigenvalues (top) and (inverse) susceptibilities
(bottom) are shown as functions of V . Again results for two
values of the local interaction are shown: U = 4t (solid lines)
and U = 2t (dashed lines). In the overview phase diagram
Fig. 1, the (U , V ) points of Fig. 4 are marked as upper and
lower triangles.

Changes are visible in the charge susceptibility χd which
increases when V is enhanced, but not surpassing the mag-
netic susceptibility χm. The inverse of χm is close to zero
and likewise, its corresponding eigenvalue is close to one,
indicating very strong antiferromagnetic fluctuations [q =
(π, π )] in this parameter regime. For the smaller value of U
both AFM and CDW fluctuations are significantly weakened
with the AFM fluctuations being still dominant in the system.

It is only at a rather large value of V , 4V/U > 0.8 that
the density eigenvalue starts to rapidly increase (see the top
panel of Fig. 4). At the same time the magnetic eigenvalue
slightly decreases with increasing V . When 4V/U becomes
slightly greater than 1, the magnetic eigenvalue is eventually
surpassed by the density eigenvalue. Only then the CDW fluc-
tuations become more important, which can also be seen in the
charge susceptibility that becomes bigger than the magnetic
one when 4V/U ∼ 1 (see the bottom panel of Fig. 4). For the
smaller local interaction, U = 2t , the increase of the charge
susceptibility and eigenvalue is less steep as compared to the
case of U = 4t (cf. Fig. 4). As a result, the dominance of
CDW fluctuations occurs at a slightly larger V value. Never-
theless, for both cases (U/t = 2 and U/t = 4) the fluctuations
in the charge channel become stronger than in the magnetic
channel but only very close to the transition boundary. The
leading eigenvalue and the near divergence of the charge
susceptibility occur at q = (π, π ) which corresponds to a new
periodicity in real space of

√
2 × √

2. This is in agreement
with the strong coupling expansion for this model [23,24] and
was also seen in fourth order perturbation theory [23].

The pp eigenvalue and the corresponding susceptibility
(not shown here) remain small for all values of V , which leads
to a conclusion that, for the parameters considered, pairing
fluctuations do not play any significant role. Note, however,
that for U = 4t the pp eigenvalue is almost twice as big as
that for U = 2t , i.e., a relatively strong local interaction is
important for pairing fluctuations, as it is also for the AFM
and CDW ones (cf. top panel of Fig. 4).

Although it is not the prime aim of this paper to precisely
determine the transition boundary of the EHM, the above
analysis on the leading eigenvalue and the susceptibility pro-
vide an efficient way to estimate the critical value of V . The
value of λd at q = (π, π ) reaches almost 1 for 4V/U → 1.06
at U = 4t and for 4V/U → 1.2 at U = 2t , respectively. A
more reliable estimate of the phase transition point within the
parquet method is very difficult. It would require calculations
for different and large cluster sizes to properly resolve the
deviations from mean-field critical exponents. Furthermore,
we are restricted to second order phase transitions because the
parquet equations are only solved in the paramagnetic phase.
If there is a first order transition, as might well be the case
in some parameter range [36,56], the thus calculated V values
are too large.

We note that very similar critical values of 4V/U for
the CDW phase transition were obtained in many different
works [14,25,29,31,35]. DQMC predicted a phase transition
in the regime of 4V/U ∈ {1, 1.25} for U = 4t and 4V/U ∈
{1, 1.4} for U = 2t [25]. In the DCA calculations [35] they
are 4V/U = 1.04 for U = 4t and 4V/U = 1.216 for U = 2t .
At a lower temperature (T = t/12.5) the dual boson approach
[31] identifies the phase transition at 4V/U = 1.08 for U = 4t
and 4V/U = 1.04 for U = 2t . Our estimation based on the
parquet approximation is in agreement with these studies,
confirming the feasibility of the parquet approach in the study
of phase transitions.

C. Full two-particle vertex function

In addition to the susceptibility and the leading eigenvalue,
the competing fluctuations can also be seen in the full two-
particle vertex function F kk′q. In Fig. 5 we show the fermionic
frequency dependence (i.e., as a function of νn and ν ′

n) of
the full vertex in the density, magnetic, and particle-particle
channels (different columns) for different values of V (differ-
ent rows) at U = 4t . The momenta are set to k = k′ = (0, 0)
(please note that the dependence on the fermionic momenta k
and k′ is very weak), q = (π, π ), and the bosonic frequency
ωn = 0.

Increasing the nonlocal interaction V affects mostly the
density channel. Comparing however the three rows of Fig. 5
we can conclude that the onset of strong charge fluctuations
is visible only shortly before the phase transition, i.e., at
4V/U ∼ 1. For V = 0, the full vertex function is mainly
described by the main diagonal with νn = ν ′

n. As V is in-
creased to 4V/U = 0.8, the overall amplitude of the full
vertex function increases and becomes negative except for
the main diagonal components. This background, however, is
nicely approximated by the first order contribution Eq. (2),
2Vq=(π,π ) − Vk′−k=(0,0) = −12V , which for 4V/U = 0.8 is
equal to −9.6 in our units. When the charge fluctuations
become stronger (4V/U = 1, bottom row of Fig. 5), these
contributions significantly increase far beyond the first or-
der approximation. In the magnetic and the particle-particle
channel (cf. the second and the third column of Fig. 5) the
structure of F stays nearly unchanged compared to the density
channel. At 4V/U = 1 we see however a strong broadening
of the plus structure, e.g., along ν0 = π

β
and ν ′

0 = π
β

in the
magnetic vertex Fm. This indicates a suppression of magnetic
contributions due to the influence of the now very strong CDW
fluctuations. In this regime, likewise, the magnetic eigenvalue
and magnetic susceptibility decrease (see Fig. 4). Analyz-
ing the momentum dependence of the full vertex function
(not shown here) leads to the same conclusion. Predominant
effects of the charge fluctuations are seen in Fd only close
to the phase transition for 4V/U � 1. If the phase transition
was of first order and hence at a smaller V , AFM fluctuations
might even prevail throughout the entire paramagnetic phase
up to the CDW phase transition line. Turning back to the
magnetic contributions: We observe a global suppression for
4V/U = 1, whereas for smaller nonlocal interactions this
effect is very small. The contributions of the particle-particle
channel stay almost unchanged with the increase of the non-
local interaction.
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FIG. 5. Full vertex F kk′q1 as a function of fermionic Matsubara frequencies νn and ν ′
n for fixed momenta and bosonic frequency. Specifically,

the four vectors are set to k = (k, νn) = (0, 0, νn), k′ = (0, 0, ν ′
n), and q1 = (π, π, 0). Different columns correspond to the the density (first

column), the magnetic (second), and the particle-particle (third) channels, respectively. Each row corresponds to the different values of the
nonlocal interaction V : V = 0 (first row), 4V/U = 0.8 (second), and 4V/U = 1 (third); the local interaction is set to U = 4t .

IV. RESPONSE TO ELECTRIC FIELD

With the two-particle vertex function available in the par-
quet approach, we are also able to study the response to exter-
nal perturbations easily. Like in the two-particle susceptibility
and the density-density vertex function, the nonlocal charge
fluctuations are also encoded in response functions which
are experimentally accessible. As an example, we apply an
electric field along the x direction to the EHM, i.e., E = E ax,
and study the response to it at different value of V . The re-
sponse function (or paramagnetic current-current correlation
function) within the Peierls approximation reads

χ j j,q = − 2

(Nβ )2

∑
kk′

γ
k q

2
P γ

k′ q
2

P GkGq+kF kk′q
d Gq+k′Gk′

︸ ︷︷ ︸
≡χver

j j,q

− 2

Nβ

∑
k

[
γ

k q
2

P

]2
GkGq+k︸ ︷︷ ︸

≡χbub
j j,q

(13)

for a coupling along the field direction x with

γ
kq
P = 2t sin[ax(k + q)] ≡ ∂

∂kx
εk+q. (14)

Because of the long optical wavelength, the variation of
electric field in space can be neglected. Thus, it is sufficient
to restrict the calculations to q = 0. The optical conductivity
which is obtained generally from linear response theory as

jq=0(ω) = Im[χ j j,q=0(ω + iδ) − χ j j,q=0(iδ)]

ω + iδ︸ ︷︷ ︸
≡σ (ω)

Eq=0(ω). (15)

Following Eq. (15), one can first transform the current-current
correlation function from Matsubara to real frequency and
then divide it with ω + iδ to get the optical conductivity. Alter-
natively, one can directly transform the Imχ j j,q=0(i�m)/i�m

to real frequency with MEM, which was the strategy taken in
our calculations [54].

The response functions to the applied electric field (in
the direction of the lattice vector ax) are displayed on the
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FIG. 6. Current-current correlation function (top row) and optical conductivity (bottom row) as responses to an external electric field
E = E ax in the PA at four different nonlocal interactions V . The response functions (dark blue solid line) are further decomposed into the
bubble (light green dashed-dotted line) and the vertex (red dashed line) contributions. The low-frequency zoom-in plots are shown in the insets
for the optical conductivity.

real-frequency axis in Fig. 6. The response functions χP,q=0

and the optical conductivity σP are displayed for various
values of V at U/t = 4: From 4V/U � 1 (weak V limit) to
4V/U > 1 (strong V limit) in which either antiferromagnetic
or charge fluctuations prevail (cf. Sec. III B). Additionally,
the bubble and vertex contributions, defined in Eq. (13), are
displayed in Fig. 6 by light green dashed-dotted lines and red
dotted lines, respectively.

The correlation function exhibits a complex two peak
structure with the maximum peak value increasing with V
up to 4V/U ∼ 1 and decreasing afterwards. However, there is
only one peak observed in the optical conductivity. The small
high-frequency feature observed in ImχP,q=0 is suppressed
by the large frequency denominator leaving only the Drude-
like peak visible in Fig. 6. We expect a more visible high-
frequency peak when the temperature becomes lower or U
is increased so that pronounced and well-separated Hubbard
bands start to form.

We notice that the zero-frequency peak in the optical
conductivity increases when increasing V from V = 0 up to
4V/U = 1. Both the bubble and vertex contributions become
larger. In particular, the vertex contribution at ω = 0 changes
its sign and continuously increases with the increase of V ,
indicating the correlation effect is always enhanced with
increasing V . On the other hand, at 4V/U = 1.06 the zero-
frequency peak in the optical conductivity clearly drops down,
which mainly results from the decrease of the bubble contri-
butions. The vertex part, however, still strongly contributes.
The bubble susceptibility in turn contributes less and less
due to the suppression of the single-particle density of states
at the Fermi level, see Fig. 3. As already discussed in the

context of the self-energy and one-particle spectrum, this is
because of the emergence of long-range CDW fluctuations
at 4V/U > 1 as is also reflected in the dramatic increase of
the CDW susceptibility in Fig. 4. For the optical conductivity
calculations, we observe the same effect as discovered in the
self-energy and two-particle vertex functions: Only in the
close vicinity of the phase transition (around 4V/U ∼ 1.06
at U = 4t), the effect of the charge fluctuations becomes
dominant. Away from the phase transition, for this half-filled
two-dimensional square lattice, spin fluctuations are always
dominant.

V. CONCLUSION

By extending the parquet approach to include the nonlo-
cal Coulomb interactions, we studied the extended Hubbard
model on a two-dimensional square lattice using the parquet
approximation. Through the calculations of the single-particle
self-energy (Fig. 2), spectral function (Fig. 3), and the two-
particle susceptibility (Fig. 4), the vertex function (Fig. 5),
as well as the optical conductivity (Fig. 6), we are able to
consistently identify the strong competition of the nonlocal
charge fluctuations and the spin fluctuations. Quite surpris-
ingly, the spin fluctuations are dominating over a wide range
of parameters and only in the immediate vicinity of the phase
transition to the CDW order charge fluctuations prevail. In
case of a first order transition [36,56], AFM fluctuations might
even dominate in the entire paramagnetic phase up to the
CDW phase.

In the narrow regime, where the charge susceptibility
surpasses the antiferromagnetic susceptibility, the self-energy
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in the paramagnetic phase turns from a metallic to an in-
sulatinglike behavior—the vanguard of the CDW insulator.
Likewise, the optical conductivity is suppressed by the strong
CDW fluctuations. The parquet approach allows us to look
at this competition and suppression also on a deeper level,
unseen directly in the measured quantities. The otherwise very
sharp frequency structure of the two-particle magnetic vertex
becomes broadened close to the transition and the magnetic
fluctuations are suppressed by the very large vertex in the
charge channel. For the pairing (particle-particle) fluctuations,
on the other hand, this has very little influence.

Due to the fact that the self-consistency at both one- and
two-particle levels is simultaneously satisfied in the parquet
approach, it is not surprising to obtain a consistent picture
for all the above-mentioned quantities. Although it is not the
prime interest of this work to locate the precise transition
boundary, our rough estimation agrees with the published
results. Our work provides a valuable explanation of how

the single- and two-particle quantities are internally related.
The transparent structure of the parquet equation provides a
predicting power in the sense that the change in one quantity
can be naturally evolved to interpret the change of other
quantities.
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