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Bosonization with a background U (1) gauge field
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Bosonization is one of the most significant frameworks to analyze fermionic systems. In this work, we propose
a new bosonization of Dirac fermion coupled with U (1) background gauge field. Our new bosonization is consis-
tent with gauge invariance, global chiral anomaly matching and fermion-boson operator correspondence, either
of which is not satisfied by previously developed bosonizations. The bilinear Dirac-mass term condensation
paradox and its generalized form are resolved by our bosonization. This new bosonization approach to interacting
systems also correctly captures the conformal characters of a significant class of critical lattice models, such as
conformal dimensions and the conformal anomaly of XXZ spin chain with twisted boundary condition. Our work
clarifies the equivalence of fermionic flux insertion and bosonic background charge insertion for two-dimensional
conformal field theory.
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I. INTRODUCTION

The Lieb-Schultz-Mattis (LSM) theorem and its higher-
dimensional analog assign strong constraints on gapped quan-
tum systems [1–3]. The key assumption in one of the proofs
of these theorems is insensitivity of the many-body bulk gap
under flux insertion [2]. Moreover such an insensitivity has
been recently proven for gapped quantum systems with local
Hamiltonians [4].

On the other hand, renormalization group from conformal
fixed point has been thought to explain the behavior of phys-
ical systems [5]. Furthermore, how critical theories respond
to flux insertion process is also of intense interest for LSM-
related theorems themselves. For example, the LSM theorem
and its higher-symmetry generalizations can be understood by
chiral symmetry anomalies in the presence of nontrivial gauge
fields corresponding to flux insertion at the lattice level [6–8].
Hence it might be natural to guess that such flux insertions or
twistings of boundary condition do not change the behavior
of fixed points when we keep in mind the insensitivity of
the gapped system. We will show this naive guess is wrong
and can be explained by bosonization with background gauge
field. More precisely for (gapless) critical systems, in the
analog of gapped cases, how the spectrum characters, e.g.,
conformal weight of corresponding conformal field theories,
vary upon the twisted boundary condition by flux insertion.
That is also essential to several known applications, such as
Gaussian fixed point determination for XXZ spin chain [9,10]
and calculating conformal weights [11]. Similar behaviors
have already been observed for 6 and 19 vertex models which
correspond to a one-dimensional (1d) spin chain by quantum
statistical correspondence [12]. Within all the applications
above, e.g., anomaly manifestation of the LSM theorem and
XXZ chains with twisted boundary conditions, it is necessary
to obtain a critical theory in a background gauge field.
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Historically, the bosonization of Dirac fermion and mas-
sive Thirring model have been widely considered [13,14]. We
can think of 1d XXZ Heisenberg model as a realization of this
bosonization [15].

In this context, we can think of coset G/H Wess-Zumino-
Witten models as the description of bosonic coupling of the
gauge fields [16]. In operator formalism and free field repre-
sentations, coset construction changes the energy momentum
tensor TG/H = TG − TH [17]. In path integral formalism, it
can be represented by so-called gauged WZW models and
be thought as bosonic theories coupled with the background
gauge fields.

However, the equivalence of such a “conventionally
gauged” WZW model with an action SWZW[A] and the adjoint-
represented fermion in the corresponding gauge field with
SDirac[A] is questioned by Smilga (and N. Nekrasov) [18,19].
It stems from an apparent contradiction in the behaviors of the
fermionic bilinear condensation between these two models.
More specifically speaking, the Dirac mass term does not
gain expectation value in the presence of more than two
instantons, while the bosonized term corresponding to the
Dirac mass is always condensed. Thus the conventionally
gauged WZW models cannot be bosonization of complex
fermions in the presence of general gauge field configurations,
e.g., gauge field with nonzero instantons [18,19]. Moreover, it
is shown that the U (1) boson obtains mass term by gauging
out background gauge field. This result itself is quite different
from G/G coset WZW model description which results in
topological field theory by gauging out the background gauge
field [20,21]. Therefore it is necessary to modify the bosonic
gauged WZW models so that they can produce a consistent
path integral with their fermionic counterparts. Furthermore,
as we will see in this paper, the quantum anomaly, e.g.,
global chiral anomaly of Dirac fermions coupled to back-
ground gauge field cannot be reproduced in the gauged WZW
model. Unfortunately, related to the LSM theorem, almost
no condensed matter physicist has ever paid attention to
such an inconsistency of bosonization. However, the func-
tional bosonization, which results in the same form of the

2469-9950/2019/100(7)/075105(17) 075105-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.075105&domain=pdf&date_stamp=2019-08-02
https://doi.org/10.1103/PhysRevB.100.075105


YUAN YAO AND YOSHIKI FUKUSUMI PHYSICAL REVIEW B 100, 075105 (2019)

Free fermion Free boson

Fermion with 
gauge field

Boson with
gauge field

Coupling with 
background gauge field!

FIG. 1. Nontriviality of bosonization with a background gauge
field.

bosonization by Smilga in some cases, is considered and
applied to some variety of fermionic systems coupled with
gauge fields in higher dimensions [22].

A bosonization of Dirac fermion coupled with a back-
ground U (1) gauge field with a globally defined U (1) vector
potential has been obtained by the Fujikawa method [23,24].
However, such a condition on gauge fields is generically
broken on compact closed manifolds, e.g., gauge fields on a
torus with a nontrivial U (1) Chern number (Fig. 1).

In this paper, we extend such a bosonization of Dirac
fermion coupled with U (1) gauge field and propose the fol-
lowing new bosonization action on a torus T 2 with Euclidean
signature, which has two fundamental cycles:

Sboson[A] =
∫

T 2

[
1

8π
(∂ϕ)2 − i

e

2π
ϕdA

]

− i
εμν

2π

(∫
cycleμ

dϕ

)(∫
cycleν

eA

)
. (1)

We will further see that the contradictions of Dirac-mass
condensation mentioned above is resolved and directly related
to neutrality conditions in path integral formalism of bosonic
model. Furthermore, our formalism is superior to that of
Smilga, in the point that we consider the compactification
condition of free boson on a Riemann surface with a nontrivial
genus. Otherwise, as we will show later, the current-operator
correspondence cannot be satisfied between the bosonic and
the fermionic sides. More precisely, we have considered the
contribution of all topological sector of the system, e.g.,
nonzero winding numbers of field configurations, in the sec-
ond part of the formula above. Although such a winding-
type term seems complicated and redundant, it is essential to
its topological quantum field theory (TQFT) correspondence
in one higher dimension as exposed later. In addition, this
important term also plays a central role when we generalize
the gauge field to be chiral U (1)L,R and we will see that our
bosonization can reproduce the same U (1)L,R charges as other
recently developed bosonization transformations [25].

Moreover, our formalism can explain the existing results
of the lattice model, XXZ spin chain with twisted bound-
ary condition. Unfortunately, our formalism shows functional
bosonization and other known bosonizations are insufficient
in the sense that they cannot correctly capture various proper-
ties, e.g., partition functions, of the simplest example, 1d spin
chain with twisted boundary condition or flux insertion.

The organization of the rest of the paper is following. In
Sec. I, we motivate and introduce new bosonization with a
background gauge field through which we resolve the bilinear-
term condensation paradox in its general form. We apply our

formalism to XXZ Heisenberg model with twisted boundary
condition in Sec. IV D. Then we state conclusions and future
direction of bosonization with a background gauge field in
Sec. VI.

II. BOSONIZATION WITH VANISHING GAUGE FIELD

In this part, the original bosonization without any back-
ground U (1) electromagnetic gauge field is briefly reviewed
and summarized below to fix the notation for the following
discussion. To make the paper self-contained, we first give the
Minkowskian Lagrangians:

S(b)
0 = −

∫
dtdx

1

8π
[∂μϕ(t, x)∂μϕ(t, x)],

S(f)
0 =

∫
dtdx iψ†γ 0γ μ∂μψ, (2)

so that Z = ∫
exp(iS), and the Minkowskian signature takes

the form as η = diag(−1,+1) with {γ μ, γ ν} = −2ημν and
γ ’s being real, e.g., γ 0 = σ1 and γ 1 = iσ2, where �σ denotes
the Pauli matrices. Then the chirality can be defined as γ 3 ≡
γ 0γ 1 = −σ3.

First, we will normalize several constants and fix the
constant conventions.

When Aμ = 0 the external charge U (1) electromagnetic
field is vanishing, the duality mapping takes the form as

ψ (z) = 1√
L

: exp[−iφ(z)]:, (3)

ψ̄ (z̄) = 1√
L

: exp[iφ̄(z̄)]:, (4)

ϕ ≡ φ(z) + φ̄(z̄), (5)

ϕ ∼ ϕ + 2π, (6)

in which “::” denotes normal ordering and z ≡ x1 + ix0 in
Euclidean signature, namely, (x0, x1) ≡ (it, x), and the system
scale L is included so that the ψ (z) and ψ̄ (z̄) have a scaling
independent correlation function, where bars denote antiholo-
morphism. Equation (6) also normalizes the radius [26] of ϕ

to be unit and we will use such a convention throughout this
paper.

S(b)
0 =

∫
1

8π
(∂ϕ)2; (7)

S(f)
0 =

∫
iψ†γ 0(γ 0i∂0 + γ 1∂1)ψ, (8)

where we write γ μ in its Minkowskian form while space-time
coordinates in the Euclidean signature, which is the reason
that the form of S(f)

0 is asymmetric, and Z = ∫
exp(−S). We

can also write down the correspondence of U (1) electromag-
netic current operators:

eJν = e

2π
εμν∂μϕ. (9)

Bosonization is completed by showing the two theories are
equivalent in the algebraic sense on the torus T 2 parametrized
by τ in Fig. 2, namely, possessing the same spectrum. To do
so, we must sum up all the winding numbers on the bosonic
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FIG. 2. Compactification of a boson on a torus parametrized by
τ where θ is the dual field to ϕ (cf. Appendix 5).

side:

Z (b)
0 =

∑
n,n′∈Z

∫
Dϕ exp

(−S(b)
0 [ϕ]|n,n′

)
,

ϕ(z, z̄) = ϕ(z + 1, z̄ + 1) − 2πn;

ϕ(z, z̄) = ϕ(z + τ, z̄ + τ̄ ) − 2πn′. (10)

It has been proven that the spectrum is equivalent with the
fermionic one as long as we sum up the spin structures of
Dirac fermion:

Z (f)
0 =

∑
s1,s2∈{−1,+1}

∫
D (ψ, ψ̄ ) exp

( − S(f)
0 [ψ, ψ̄]|s1,s2

)
;

ψ (z + 1) = −s1ψ (z); ψ̄ (z̄ + 1) = −s1ψ̄ (z̄);

ψ (z + τ ) = −s2ψ (z); ψ̄ (z̄ + τ̄ ) = −s2ψ̄ (z̄). (11)

Then

Z (b)
0 (τ ) = Z (f)

0 (τ ) =
4∑

i=1

1

2

(∣∣∣∣θi(τ )

η(τ )

∣∣∣∣
2
)

, (12)

where the Dedekind function is defined as η(τ ) ≡
q1/24 ∏∞

n=1 (1 − qn) and θi(τ )’s are the Theta functions
[26] with q ≡ exp(i2πτ ) and q̄ = exp(−i2πτ̄ ). It should be
noted in advance that, when there is a nonzero background
gauge field, the summation weight in Eq. (12) is not equal for
every spin structure to be shown later.

III. BOSONIZATION WITH BACKGROUND GAUGE FIELD

For bosonization on torus without background gauge field,
it is sufficient to consider bosonization on a Riemann sphere
and the calculations can be related to the case on torus by
a standard treatment [26]. However, it turns out there exists
no straightforward approach to bosonization with background
gauge field.

In this part, we will discuss the bosonization of a single
complex Dirac fermion with external background electromag-
netic field in the Minkowskian signature:

SDirac[A] =
∫

dtdx iψ†γ 0γ μ(∂μ − ieAμ)ψ, (13)

which, in the Euclidean space-time, becomes

SDirac[A] = S(f)
0 + ie

∫
[(ψ†γ 0γ 0ψ )A0 + (−iψ†γ 0γ 1ψ )A1],

where we have fixed the notation that only γ matrices
are Minkowskian while all vector fields Aμ and space-time
are Wick-rotated as Euclidean. Since the additional term is
i
∫

eJμAμ and observing Eq. (9), one reasonable candidate of

the bosonized action is

S′[A] = S(b)
0 + i

∫
e

2π
Aνε

μν∂μϕ. (14)

Actually this form of action can be thought of as bosonic
coupling to background gauge field. More detailed calculation
can be seen in Ref. [27]. However, S′[A] has the following two
problems that (1) S′[A] is gauge-dependent [19] and (2) it has
no chiral anomaly factor. In other words, we cannot think of
this action as “bosonization.”

A. S′[A]: gauge noninvariance

To see the gauge dependence, let us introduce a uniform
electromagnetic tensor field:

F01 ≡ εμν∂μAν = 2π

|Imτ | , (15)

where |Imτ | is the area of the spactime torus. To get a local
expression of Aμ, we introduce a Dirac-string singularity, e.g.,
at x∗ by some gauge choice. Then

i
∫

e

2π
Aνε

μν∂μϕ = i
∫

e

2π
εμν[∂μ(ϕAν ) − (∂μAν )ϕ]

= ie[ϕ(x∗) − ϕave], (16)

where ϕave ≡ ∫
ϕ/|Imτ | is the average value of ϕ upon the

torus. We could see that the naive imposing the duality
mapping of current in Eq. (9) does not give a gauge invariant
theory on the bosonic side.

B. S′[A]: mismatch of the anomaly and partition function

Furthermore, the action S′[A] suffers from the chiral
anomaly enjoyed by the fermionic action. The chiral trans-
formation for the bosonic field is ϕ → ϕ + const. Obviously,
the bosonic theory and the partition function defined by S′[A]
is invariant under such a transformation. Therefore its chiral
anomaly does not match that of a single complex fermion.
One direct result from such an anomaly mismatching is the
discrepancy between the partition function obtained from
integrating out Dϕ with S′[A] and the fermionic partition
function in the appearance of nonzero flux:

∫
eF01/(2π ) �= 0.

By the Atiyah-Singer index theorem, there must exist at least
one zero mode of the Dirac operator. Then, formally,

ZDirac[A] ∝
∏
k∈K

λk = 0, (17)

where {λk}k∈K is the spectrum of Dirac operator.
However,

∫
Dϕ exp(−S′[A]) �= 0 generically. As a typical

example, let us choose the following gauge-field configur-
ation {Ãμ}:

eÃI
0 = 0, eÃI

1 = 2π

ε
(x0 − x̃0), if �x ∈ UI;

eÃII
0 = eÃII

1 = 0, if �x ∈ UII.

(18)

Here, UI ≡ [x̃0, x̃0 + ε] × [0, L1) and UII = ŪI is its com-
plement. It can be calculated that

∫
F̃01/(2π ) = 1 thereby

Z (f)[Ã] = 0.
When we take ε → 0+, it is straightforward to check

that Z ′[Ã] ≡ ∫
Dϕ exp(−S′[Ã]) = ∫

Dϕ exp(−S(b)
0 ) = Z (b)

0 ,
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where Z (b)
0 is the partition function of free boson without back-

ground gauge field in Eq. (12) which is nonzero. Therefore
Z ′[Ã] �= Z (f)[Ã].

Thus we come to the second candidate of bosonization by
a total derivative addition as a counterterm:

S′′[A] = S′[A]−i
∫

e

2π
εμν∂μ[ϕAν] = S(b)

0 − i
∫

e

2π
ϕF01,

which is explicitly gauge-invariant since the curvature tensor
F01 is gauge-independent. This form of action was first intro-
duced by Ref. [28] and extensively considered by Ref. [18].
It is valid if we think about the trivial topological sector
or zero winding number of ϕ and consistent with functional
bosonization.

C. S′′[A]: mismatching of U (1) electromagnetic current

However, since ϕ is not single-valued, the current Jμ might
not be properly coupled with Aμ in S′′[A]. Indeed, let us take
the functional derivative:

δieAρ
S′′[A] = 1

2π
εμρ∂μϕ − δAρ

∫
1

2π
εμν∂μ[ϕAν]

= Jρ + n′δ(x0 + 0+)ε0ρ + nδ(x1 + 0+)ε1ρ,

where, without loss of generality, just for simplicity, we have
assumed the (Euclidean) rectangular space-time (before quo-
tiented to the torus) [0, L0] × [0, L1]. The form of δ functions
depends how we distribute the unity between two equivalent
boundary point and, by no means, will affect the following
results. To see why the term “−δAρ

∫
εμν∂μ[ϕAν]/2π” only

gives the additional boundary current “n′δ(x0 − L−
0 )ε0ρ +

nδ(x1 − L−
1 )ε1ρ”, we perform the integration in the following

form:∫
M

1

2π
εμν∂μ[ϕAν] =

∫
M

1

2π
d (ϕA)

=
∫

∂M

1

2π
ϕA +

∑
i

∫
∂Ui

1

2π
ϕA(i), (19)

where we take M as a rectangular from which the torus is
made by conventional pasting procedure. We can see that the
remaining bulk part “

∑
i

∫
∂Ui

1
2π

ϕA(i)” is gauge dependent, in
which Ui’s, where A(i) is locally well-defined depending on
gauge choices, cover M. Then,∑

i

∫
∂Ui

1

2π
ϕA(i) =

∑
i, j

′
∫

∂Ui∩∂Uj

1

2π
ϕ t−1

i j dti j, (20)

where
∑′

i, j denote no double-counting with proper
orientations of ∂Ui ∩ ∂Uj’s, and ti j is the transition
function defined by Ai = Aj + t−1

i j dti j . On the other hand,

δAρ
(t−1

i j dti j ) = δAρ
(Ai − Aj ) = 0, which implies such a

gauge-dependent bulk contribution induced by Eq. (20)
vanishes: δAρ

[
∑

i

∫
∂Ui

ϕA(i)/(2π )] = 0. The first term∫
∂M ϕA/2 in the last line of Eq. (19) gives the “boundary”

current:

−δAρ

∫
∂M

1

2π
ϕA = δAρ

[∫ z=1

z=0
n′A −

∫ z=τ

z=0
nA

]

= n′δ(x0 + 0+)ε0ρ + nδ(x1 + 0+)ε1ρ.

D. Sboson[A]: cancellation of boundary current

To cancel the additional “boundary” coupling which in-
duces the boundary current (−n′δ(x0 + 0+)ε0ρ − nδ(x1 +
0+)ε1ρ ), we tentatively take into consideration the following
modified action Sboson so that (1/i)δAρ

Sboson = Jρ :

Sboson|n,n′ = S′′[A] + i
∫

eAρ

[
δAρ

∫
∂M

1

2π
ϕA

]

=
∫ [

1

8π
(∂ϕ)2 − i

e

2π
ϕεμν∂μAν

]
+ i2π (−n′α + nβ ), (21)

where

α ≡ e

2π

∫
cycle1

dx1A1(x0 = 0, x1);

β ≡ e

2π

∫
cycle0

dx0A0(x0, x1 = 0), (22)

where “cycle0,1” are two generating cycles of the underlying
torus along real axis and τ direction, respectively. Alterna-
tively in a compact way,

Sboson[A] = S(b)
0 − i

e

2π

∫
T 2

ϕdA

− i
εμν

2π

(∫
cycleμ

dϕ

)(∫
cycleν

eA

)
. (23)

This is the new action of the bosonized theory we propose in
this paper.

E. Sboson[A]: gauge invariance, equation of motion,
and LSM-type arguments

As one of the several necessary checks, Sboson[A] obvi-
ously still has the correct chiral anomaly factor exp(iν

∫
eF01)

as S′′[A], with the chiral transformation ϕ → ϕ + 2πν. In
addition, it is also gauge-invariant since the coefficient of
2πα and 2πβ is integer despite of the fact that α and β

are only gauge invariant modulo Z or only (α mod Z) and
(β mod Z) are gauge invariant. Furthermore, Sboson[A] gives
a correct equation of motion: δϕSboson[A] = −∂2ϕ/(4π ) −
ieF01/(2π ) = 0 beause n′ and n are integer-valued which
implies they are insensitive and invariant for any infinitesi-
mal variation: δϕn′ = δϕn = 0. Thus the equation of motion
∂2ϕ/(4π ) = −ieF01/(2π ) is exactly the equation of motion
of axial current on the fermionic side and the appearance
of “i” on the right-hand side is due to the Wick rotation
of Aμ.

It is consistent with the anomaly argument of the LSM the-
orem [7,8]. Namely, the lattice translational transformation of
the underlying tight-binding electronic system at low-energy
limit Ztrans : ϕ → ϕ + 2πν with ν the particle number per
unit cell [7] indeed induces a phase change of the partition
function Zboson[A] ≡ ∫

Dϕ exp(−Sboson[A]) by exp (iν
∫

eF01)
characterizing the ’t Hooft anomaly between U (1) and Ztrans.
Such an anomaly can be directly seen by Eq. (23) due to
the ϕ-linear term proportional to

∫
ϕdA. This phase term

is trivial for arbitrary U (1) gauge field configuration if and
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only if ν ∈ Z or the particle per unit cell is an integer, due
to the quantization

∫
eF01/2π ∈ Z on torus. Assuming that

a nontrivial anomaly phase implies that the system cannot
be symmetrically gapped with a unique ground state [7,8],
we reproduces the LSM theorem that the noninteger filling
fraction does not permitted a symmetric insulating phase
if U (1) and Ztrans are respected [1–3]. Alternatively, by a
2π -flux insertion procedure, we have also obtained a lattice
momentum change 2πν/L mod 2π/L by Eq. (A23). We also
obtain the LSM theorem by the flux insertion argument [2].

F. TQFT/CFT interpretation of Sboson[A]

The free bosonic model or its generalization Wess-
Zumino-Witten (WZW) model can be reduced from the
Chern-Simons (CS) theory, which provides a TQFT/CFT
interpretation on both theories defined in different dimen-
sions. It implies that we can obtain a WZW model as the
boundary theory of the CS theory [29–31]. However, such
a dimension-reduction derivation, when space-time manifold
is taken as T 2, is subtle because of the typical “half-lives,
half-dies” principle in three-manifold topology. Namely, it
is stated that one “Z” component of the first homological
group H1(T 2,Z) ∼= Z × Z of T 2 will be trivialized when T 2

is extended to some three-dimensional compact manifold M
such that ∂M = T 2. For example, the nonzero winding of ϕ(x)
along the cycle which is trivialized by the dimension extension
obstructs the extension of field configuration ϕ(x) onto M.
Conversely, the corresponding dimension reduction from the
CS theory on M cannot produce the whole field configuration
of the WZW model defined solely on T 2.

Although the TQFT/CFT correspondence above is prob-
lematic when we extend the manifold from T 2 to M in the
foregoing sense, one could still see the reasonable addition of
the “strange” second term −iεμν/2π (

∫
cycleμ

dϕ)(
∫

cycleν
eA) of

Eq. (23).
To avoid the “half-lives, half-dies” principle, let us con-

sider an infinitely long torus where τ2 ≡ Imτ → +∞ so that
the nontrivial winding mode of ϕ(x) in the spatial direction
x1 will be gapped thereby vanishing in the resultant parti-
tion function of CFT on T 2. It implies it is a reasonable
approximation to treat the torus T 2 as the boundary of toroid
M ≡ D2 × S1 of which the infinitely-long “S1” parametrizes
time. We further assume that A can be extended to the bulk M
where the U (1) monopoles, which create integral net fluxes on
T 2, are defined conventionally by point defects within M. We
can obtain, by the Bianchi identity ddA = 0 in M and omitting
the spatial winding of ϕ(x) in Eq. (23),

Sboson[A] = S(b)
0 − i

e

2π

∫
M

dϕ ∧ dA, (24)

where we can see that the complicated term is essential to have
the compact form above of higher dimensional extension.
Furthermore, if we require the extended background field
A on M to satisfy Frz ≡ ∂rAz − ∂zAr = 0 in which r is the
radial coordinate of D2 and z = x1 + ix0 as before and impose
the Neumann boundary condition ∂rϕ|∂M = 0, we can obtain
the following holographic interpretation of our bosonization

scheme:∫
Dϕ exp (−Sboson[A])

=
∫

Dϕ exp

[
−

∫
D2×S1

drdzdz̄2i∂r (∂zϕ∂z̄ϕ)/(8π )

+ ie
∫

D2×S1
drdzdz̄(∂rϕFzz̄ − ∂zϕFrz̄ )

]/
(2π )

=
∫

DBrDBz · δ(FB,rz ) exp

[
1

4π i

∫
D2×S1

drdzdz̄εi j
(rz)

× Bi∂z̄B j − e

2π

∫
D2×S1

B ∧ dA

]

=
∫

DBμ exp

[
−

∫
M

(
1

4π
B ∧ dB + e

2π
B ∧ dA

)]
, (25)

where Bμ = (Br, Bz, Bz̄ ) and the superscripts of antisymmet-
ric tensor ε

i j
(rz) take values in {r, z} with εrz

(rz) = −εzr
(rz) = 1, and

FB,rz ≡ ∂rBz − ∂zBr with Bz̄ serving as the Lagrange multi-
plier of δ(FB,rz ). It should be noted that here the “temporal”
coordinate r is set to be the extra dimension and, if we
set the spatial ones, e.g., x1, to be radial one instead, the
corresponding bosonic theory will be chiral [32].

Thus it implies the Chern-Simons-BF (CSBF) theory
[33,34] is the dual TQFT of our bosonization:

Sboson[A] ↔
∫

1

4π
B ∧ dB + e

2π
B ∧ dA ≡ SCS-BF[B, A],

with the duality mapping −idϕ ↔ B satisfying Br |∂M = 0 or
equivalently Neumann boundary condition ∂rϕ|∂M = 0 and
the extension requirement that Frz = 0 for the background
charge U (1) gauge field A.

IV. SPECTRAL EQUIVALENCE

A. Spectrum with a flat background gauge field

We will take a simple case so that the duality could be seen
readily. The background gauge field will be taken flat so that
F01 = 0. For later convenience, let us take a more general Lut-
tinger parameter as 1/8π → 1/8πK or S(b)

0 → S0
T-L ≡ S(b)

0 /K ,
though the current interest is K = 1. Such a generalized model
corresponds to a type of interacting fermions and we will later
show that the remaining terms of Sboson[A] indeed do not gain
renormalization by K due to topological reasons [cf. Eq. (53)].

We can calculate the partition function associated with
Sboson[K ; α, β] as [cf. Eq. (A6)]

Zboson[K, Aflat]

=
∑
n,k

exp(−i2πnβ )q
K
2 (k+ n

2K +α)2
q̄

K
2 (k− n

2K +α)2
/|η(τ )|2. (26)

We can identify the charge of Z2 symmetry with a certain
operator labeled by (n, k) as

QZ2 = n, (27)

due to β = 1/2 giving exp(−i2πnβ ) = (−1)n which is its
fermion number parity. This Z2 symmetry is generated by
(−1)QZ2 : � → −� the fermion number parity transforma-
tion or � → � + π bosonically.
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Then we arrive at the following result at the free fermion
point K = 1:

Zboson[Aflat] =
∑

f0,1∈{0,1/2}

(−1)δ f0+ f1,1

2|η(τ )|2
{∣∣∣∣ϑ

[
α + f1

−(β + f2)

]
(τ )

∣∣∣∣
2
}

= 1

2
{Z+,+

Dirac + Z+,−
Dirac + Z−,+

Dirac − Z−,−
Dirac}[α, β],

(28)

where Zs1,s2
Dirac labels the Dirac partition function [35] with the

spin structure (s1, s2) defined in Eq. (11) and ϑ[ α

−β
](τ ) ≡∑

n∈Z exp [iπ (n + α)2τ − i2πβ] is the generalized Theta
function [36]. To obtain the fermionization or the inverse
of the bosonization which completes the bosonization pro-
cedure, we can made use of the Z2 transformation defined
above, whose charge is obtained in Eq. (27). We can apply
this Z2 transformation onto the Hilbert space as an operator,
equivalent to inserting (−1)QZ2 = exp (−i

∫
cycle1

dϕ/2) into
the bosonic path integral. Similarly, we can also apply this
Z2 transformation to twist the bosonic wave function spa-
tially by a defect line operator, equivalently inserting IZ2 ≡
exp (i

∫
cycle0

dϕ/2) into the bosonic path integral.
Then we can label the corresponding Z2 sectors by Zw1,w2

boson
where w1&w2 ∈ {±} with “+” no Z2 twisting whereas “−”
a Z2 twisting, denotes whether the Z2 generator is operated
spatially and temporally, respectively. Specially, Zboson[Aflat]
in Eq. (28) is Z+,+

boson. Therefore⎛
⎜⎜⎜⎝

Z+,+
boson

Z+,−
boson

Z−,+
boson

Z−,−
boson

⎞
⎟⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎝

1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Z+,+
Dirac

Z+,−
Dirac

Z−,+
Dirac

Z−,−
Dirac

⎞
⎟⎟⎟⎠ (29)

for the flat background gauge field and we can defined a
matrix W(w1,w2 ),(s1,s2 ) so that

Zw1,w2
boson [α, β] =

∑
(s′

1,s
′
2 )

W(w1,w2 ),(s′
1,s

′
2 )Z

s′
1,s

′
2

Dirac[α, β], (30)

and similarly, the fermionization takes the form as

Zs1,s2
Dirac[α, β] =

∑
(w′

1,w
′
2 )

W −1
(s1,s2 ),(w′

1,w
′
2 )Z

w′
1,w

′
2

boson [α, β], (31)

where numerically W = W −1. Such an invertibility of W
exactly confirms the conjecture that weighted sum of fermion
partition functions over various spin structure being the boson
partition function in Eq. (28) implies the bosonization of a
fermion partition with a single spin structure (specified by
s1,2, α, and β on torus) in the earlier discussions on twisted
fermions [35,37]. The bosonization and fermionization above
exactly reproduce the same results with α = β = 0 except for
the last column of W matrix which does not matter with a
vanishing background gauge field [25,38–40].

B. Bosonization: duality of partition function

An observation of the flat-connection case in Eq. (28)
implies the bosonic partition function cannot be dualized to
some fermionic one unless all the possible spin structures are

summed up by a weight determined by matrix W(w1,w2 ),(s1,s2 )

and its inverse. Hence, assuming these weights only depend on
spin structures, we could propose that, for general fluctuating
{Aμ} gauge field configurations,

Zs1,s2
Dirac[A] =

∫
D (ψ, ψ̄ ) exp

(−SDirac[ψ, ψ̄, A]
∣∣
s1,s2

)
;

ψ (z + 1) = −s1ψ (z); ψ̄ (z̄ + 1) = −s1ψ̄ (z̄);

ψ (z + τ ) = −s2ψ (z); ψ̄ (z̄ + τ̄ ) = −s2ψ̄ (z̄) (32)

and its dual

Zw1,w2
boson [A] =

∑
n,n′∈Z

∫
w1,w2

Dϕ exp(−Sboson[ϕ, A]|n,n′ ),

ϕ(z, z̄) = ϕ(z + 1, z̄ + 1) − 2πn;

ϕ(z, z̄) = ϕ(z + τ, z̄ + τ̄ ) − 2πn′, (33)

are related by matrix W defined by Eq. (29):

Zw1,w2
boson [A] =

∑
(s′

1,s
′
2 )

W(w1,w2 ),(s′
1,s

′
2 )Z

s′
1,s

′
2

Dirac[A];

Zs1,s2
Dirac[A] =

∑
(w′

1,w
′
2 )

W −1
(s1,s2 ),(w′

1,w
′
2 )Z

w′
1,w

′
2

boson [A], (34)

which can be generalized to the interacting fermion with a
general K not necessarily 1.

Let us furthermore gauge the bosonic Z2 symmetry or
equivalently impose the identification θ ∼ θ + π . Then

ZZ2-gauge
boson [A]= 1

2

∑
w1,2

Zw1,w2
boson [A] = 1

2

∑
s1,2

Zs1,s2
Dirac[A], (35)

which is exactly the Dirac fermion gauged by Z2 fermion
number parity.

C. Chiral U (1)L,R symmetries and their extensions
after bosonized

Let us consider a natural generalization of the background
gauge field that is enlarged to the chiral U (1)L × U (1)R. In the
following, we will investigate how such a (fermionic) chiral
symmetry U (1)L,R is represented bosonically and we will
show our bosonization can reproduce exactly the same result
as other bosonization approaches [25]. The results within
this part are applicable to general K not necessarily the free
fermion point K = 1. We take the following convention for
the chiral gauge coupling to the free fermion part as:

S(f)
0chiral =

∫
dtdx iψ†γ 0γ μ(∂μ − iePLALμ − iePRARμ)ψ,

where U (1)L,R connections AL and AR are not necessarily
equal and PL,R ≡ (1 ∓ γ 3)/2. It is straightforward to obtain
the corresponding action after one notice the correspondences
ψ (z) ∝:exp[−i(ϕ + 2θ )/2]: with ψ̄ (z̄) ∝:exp[i(ϕ − 2θ )/2]:
where we still take a general Luttinger parameter tuned by
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K with θ compactified by 2π . Then

Sboson[K, AL,R] = S0
T-L − i

e

2π

∫
T 2

[
1

2
(ϕ + 2θ )dAR + 1

2
(ϕ − 2θ )dAL

]

− i
εμν

4π

{[∫
cycleμ

d (ϕ + 2θ )

](∫
cycleν

eAR

)
+

[∫
cycleμ

d (ϕ − 2θ )

](∫
cycleν

eAL

)}
. (36)

Then we take AL = 0 and dAR = 0 with
∫

cycleν
eAR = 2πδν,0β

to obtain the U (1)R chiral charge. Hence,

Sboson,R[K, β] = S0
T-L + i

β

2

∫
cycle1

d (ϕ + 2θ ). (37)

By the use of ∂z̄(ϕ + 2Kθ ) = ∂z(ϕ − 2Kθ ) = 0 [26], we
can arrive at that the additional term proportional iβ/2 ·∫

cycle1
d (2θ ) can be canceled by the following changing of

variable, up till a real constant in the action which will be set
to zero required by unchanged central charge due to α = 0,
ϕ → ϕ̃ = ϕ + 2πβ z̄−z

τ̄−τ
, or, equivalently, n′ → ñ′ = n′ + β.

Then we obtain by q ≡ exp(i2πτ ) and q̄ ≡ exp(−i2πτ̄ ), (cf.
Appendix 1)

Zboson,R[K, β] = 1

|η(τ )|2
∑
n,k

exp [−i2π (n/2 − k)β]

· q
K
2 (k+ n

2K )2
q̄

K
2 (k− n

2K )2
, (38)

from which we can directly read off the U (1)R charge, and
similar calculations yield U (1)L charge:

QR = n/2 − k; QL = n/2 + k, (39)

which are exactly the same as the results in the point of view
of quantum anomaly [25].

For general bosonic Z2 sectors Zw1,w2
boson to be inserted by

exp(i2πQL,R) in the path integral, the effects of such inser-
tions are

Zw1,w2
boson [α, β] → Zw1,−w2

boson [α, β], (40)

which implies that

ZZ2-gauge
boson [α, β] → ZZ2-gauge

boson [α, β], (41)

exp(i2πQL,R) = (−1)QZ2 , (42)

and the Z2 gauged bosonic theory has a bosonic spectrum
that is natural in the viewpoint of Eq. (35). It also means that
the fermionic U (1)L,R is extended by Z2 on the bosonic side
and we expect such a relation is also held when the gauge
field {Aμ} is fluctuating. Due to such a symmetry extension,
a bosonized theory would have less symmetry anomalies than
its fermionic partner. Thus, together with the equivalence in
Eq. (41), it implies there exist fermionic quantum anomalies
related to U (1)L × U (1)R, which cannot be realized by its
bosonization Sboson. A typical example illustrating this “Z2-
killing” effect is that Z2n × Z2n ⊂ U (1)L × U (1)R gives a
Z4n fermionic symmetry protected trivial (SPT) phase clas-
sification, whereas Z2n × Z2n only provides a Z2n bosonic
SPT phase classification [41] which is formally killed by
half after bosonization. Additionally, independence on K of
Eq. (42) implies the robustness against interactions due to its

topological nature and that it can be applied to Tomonaga-
Luttinger liquids.

D. Bosonization: resolution of Dirac mass condensation paradox

It is an appropriate point to resolve the Dirac mass conden-
sation paradox introduced before. We first restate or general-
ize that paradox below.

Assume we have N of U (1) instantons in the space-time
T 2 and, for simplicity, they are localized at space-time points
{xk}k=1,··· ,N or

eF01(x) =
N∑

k=1

2πδ2(x − xk ). (43)

Let us evaluate the path-integral (P-T) expectation value of a
series of Dirac mass bilinear term:〈

M∏
j=1

�̄(y j )�(y j )

〉
P-T

≡
〈

M∏
j=1

�̄(y j )�(y j )

〉
P-T: SDirac

(44)

in which �̄ denotes the Dirac adjoint of � and it should
be distinguished from the antiholomorphism notation used
before for ψ̄ (z̄). To evaluate the above expectation value, we
expand � and �̄ into their eigenfunction of Dirac operator
D ≡ γ μ(∂μ − ieAμ): D�n = λn�n with

� =
∑

n

an�n, �̄ =
∑

n

ān�̄n,

∫
�̄m�n = δm,n, (45)

where {ān} and {an} are independent Grassmanian numbers.
Then〈

M∏
j=1

�̄(y j )�(y j )

〉
P-T

{�= 0, if M � N&M = N mod 2;
= 0, otherwise,

(46)

where we have made use of the Atiyah-Singer index theorem
which implies that the number of zero mode of Dirac operator
is the instanton number N , and the “mod 2” results from the
fact that, for any λn with �n in the spectrum of Dirac operator
D, we have

Dγ 3�n = −λnγ
3�n, (47)

in which {D, γ 3} = 0 is made of use and γ 3 is canonically
well-defined on any spin manifold.

Then the paradox follows: if we assume the bosoniza-
tion of the fermion model is S′[A] defined in Eq. (14), ap-
plying the operator correspondence �̄� ∝ cos ϕ, we obtain
〈∏M

j=1 �̄(y j )�(y j )〉P-T
∝ 〈∏M

j=1 cos ϕ(y j )〉P-T: S′ �= 0 generi-
cally for any M value independing on N , which fails to
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match the fermionic statement in Eq. (46). Thus the con-
ventional gauged bosonic model S′[A] or its generalization
gauged WZW model is problematic and inconsistent with its
presumed fermionic partner.

We will solve the inconsistency or paradox above by our
proposed bosonization Sboson[A] defined in Eq. (23). Due to
the localized gauge-field configuration in Eq. (43), we have
Sboson[A] = S(b)

0 − i
∑N

k=1 ϕ(xk ), and thus〈
M∏

j=1

�̄(y j )�(y j )

〉
P-T

∝
〈

M∏
j=1

cos ϕ(y j )

〉
P-T: Sboson

=
〈∏

j,k

exp[iϕ(y j )] + exp[−iϕ(y j )]

2
exp[iϕ(xk )]

〉
P-T: S(b)

0

×
{�= 0, if M � N&M = N mod 2;
= 0, otherwise, (48)

which is exactly the fermionic result in Eq. (46), and we
have applied the neutrality condition for ϕ’s path integral
upon action S(b)

0 . We can see that the constraint given by
Atiyah index theorem on the fermionic side precisely corre-
sponds to that by neutrality condition. Therefore, with our new
bosonization Sboson[A], the paradox brought by wrong S′[A]
has been resolved successfully. The similar argument may be
also straightforward to be applied for higher symmetries with
nontrivial fundamental homotopy group, e.g., SU(N )/ZN .

V. QUANTUM XXZ CHAIN WITH TWISTED
BOUNDARY CONDITION

In this part, we further apply our bosonization in back-
ground gauge field to quantum ferromagnetic XXZ spin chain
with an antiferromagnetic anisotropy along z axis:

HXXZ = −
L∑

i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + �σ z

i σ z
i+1

)
, (49)

with � ≡ − cos γ and γ ∈ [0, π ] and the following twisted
boundary condition (TBC):

σ x
L+1 ± iσ y

L+1 = exp(±iφtw)
(
σ x

1 ± iσ y
1

)
. (50)

The effect of twisted boundary condition of XXZ Heisenberg
model has been considered in the framework of the inte-
grable model. Numerical calculations of this model have been
achieved by the seminal work by [11] and the excitation spec-
trum has also been considered [42]. The following application
of our results on XXZ models is also largely motivated by
such numerical results, which is a consistency check.

In the case of periodic boundary condition (PBC) φtw =
0, the lattice model can be mapped to a spinless lattice
fermionic model with interaction by Jordan-Wigner trans-
formation whose low-energy physics is captured by the
Tomonaga-Luttinger liquid [43]:

S0
T-L = 1

8πK

∫
dτEdx

[(
∂τEϕ

)2 + (∂xϕ)2
]
, (51)

where τE ≡ ivt with K ≡ π/[2(π − γ )] and v normalizing
factors for Luttinger parameter 1/4π and Fermi velocity
vF, respectively, due to the interaction of the corresponding

fermionic model. In our convention, the bosonic field ϕ is
always normalized so that its radius is unity: ϕ ∼ ϕ + 2π . The
XY point where γ = π/2 corresponds to K = 1, exactly the
free fermionic point.

Let us assume that the minimal coupling between ϕ and A
is renormalized by �K with K �= 1:

ST-L[A] − S0
T-L

= −i�K
e

2π

(∫
T 2

ϕdA − iεμν

∫
cycleμ

dϕ

∫
cycleν

A

)
. (52)

Since the bosonic field is angle-like with periodicity 2π and
the general gauge field always satisfies

∫
edA/2π ∈ Z on

torus, we need the action invariant under the redundancy of
field description ϕ → ϕ + 2π for any background field. Such
an invariance requires

�K = 1, (53)

since the Chern class
∫

edA/2π = ±1 can be realized on
torus which reflects the topological nature of this nonrenor-
malization.

A. Low-energy partition function

Since the TBC in the spin-chain language, following the
Jordan-Wigner transformation, is translated to the twisted
boundary condition for fermion by a charge U (1) phase
transformation: c j+L = c j exp(iφtw). It can be realized by a
flat background gauge field with dA = 0 and β = 0 : φtw =
2πα = e

∫
cycle1

A(x0, x1).
Therefore, we obtain the bosonization of our twisted XXZ

chain as

ST-L[A] = S0
T-L − i2π

φtw

2π

∫
cycle0

∂τEϕ

2π
. (54)

This action is consistent with that of Kitazawa by taking the
limit q → 0. It is a variation of Dotsenko-Fateev Coulomb
gas model [44]. Hence we can understand the flux insertion
of Dirac fermion as the background charge insertion of free
boson. We see that its partition function is exactly Eq. (38)
with α = φtw/2π and β = 0:

ZTL(K, φtw)= 1

|η(τ )|2
∑

n,k∈Z
q

K
2 (k+ n

2K + φtw
2π

)2
q̄

K
2 (k− n

2K + φtw
2π

)2
,

(55)

which can be seen as the θ field twisting as Fig. 3.

B. Short review of XXZ spin chain with twisted
boundary condition

The field theoretic analysis and the relation of XXZ spin
chains to quantum group were considered [45,46]. However,
except for the work by Kitazawa [9,10], no one has ever
considered this effect as that of background gauge field.
The reason why almost no one considers such problem may
be related to the interpretations of background gauge fields.
The interpretation of such gauge transformation for con-
densed matter physicists is different from that of high energy
physicists in the sense that the former does not gauge out
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FIG. 3. Twisted boundary condition of free boson with a winding
number k in Eq. (55).

the background gauge field. Kitazawa has numerically and
phenomenologically shown this effect can be described by
the effect of the background charge of free boson. At this
stage, it is difficult to understand the equivalence of fermion
with flux and boson with background charge. Hence the more
systematic derivation of his results is desired.

The more combinatorial approach on this phenomena
was considered in the context of polynomial and integrable
field theory. Combinatorial equivalence of this boson-fermion
correspondence is called Rojers-Ramanujan identity [47,48].
This identity relates the character of minimal model to q
deformed fermionic sum.

C. Correspondences between quantum XXZ
chain and Potts model

In this part, we will see how the partition function of
the low-energy twisted XXZ chain (55) can give properties
of the thermal operator in Q-state Potts model for Q � 4.
Correspondence between twisted free boson and Potts model
has been considered by [49]. In other words, our formalism is
a spin chain version of this work.

The quantum Q state Potts model takes the form as

HP
Q-Potts = −

L∑
i=1

Q−1∑
k

�k
i −

L∑
i=1

Q−1∑
k=1

Rk
i RQ−k

i+1 , (56)

with PBC: RL+1 = R1 denoted by “P” in the superscript in
“HP

Potts” and the Z (q) algebra (ω ≡ exp(i2π/Q)) is satisfied
by R’s and Q’s:

�iRi = ω−1Ri�i; �iR
†
i = ωR†

i �i; �
Q
i = RQ

i = 1. (57)

HP
Q-Potts can be diagonalized into blocks labeled by HP,q

Q-Potts

with
∏L

i=1 �i = ωq:

HP
Q-Potts = diag

[
HP,0

Potts, HP,1
Q-Potts, · · · , HP,Q−1

Q-Potts

]
. (58)

1. Thermal operator: ε

It has been proven that, on the operator level, the fol-
lowing correspondence between the ground-state sector of
Potts model and twisted XXZ chain holds up to an irrelevant
constant shift:

HP,0
Q-Potts = HXXZ(γ , φtw = 2γ ) (59)

by an appropriate normalization of coupling constant JXXZ and
setting γ = arccos(

√
Q/2) [11].

By finite-size scaling of correlation length, the thermal
operator “ε” of Q-state Potts model lies exactly at the first
excited state of the sub-Hamiltonian HP,0

Q-Potts. By the cor-
respondence in Eq. (59) above, we see that the conformal
properties of ε can be extracted out by the partition in Eq. (55):

ZTL

(
π

2(π − γ )
, 2γ

)

= 1

|η(τ )|2
∑

n,k∈Z
q

π
4(π−γ ) [k+ n(π−γ )

π
+ γ

π
]2

q̄
π

4(π−γ ) [k− n(π−γ )
π

+ γ

π
]2

,

(60)

from which we can read off the conformal anomaly defined
as the lowest conformal weight of the critical Q-state Potts
model after setting γ = arccos(

√
Q/2):

c = 1 − 6 arccos(
√

Q/2)2

π (π − arccos(
√

Q/2))
, (61)

and the conformal weight of ε by setting its first excited
energy eigenstate labeled by (k, n) = (1, 0):

�ε = �̄ε = π + 2 arccos(
√

Q/2)

4(π − arccos(
√

Q/2))
, (62)

where �ε and �̄ε are, respectively, holomorphic and anti-
holomorphic conformal dimensions of ε. These properties
exactly match those of conformal field theories of low-energy
Q-state Potts model.

2. Order operator σ

For the other operators such as order parameter and para-
fermion operator, their location are only empirically identified
in the spectrum of twisted XXZ spin chains with other twisted
boundary conditions. More specifically, the order parameter σ

of Potts model can be found in the spectrum of XXZ chain
with twisted angle as φtw = π with the partition function as

ZTL

(
π

2(π − γ )
, π

)

= 1

|η(τ )|2
∑

n,k∈Z
q

π
4(π−γ ) [k+ n(π−γ )

π
+ 1

2 ]2

q̄
π

4(π−γ ) [k− n(π−γ )
π

+ 1
2 ]2

.

The conformal dimensions of σ is empirically determined
by the lowest energy eigenstate of n = 0 sector of XXZ
Hamiltonian, namely (k, n) = (0, 0):

�σ + γ 2

4π (π − γ )
= π

16(π − γ )
, (63)

�̄σ + γ 2

4π (π − γ )
= π

16(π − γ )
, (64)

which are solved as �σ = �̄σ = (π2 − 4γ 2)/[16π (π − γ )].

D. Parafermion operators

Numerically, the parafermion operator with its spin as
Q̃/Q with Q̃ = 1, 2, . . . , Q − 1 can find its location in the
lowest energy eigenstate of n = 1 sector of the spectrum of
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XXZ chain with twisted angle as φtw = 2πQ̃/Q. To obtain
its conformal properties, we write down the corresponding
partition function of XXZ chain:

ZTL

(
π

2(π − γ )
,

2πQ̃

Q

)

= 1

|η(τ )|2
∑

n,k∈Z
q

π
4(π−γ ) [k+ n(π−γ )

π
+ Q̃

Q ]2

q̄
π

4(π−γ ) [k− n(π−γ )
π

+ Q̃
Q ]2

,

which implies, after (k, n) = (0, 1) is extracted out,

�pf + γ 2

4π (π − γ )
= π − γ

4π
+ Q̃

2Q
+ πQ̃2

4Q2(π − γ )
; (65)

�̄pf + γ 2

4π (π − γ )
= π − γ

4π
− Q̃

2Q
+ πQ̃2

4Q2(π − γ )
, (66)

which are solved as

�pf = π − γ

4π
+ π2Q̃2 − γ 2Q2

4πQ2(π − γ )
+ Q̃

2Q
, (67)

�̄pf = π − γ

4π
+ π2Q̃2 − γ 2Q2

4πQ2(π − γ )
− Q̃

2Q
, (68)

which exactly imply the spin as �pf − �̄pf = Q̃/Q, namely
the spin of the parafermion operator.

VI. CONCLUSION

In this paper, we proposed the new bosonization of Dirac
fermion coupled with background gauge field. Our formalism
can be thought of the natural extension of existing bosoniza-
tion. It is consistent with the global chiral anomaly of Dirac
fermion and with the operator correspondence of U (1) charge
current. Moreover it can describe the numerical and Bethe
ansatz results of XXZ chain with twisted boundary conditions.

As we have discussed, the functional bosonization is insuf-
ficient for (1 + 1)-dimensional due to nontrivial fundamental
homotopy of underlying space-time manifold. Hence it is
natural to arrive at that the perturbations which suppress
the topologically nontrivial field-configuration sectors, e.g.,
nonzero winding in U (1) boson case, may assure the validity
of functional bosonization. Otherwise, the evaluation of the
contribution of each topological sector is necessary for using
the functional bosonization.

Our formalism clearly suggests the relationship between
the fermionic system with twisted boundary condition and the
bosonic system with background charge [50]. Moreover the
generalization of U (1) gauge symmetry to SU(N )/ZN seems
to be straightforward. Hence we conjecture multi-component
fermion coupled with gauge field can be bosonized to multiple
bosons with background charge. The later theory includes a
wide variety of CFTs like Toda field theory and Coulomb gas

representation of WZW models. In that sense, twisted XXZ
chain and its field theoretic analog shows the correspondence
between minimal CFT and twisted fermion. For more general
application, we can understand the result by A Klumper [12]
in our formalism if we think of spin S chain with twisted
boundary condition as parafermion and free boson with back-
ground charge [51]. For the simplest example, we can identify
spin 1 chain as one Dirac fermion and Majorana fermion [52].
If we add the twist to this Dirac fermion and consider the
bosonization, we obtain free boson with background charge
and Majorana fermion. Hence this model should reproduce
central charge of N = 1 minimal conformal field theory.

Related to this observation, the relation between the in-
sensitivity of the twist angle of the gapped system and mas-
sive integrable model derived from CFT is quite mysterious
because CFT is not insensitive to twistings. The integrable
perturbations and their flow were researched by using the
thermodynamic Bethe ansatz, hence further research on this
insensitivity of twist may result in some universal RG flows
under twist. The TQFT/CFT correspondence may shed new
light for this problem because Chern-Simons-BF theory is
known to become TQFT.

Moreover, as one of the authors has shown, there exist
some difficulties to express nonlocal lattice object related to
large gauge transformation [53]. Such an object is the gapless
version of the indicator and it should be described by low
energy field theory. Our formalism is supposed to explain such
phenomena more consistently.
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APPENDIX: DERIVATIONS AND FURTHER
APPLICATIONS

1. Derivations of Zboson[K, Aflat] in Eq. (38)

Let us calculate the partition function associated with
Sboson[K ; α, β]:

Zboson[Aflat] = Zwinding-free · Zw, (A1)

in which

Zwinding-free = 1√
2τ2K|η(τ )|2 , (A2)

and the winding-number contribution is

Zw =
∑
n,n′

exp

{
− π

2K

[
1

τ2
(n′ − τ1n)2 + τ2n2

]}
exp[−i2π (nβ − n′α)]

=
∑
n,n′

exp

{
−π

[
1

2τ2K
(n′)2

]
+

[
π

τ1

τ2K
n + i2πα

]
n′
}

exp

[
−π

2

|τ |2
τ2K

n2 − i2πnβ

]
. (A3)
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We could use the following Poisson resummation formula

∑
n′∈Z

exp[−πan′2 + bn′] = 1√
a

∑
k∈Z

exp

[
−π

a

(
k + b

2π i

)2
]

(A4)

and obtain

Zw =
√

2τ2K
∑
n,k

exp

[
−π

2

|τ |2
τ2K

n2 − i2πnβ

]
exp

{
−2πτ2K

[
k + 1

2π i

(
π

τ1

τ2K
n + i2πα

)]2
}

=
√

2τ2K
∑
n,k

exp(−i2πnβ )q
K
2 (k+ n

2K )2+αK(k+ n
2K )q̄

K
2 (k− n

2K )2+αK(k− n
2K )(qq̄)

α2K
2 , (A5)

where q ≡ exp(i2πτ ) and q̄ ≡ exp(−i2πτ̄ ).
Combining the forms of Zwinding-free with Zw, we obtain

Zboson[K, Aflat] = Zwinding-free · Zw =
∑
n,k

exp(−i2πnβ )q
K
2 (k+ n

2K +α)2

q̄
K
2 (k− n

2K +α)2

/|η(τ )|2. (A6)

2. Applications

In this part, we will apply our bosonization to several real
systems. The space-time will be taken to be (t, x) rather than
the Euclidean one. The readers should keep in mind the results
of this section is derived only from bosonization but not from
exact methods. The results of this section may be verified
by numerical simulation or Bethe ansatz of the spin chain
[54,55].

a. Spinless electronic system in the background
electromagnetic field

Let us consider the following spinless fermion on one-
dimensional chain:

H =−JXY

2

⎛
⎝L/a∑

j=1

c†
j+1 exp[iA1( j)a]c j + H.c. + A0( j)c†

j c j

⎞
⎠,

(A7)

where a is the lattice constant and JXY is the hopping am-
plitude, which can also be the antiferromagnetic exchange
coupling constant in the XY model having the same fermionic
representation by c j’s and c†

j ’s. We could go to the low-energy
limit and it simply gives the Dirac fermion coupled with the
background gauge field. Then we bosonize the theory with the
following operator correspondences between lattice operators
and bosonic ones:

δρ ↔ − 1

2π
∂xϕ = i

2π
(∂w − ∂w̄ )ϕ(w, w̄),

J ↔ + 1

2π
∂tϕ = i

vF

2π
(∂w + ∂w̄ )ϕ(w, w̄), (A8)

where w = τE − ix, w̄ = τE + ix, τE ≡ ivFt and δρ ≡ (ρ −
ν) with filling factor ν and vF the Fermi velocity. It should
be noted that the Luttinger parameter is still 1/4π since the
coefficient vF of Minkowskian Langrangian density will be
absorbed into the integration measure

∫
dτEdx of action.

For later use, we do a conformal mapping: z =
exp(2πw/L) where L is the circumference of the cylinder.

Then,

J = i
vF

2π
[(∂wz)∂z + (∂w̄ z̄)∂z̄]ϕ(z, z̄)

= i
vF

L
(z∂z + z̄∂z̄ )ϕ(z, z̄), (A9)

and, similarly,

δρ = i

L
(z∂z − z̄∂z̄ )ϕ(z, z̄). (A10)

We have omitted the oscillating parts of J and δρ since they
do not contribute to the correlation function we are interested
in the rest sections.

b. Time-ordered correlation function

Let us denote the time evolution operator defined
by our system including (time-dependent) interactions by
U (+∞,−∞). The quantum average of an observable X̂ at
time t is

〈X (t )〉QM ≡ 〈0|U †(t,−∞)X̂U (t,−∞)|0〉. (A11)

To relate it with the path integral language, we need to find
an action S̃ and its time revolution operator Ũ , up to a phase
factor exp(il ), satisfying,

exp(il )|0〉 = Ũ (+∞,−∞)|0〉,
Ũ (t ′,−∞)

∣∣
t ′�t = U (t ′,−∞). (A12)

Therefore

〈X (t )〉QM = 〈0|Ũ †(t,−∞)X̂Ũ (t,−∞)|0〉
= 〈0|Ũ (−∞,+∞)Ũ (+∞, t )X̂Ũ (t,−∞)|0〉
= exp(−il )〈0|Ũ (+∞, t )X̂Ũ (t,−∞)|0〉

= 〈0|Ũ (+∞, t )X̂Ũ (t,−∞)|0〉
〈0|Ũ (+∞,−∞)|0〉 , (A13)

which is exactly a path integral representation after a Wick
rotation t → t exp(−iε) and ±∞ → ±∞ exp(−iε) with ε →
0+, or equivalently, one could rotate it to Euclidean space-time
that we will do next.
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c. Spatially uniform electromagnetic pulse: eF01 = 2πδ(t − t0 )/L

Let us consider a case that the background gauge field is
uniform in the spatial component while a pulse in the temporal
direction:

eF01 = 2πδ(t − t0)/L, (A14)

where F01 has a proper quantization that
∫

F = ∫
dtdx F01 ∈

2πZ/e and it has been transformed back to a Minkowskian
tensor, while

∫
F is coordinate-independent.

Let us first map the system on the cylinder onto the com-
plex plane by z = exp(w), and consider the expectation value
of ∂wϕ(w, w̄) and ∂w̄ϕ(w, w̄). Then, if t < t0, the observable
δρ(t ) and J (t ) cannot be influenced by the future pulse, or

equivalently speaking, we simply take S̃ = S(b)
0 with the free

time evolution Ũ = Ũ0 which obviously satisfies Eq. (A16).
Next, when t > t0, we should fix the Ũ and its action S̃

satisfying Eq. (A12). Let us take the following action:

S̃(t1) = S0 −
∫

t1>t

dx1

L
ϕ(t1, x1) +

∫
t2=t0

dx2

L
ϕ(t2, x2).

(A15)

Obviously, 〈0|Ũ (+∞,−∞)|0〉 is converging to 1 as t1 is
approaching t = t0 from left (although, by definition t1 > t >

t0, we are still free to extend its domain). Let us show that it
satisfies Eq. (A12). Indeed,

d

dt1
〈0|Ũ (+∞,−∞)|0〉 =

∫
Dϕ

{
exp

[
−i

∫
t1>t

dx1

L
ϕ(t1, x1) + i

∫
t2=t0

dx2

L
ϕ(t2, x2) + iS0

][∫
t1>t

dx1

iL
∂tϕ(t1, x1)

]}

= 〈0|Ũ (+∞, t1)
[ ∫

t1>t
dx1
iL ∂tϕ(t1, x1)

]
Ũ (t1,−∞)|0〉

〈0|Ũ (+∞,−∞)|0〉 · 〈0|Ũ (+∞,−∞)|0〉

= −ivF
2π

L
〈0|Ũ (+∞,−∞)|0〉, (A16)

which solves as

〈0|Ũ (+∞,−∞)|0〉 = exp

[
−ivF

2π

L
(t1 − t0)

]
, (A17)

namely, exp(il ) = exp [−i2πvF(t1 − t0)/L], which is scaling dependent as seen below. It implies that Eq. (A12) is satisfied and
Eq. (A16) will be proven within Appendix 3. A physical interpretation of Eq. (A16) is straightforward that the wave function
does not change against the rapid pulse. What is more is that the wave function is indeed the first excited energy eigenstate of
the Hamiltonian after the pulse. The excited energy, relative to the ground state, is

�E = vF
2π

L
, (A18)

which exactly produces the dynamical phase matching Eq. (A17):

exp [−i�E (t1 − t0)] = exp

[
−ivF

2π

L
(t1 − t0)

]
= exp(il ). (A19)

However, by accident, the excited states with energy �E are degenerate since one single oscillating mode and a unit
electromagnetic U (1) phase winding mode are both of that energy level. We will see, by use of duality mappings in Appendix 7,
the excited state after the pulse should be winding mode rather than an oscillator.

We also calculate the following quantity:

〈∂wϕ(w, w̄)〉QM

∣∣
w=it−ix,w̄=it+ix = 〈0|Ũ (+∞, t )∂wϕ(−ix,+ix)Ũ (t,−∞)|0〉

〈0|Ũ (+∞,−∞)|0〉

=
∫

Dϕ
{

exp
[ − i

∫
t1>t

dx1
L ϕ(t1, x1) + i

∫
t2=t0

dx2
L ϕ(t2, x2) + iS0

]
[∂wϕ(w, w̄)]

}
∫

Dϕ exp
[ − i

∫
t1>t

dx1
L ϕ(t1, x1) + i

∫
t2=t0

dx2
L ϕ(t2, x2) + iS0

]
=

∫
Dϕ

{
exp

[ − i
∫
|z1|>|z|

dθ1
2π

ϕ(z1, z̄1) + i
∫
|z2|=exp(τE0 )

dθ2
2π

ϕ(z2, z̄2) − S0
][

2π
L z∂zϕ(z, z̄)

]}
∫

Dϕ exp
[ − i

∫
|z1|>|z|

dθ1
2π

ϕ(z1, z̄1) + i
∫
|z2|=exp(τE0 )

dθ2
2π

ϕ(z2, z̄2) − S0
]

= −i, (A20)

where we have done the conformal transformation from (w, w̄) coordinate to (z, z̄) by z = exp(2πw/L) and z̄ = exp(2πw̄/L)
inducing ∂wϕ → (∂wz)·∂zϕ(z, z̄) = 2πz∂zϕ(z, z̄)/L, and we have define θ1,2 ≡ arg(z1,2) and τE0 = it0 treated as a real number
in the radial quantization. On the second line of Eq. (A20), we write ∂wϕ(w, w̄) in its Schrödinger representation which is the
reason we have set its time variable to be zero: ∂wϕ(−ix,+ix).
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Similarly, for the antiholomorphic component,

〈∂w̄ϕ(w, w̄)〉QM

∣∣
w=it−ix,w̄=it+ix

= 〈0|Ũ (+∞, t )∂w̄ϕ(−ix,+ix)Ũ (t,−∞)|0〉
〈0|Ũ (+∞,−∞)|0〉

=
∫

Dϕ
{

exp
[ − i

∫
|z1|>|z|

dθ1
2π

ϕ(z1, z̄1) + i
∫
|z2|=exp(τE0 )

dθ2
2π

ϕ(z2, z̄2) − S0
][

2π
L z̄∂z̄ϕ(z, z̄)

]}
∫

Dϕ exp
[ − i

∫
|z1|>|z|

dθ1
2π

ϕ(z1, z̄1) + i
∫
|z2|=exp(τE0 )

dθ2
2π

ϕ(z2, z̄2) − S0
]

= −i
2π

L
, (A21)

where, again, we set the time variable of ∂w̄ϕ(w, w̄) on the second line of Eq. (A21) to be zero since it is written in its Schrödinger
representation, and also z̄ = exp(2πw̄/L) induces ∂w̄ϕ → (∂w̄ z̄)·∂z̄ϕ(z, z̄) = 2π z̄∂z̄ϕ(z, z̄)/L. We will derive Eqs. (A20) and
(A21) later in Appendix 3.

Combining the calculations above with Eq. (A8), we arrive at that

〈δρ(t, x)〉 = 0,

〈J (t, x)〉 = 2�(t − t0)

L
vF, (A22)

where �(x) is the step function only nonzero and valued 1 when its argument is positive. This result is also exactly expected by
charge-pumping argument that

〈Plattice〉 = �(t − t0)
2πν

a
mod 2π/a, (A23)

after noticing the relation [cf. Eq. (A51)]

Plattice =
∫

dxkFJv−1
F mod 2π/a, (A24)

with kF = πν/a the Fermi momentum.

d. Comparison with S′[A]: wrong results by S′[A]

If we used the previous (wrong) bosonization action S′[A] = S(b)
0 + i

∫
e

2π
Aνε

μν∂μϕ, we would have arrived at the wrong
result that J still had a zero expectation value after the external pulse, e.g., with the following choice of gauge as ε → 0+:

eÃI
0 = 0, eÃI

1 = 2π

ε
(t − t0), if (t, x) ∈ UI;

eÃII
0 = eÃII

1 = 0, if (t, x) ∈ UII.

(A25)

Here, UI ≡ (t0 − ε/2, t0 + ε/2) × S1 and UII = ŪI is its complement with S1 the spatial component. It gives an obviously
incorrect action that S′[Ã] = S0, which produces vanishing 〈J〉QM inconsistent with the charge-pumping argument. Thus, from
this example, one can see that our bosonization is necessary to produce the physically making-sense results when we have a
topologically nontrivial external electromagnetic field.

3. Derivations of Eqs. (A20), (A21), and (A16)

In this part, we will perform a detailed calculation on Eqs. (A20), (A21), and (A16).
We define C1 := {|z1 > |z|} and C2 := {|z2| = exp(τE0)} and first∫

Dϕ
{

exp
[ − i

∫
C1

dθ1
2π

ϕ(z1, z̄1) + i
∫

C2

dθ2
2π

ϕ(z2, z̄2) − S0
][

2π
L z∂zϕ(z, z̄)

]}
∫

Dϕ exp
[ − i

∫
C1

dθ1
2π

ϕ(z1, z̄1) + i
∫

C2

dθ2
2π

ϕ(z2, z̄2) − S0
]

=
∫

Dϕ
{

exp
[ − i

∫
C1

dθ1
2π

ϕ(z1, z̄1) + i
∫

C2

dθ2
2π

ϕ(z2, z̄2) − S0
][

2π
L z∂zϕ(z, z̄)

]}
/Z0∫

Dϕ exp
[ − i

∫
C1

dθ1
2π

ϕ(z1, z̄1) + i
∫

C2

dθ2
2π

ϕ(z2, z̄2) − S0
]
/Z0

=
〈
R

{
exp

[ − i
∫

C1

dθ1
2π

ϕ(z1, z̄1) + i
∫

C2

dθ2
2π

ϕ(z2, z̄2)
][

2π
L z∂zϕ(z, z̄)

]}〉
0〈

R
{

exp
[ − i

∫
C1

dθ1
2π

ϕ(z1, z̄1) + i
∫

C2

dθ2
2π

ϕ(z2, z̄2)
]}〉

0

≡ I1

I2
, (A26)

where Z0 = ∫
Dϕ exp(−S0), R is radial ordering and 〈· · · 〉0 ≡ ∫

Dϕ[(· · · ) exp(−S0)]/Z0 so that we could apply Wick theorem
of free boson to the operator product expansion. To further use the Wick theorem, we need to write the exponential of operators
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into the polynomial expansions.

I1 =
+∞∑
n=0

〈
R

{
1

n!

[
−i

∫
C1

dθ1

2π
ϕ(z1, z̄1) + i

∫
C2

dθ2

2π
ϕ(z2, z̄2)

]n[2π

L
z∂zϕ(z, z̄)

]}〉
0

=
〈
R

{[
−i

∫
C1

dθ1

2π
ϕ(z1, z̄1) + i

∫
C2

dθ2

2π
ϕ(z2, z̄2)

]
2π

L
z∂zϕ(z, z̄)

}〉
0

·

·
+∞∑
n=0

n

n!

〈
R

[
−i

∫
C1

dθ1

2π
ϕ(z1, z̄1) + i

∫
C2

dθ2

2π
ϕ(z2, z̄2)

]n−1
〉

0

= I2 ·
〈
R

{[
−i

∫
C1

dθ1

2π
ϕ(z1, z̄1) + i

∫
C2

dθ2

2π
ϕ(z2, z̄2)

]
2π

L
z∂zϕ(z, z̄)

}〉
0

, (A27)

where we have made the use of the Wick theorem which gives

〈R(ϕ1 · · · ϕk )〉0 = (sum of all possible contractions), (A28)

where ϕi’s are linear combination of free bosonic operators. Thus, after noticing ∂zϕ(z, z̄) = ∂zφ(z) and R(φ(z)φ̄(z̄′)) = 0, we
obtain

I1

I2
=

〈
R

{[
−i

∫
C1

dθ1

2π
ϕ(z1, z̄1) + i

∫
C2

dθ2

2π
ϕ(z2, z̄2)

]
2π

L
z∂zϕ(z, z̄)

}〉
0

= 2π

L
z

〈
R

{[
i
∫

C2

dz2

i2πz2
φ(z2) − i

∫
C1

dz1

i2πz1
φ(z1)

]
∂zφ(z)

}〉
0

= −i
2π

L
z

[∫
C2

dz2

2π i

∂z ln(z − z2)

z2
−

∫
C1

dz1

2π i

∂z ln(z − z1)

z1

]

= −i
2π

L
z

[∫
|z2|=exp(τE0 )

dz2

2π i

1

z2(z − z2)
+

∫
|z1|>|z|

dz1

2π i

1

z1(z1 − z)

]

= −i
2π

L
z

[
1

z
+

(
−1

z
+ 1

z

)]
= −i

2π

L
, (A29)

where we have used that dθ1,2/(2π ) = dz1,2/(i2πz1,2), 〈R[φ(z)φ(z1,2)]〉0 = − ln(z − z1,2), and ∂zϕ(z, z̄) = ∂zφ(z) with 0 <

|z2| < |z| < |z1| < ∞. Thus Eq. (A20) is obtained.
In almost the same details, we could also derive Eq. (A21) that 〈∂w̄ϕ(w, w̄)〉QM = −i by∫ 2π

0

idθ

2π
[g(z) + g(z̄)] = 2

∮
S1

dz

2πz
g(z), (A30)

for any holomorphic function g(z) and z = exp(iθ ).
Moreover, these results also imply that Eq. (A16) is true, except for that, in that case, |z1| = |z|. Therefore, we apply the

Cauchy principal value regularization scheme that for any smooth contour γ passing through finitely many poles {pi}’s of a
holomorphic function h(z) and including finitely many singular points {qi}’s of h(z) in the interior of the area enclosed within γ .
Then the following improper integral can be evaluated by its principal value (PV):

PV

[∫
γ

h(z)

]
= 2π i

∑
i

Res[h(z), qi] + π i
∑

i

Res[h(z), pi]. (A31)

Thus, by the replacement of |z1| > |z| by |z1| = |z| in Eq. (A29), the coefficient of 〈0|Ũ (+∞,−∞)|0〉 in Eq. (A16) can be
calculated as

〈0|Ũ (+∞, t1)
[ ∫

t1>t
dx1
iL ∂tϕ(t1, x1)

]
Ũ (t1,−∞)|0〉

〈0|Ũ (+∞,−∞)|0〉

= 2
I1

I2

∣∣∣∣
|z1|=|z|

= −i2z
2π

L
PV

[∫
|z2|=exp(τE0 )

dz2

2π i

1

z2(z − z2)
+

∫
|z1|=|z|

dz1

2π i

1

z1(z1 − z)

]

= −i2z
2π

L

[∫
|z2|=exp(τE0 )

dz2

2π i

1

z2(z − z2)
+ PV

∫
|z1|=|z|

dz1

2π i

1

z1(z1 − z)

]

= −i2z
2π

L

[
1

z
+

(
−1

2

1

z

)]
= −i

2π

L
, (A32)
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where the factor “2” on the second line above takes into account both the holomorphic and the antiholomorphic parts which are
the same. Then we arrive at Eq. (A16).

4. Two-point correlation function

We calculate two-point correlation function. Since there is no new technical difficulties, we directly present the results below.
We define the following variables z ≡ exp[2π (τ − ix)/L] and z′ ≡ exp[2π (τ ′ − ix′)/L].

(1) Density-density correlation function:

〈δρ(τ, x)δρ(τ ′, x′)〉 = 1

4π2

[
zz′

(z′ − z)2
+ c.c.

]
→ L2

{
1

[(τ − τ ′) − i(x − x′)]2 + 1

[(τ − τ ′) + i(x − x′)]2

}
, (A33)

as |(τ − τ ′) + i(x − x′)| � L: the thermodynamical limit. We
can see that the density-density correlation does not see the
pulse, which reflects that the translational invariance of the
system is always present.

(2) Density-current correlation function:

〈δρ(τ, x)J (τ ′, x′)〉 = 0. (A34)

(3) Current-current correlation function: (vF ≡ 1)

〈J (τ, x)J (τ ′, x′)〉

= 2�(t − t0)

L

2�(t ′ − t0)

L
+ 1

2π2
Re

zz′

(z′ − z)2

= 〈J (τ, x)〉〈J (τ ′, x′)〉 + 〈δρ(τ, x)δρ(τ ′, x′)〉, (A35)

where the second term, of the same value as Eq. (A33), is the
correlation in the absence of pulse while the first term implies
that the current operator gains a nonzero expectation value
after the pulse.

5. Tomonaga-Luttinger liquid

Let us consider the following “spinless” Tomonaga-
Luttinger model (bosonization of some interacting fermionic
model) in Euclidean signature:

S0
T-L = 1

8πK

∫
dτEdx

[(
∂τEϕ

)2 + (∂xϕ)2
]
, (A36)

where τE ≡ ivt with K and v normalizing factors for Luttinger
parameter 1/4π and Fermi velocity vF, respectively, due to
the interaction of the corresponding fermionic model. To
introduce the background gauge field coupled with ϕ, we
could use

[ϕ(t, x), θ (t, x′)] = i2π�(x′ − x), (A37)

where θ is the dual field to ϕ and it is physically the U (1)
electromagnetic phase of Dirac spinor. Then, after taking the
derivatives of x′ and x, respectively, above, we obtain that[

ϕ(t, x),
1

2π
∂x′θ (t, x′)

]
= iδ(x − x′) = [ϕ(t, x),�ϕ (t, x′)],[
1

2π
∂xϕ(t, x), θ (t, x′)

]
= −iδ(x − x′) = [�θ (t, x), θ (t, x′)]. (A38)

These canonical relations implies the first duality mapping:

1

4πKv
∂tϕ ↔ 1

2π
∂xθ. (A39)

Thus we can derive the S0
T-L in terms of θ field as

S0
T-L = K

2π

∫
dτEdx

[(
∂τEθ

)2 + (∂xθ )2
]
, (A40)

which gives us the second duality mapping as

K

πv
∂tθ ↔ 1

2π
∂xϕ. (A41)

The θ -representation of S0
T-L is useful to apply the minimal

coupling by �∂θ → �∂θ + e �A. Then we apply the duality map-
pings of Eqs. (A39) and (A41) and restore the gauge invari-
ance and anomaly matching. Therefore the ϕ representation
of action follows as, e.g., on a torus T 2,

ST-L[A] = S0
T-L − i

e

2π

∫
T 2

ϕdA

− i
εμν

2π

(∫
cycleμ

dϕ

)(∫
cycleν

eA

)
(A42)

with the radius R = 1.

δρ ↔ − 1

2π
∂xϕ = i

2π
(∂w − ∂w̄ )ϕ(w, w̄),

J ↔ + 1

2π
∂tϕ = i

v

2π
(∂w + ∂w̄ )ϕ(w, w̄), (A43)

where again w = τE − ix, w̄ = τE + ix, but τE = ivt as de-
fined above.

6. Spatially uniform electromagnetic pulse: eF01 = 2πδ(t − t0 )/L

Then we consider the geometry of an infinite-long cylinder
with circumference L. As before, we do the conformal map-
ping: z = exp(2πw/L). Then,

J = i
v

2π
[(∂wz)∂z + (∂w̄ z̄)∂z̄]ϕ(z, z̄)

= i
v

L
(z∂z + z̄∂z̄ )ϕ(z, z̄), (A44)

and, similarly,

δρ = i

L
(z∂z − z̄∂z̄ )ϕ(z, z̄). (A45)
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To evaluate the correlation functions, we still use the
following Minkowskian action:

S̃T-L(t1) = S0
T-L −

∫
t1>t

dx1

L
ϕ(t1, x1) +

∫
t2=t0

dx2

L
ϕ(t2, x2).

(A46)

The effect of K �= 1 is the modified correlation function:

〈ϕ(z, z̄)ϕ(z′, z̄′)〉T-L
0 = −K ln[(z − z′)(z̄ − z̄′)]. (A47)

Then we could calculate that

〈0|ŨT-L(+∞,−∞)|0〉 = exp

[
−ivK

2π

L
(t1 − t0)

]
, (A48)

which means �ET-L = 2πvK/L the excitation energy and it
exactly coincides with that of a θ -vortex quantum excitation.

Similarly,

〈δρ(t, x)〉 = 0, 〈J (t, x)〉 = 2K�(t − t0)

L
v. (A49)

7. Lattice momentum

To calculate the lattice momentum Platticea with a the lattice
constant, we need its field-theoretical representation in terms
of ϕ. Since

exp(iPlatticea)ϕ exp(−iPlatticea) = ϕ + 2πν, (A50)

from which we obtain that Qtrans is exactly the Noether charge
related to ϕ → ϕ + 2πν:

Platticea =
∫

dx 2πν�ϕ mod 2π

=
∫

dx
πν

2πKv
∂tϕ mod 2π

=
∫

dx
πν

Kv
J mod 2π. (A51)

Thus

〈Platticea〉 = �(t − t0)2πν mod 2π, (A52)

which needs no renormalization due to its topological nature
after the duality relation in Eq. (A39) being considered:

Platticea =
∫

dx
kF

2πKv
∂tϕ mod 2π

=
∫

dxkF
∂xθ

π
mod 2π

= 2πνNθ mod 2π, (A53)

where Nθ is the winding number of θ field thereby neces-
sarily being integer-valued. Comparing with Eq. (A52) and
�ET-L = 2πvK/L, we confirm that the unit external pulse
indeed exactly excites a unit θ vortex rather than an oscillating
mode.

[1] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).
[2] M. Oshikawa, Phys. Rev. Lett. 84, 1535 (2000).
[3] M. B. Hastings, Phys. Rev. B 69, 104431 (2004).
[4] H. Watanabe, Phys. Rev. B 98, 155137 (2018).
[5] A. B. Zamolodchikov, in Integrable Sys Quantum Field Theory,

edited by M. Jimbo, T. Miwa, and A. Tsuchiya (Academic, San
Diego, 1989), pp. 641–674.

[6] R. Kobayashi, K. Shiozaki, Y. Kikuchi, and S. Ryu, Phys. Rev.
B 99, 014402 (2019).

[7] G. Y. Cho, C.-T. Hsieh, and S. Ryu, Phys. Rev. B 96, 195105
(2017).

[8] Y. Yao, C.-T. Hsieh, and M. Oshikawa, arXiv:1805.06885
[cond-mat.str-el].

[9] T. Fukui and N. Kawakami, J. Phys. Soc. Jpn. 65, 2824 (1996).
[10] A. Kitazawa, J. Phys. A Math. Gen. 30, L285 (1997).
[11] F. C. Alcaraz, M. N. Barber, and M. T. Batchelor, Ann. Phys.

182, 280 (1988).
[12] A. Klumper, M. T. Batchelor, and P. A. Pearce, J. Phys. A Math.

Gen. 24, 3111 (1991).
[13] S. Mandelstam, Phys. Rev. D 11, 3026 (1975).
[14] S. Coleman, Phys. Rev. D 11, 2088 (1975).
[15] S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B 493, 571

(1997).
[16] K. Gawedzki and A. Kupiainen, Phys. Lett. B 215, 119 (1988).
[17] P. Goodard, A. Kent, and D. I. Olive, Phys. Lett. B 152, 88

(1985).
[18] A. V. Smilga, Phys. Rev. D 49, 6836 (1994).
[19] A. V. Smilga, Phys. Rev. D 54, 7757 (1996).
[20] M. Blau and G. Thompson, Nucl. Phys. B 408, 345 (1993).
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