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We present a worm-type Monte Carlo study of several typical models in the three-dimensional (3D) U(1)
universality class, which include the classical 3D XY model in the directed flow representation and its Villain
version, as well as the 2D quantum Bose-Hubbard (BH) model with unitary filling in the imaginary-time
world-line representation. From the topology of the configurations on a torus, we sample the superfluid stiffness
ρs and the dimensionless wrapping probability R. From the finite-size scaling analyses of ρs and of R, we
determine the critical points as Tc(XY) = 2.201 844 1(5) and Tc(Villain) = 0.333 067 04(7) and (t/U )c(BH) =
0.059 729 1(8), where T is the temperature for the classical models, and t and U are, respectively, the hopping
and on-site interaction strength for the BH model. The precision of our estimates improves significantly over
that of the existing results. Moreover, it is observed that at criticality, the derivative of a wrapping probability
with respect to T suffers from negligible leading corrections and enables a precise determination of the
correlation length critical exponent as ν = 0.671 83(18). In addition, the critical exponent η is estimated as
η = 0.038 53(48) by analyzing a susceptibilitylike quantity. We believe that these numerical results would
provide a solid reference in the study of classical and quantum phase transitions in the 3D U(1) universality,
including the recent development of the conformal bootstrap method.
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I. INTRODUCTION

The U(1) criticality is a textbook example of phase transi-
tion and plays a crucial role in many-body phenomena ranging
from vortex binding-unbinding transition [1], exotic quantum
phases such as superfluid (SF) [2] and spin liquid [3,4],
emergent continuous symmetries responsible for deconfined
criticality [5,6] to quantum emulating [7] and to relativistic
gauge field theories in particle physics [8]. Hence, the quanti-
tative aspects of the U(1) criticality are frequently a requisite.

In three dimensions, systems within the U(1) universality
class have a continuous phase transition with nontrivial crit-
ical exponents. Exact results are unavailable either for the
critical points or the critical exponents. Numerical [9–14] and
approximate [15–17] methodologies have been extensively
applied. Up to now, the most precise estimates of critical
exponents were obtained mostly with Monte Carlo methods,
including ν = 0.671 7(1) [11] and 0.671 7(3) [12] and η =
0.038 1(2) [11]. These estimates have been extensively uti-
lized in literature, albeit the estimate of ν differs from the cele-
brated experimental result ν = 0.670 9(1) [18] determined by
a specific heat measurement around the finite-temperature SF
transition of 4He performed in the microgravity environment
of a space shuttle. The conformal bootstrap method has given
a very precise determination for the critical exponents of the
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three-dimensional (3D) Ising (Z2) model, yet produced less
precise estimates ν = 0.671 9(11) and η = 0.038 52(64) for
the U(1) case [17]. A summary of estimated critical exponents
ν and η for the 3D U(1) universality class are given by Table I.

In this work we carry out a high-precision Monte Carlo
study of three paradigmatic models in the 3D U(1) univer-
sality class, including the classical XY and Villain models
on the simple-cubic lattice and the quantum Bose-Hubbard
(BH) model with unitary filling on the square lattice. The XY
model is the n = 2 case of the O(n) vector model and is a
prototype of lattice models with continuous symmetries. It
has a broad realm of physical realizations including granular
superconductors and Josephson junction arrays [19]. The XY
model has been extensively studied by Monte Carlo simula-
tions, which are mostly on the spin representation and use
the celebrated cluster update schemes [20,21]. The Villain
model is a variant of the XY model. Both the XY and Villain
models can be rewritten in the directed flow representation
and then be simulated by the worm algorithm [22], which
is very efficient in the measurement of correlation functions.
Together with numerical analytical-continuation methods, the
high-precision Monte Carlo data of the two-point correlation
function, obtained by worm-type simulations, have uncovered
intriguing low-energy excitations and transport properties
near the critical temperature Tc [23,24]. It was observed [23]
that the precise determination of Tc is crucial in these studies.
The BH model and its extensions can describe a wide variety
of quantum phenomena [25], including the SF, Mott insulator,
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TABLE I. Estimates of the critical exponents ν and η in the
3D U(1) universality class. The method adopted and the year when
the result was published are also listed. ‘Ref.,’ ‘RG,’ ‘Exp.,’ ‘HTE,’
‘MC,’ and ‘CB’ are the abbreviations of ‘reference,’ ‘renormalization
group,’ ‘experiment,’ ‘high-temperature expansion,’ ‘Monte Carlo,’
and ‘conformal bootstrap,’ respectively.

Ref. Method Year ν η

[15] RG 1993 0.662(7)
[30] Exp. 1996 0.670 19(13)
[16] HTE 2000 0.671 66(55) 0.038 1(3)
[9] MC 2001 0.671 6(5) 0.038 0(5)
[9] MC+HTE 2001 0.671 55(27) 0.038 0(4)
[18] Exp. 2003 0.670 9(1)
[11] MC+HTE 2006 0.671 7(1) 0.038 1(2)
[12] MC 2006 0.671 7(3)
[13] MC (GPU) 2012 0.670 98(16)
[13] MC (GPU) 2012 0.671 38(11)
[14] MC (GPU) 2014 0.672(4)
[17] CB 2016 0.671 9(11) 0.038 52(64)
this work MC 2019 0.671 83(18) 0.038 53(48)

supersolid, and spin-liquid phases. In quantum Monte Carlo
(QMC) simulations, the BH model is frequently expressed in
terms of the imaginary-time world-line (path-integral) repre-
sentation. In the field of cold-atom physics, the BH model has
become a prominent object of state-of-the-art optical lattice
emulators [7,26,27]. At unitary filling, i.e., each lattice site
is occupied by a particle on average, the d-dimensional BH
model exhibits the particle-hole symmetry, and the quantum
phase transition between the SF and the Mott insulating phase
belongs to the (d + 1)-dimensional XY universality.

In our worm-type Monte Carlo simulations, periodic
boundary conditions are applied. From the topology of the
directed flow and the world-line configurations, we sample
the SF stiffness ρs and the wrapping probabilities R’s, of
which the definitions will be given below. The data of ρs

and R are analyzed according to the finite-size scaling theory
and yield mutually consistent determinations of the criti-
cal points. The wrapping probability is observed to suffer
from smaller finite-size corrections. The final estimates of
the critical temperature, which takes into account both the
statistical and the systematic uncertainties, are Tc(XY) =
2.201 844 1(5) and Tc(Villain) = 0.333 067 04(7). In a similar
way, the quantum critical point (QCP) of the unitary-filling
BH model is determined as (t/U )c = 0.059 729 1(8), where
t is the hopping amplitude between the nearest-neighboring
sites and U denotes the strength of on-site repulsion. Our
estimates improve significantly over the existing results; see
Table II for details. For instance, in comparison with (t/U )c =
0.059 74(4) from the strong-coupling expansion [28] and
(t/U )c = 0.059 74(3) by QMC simulations [29], our result
of the QCP has a higher precision by a factor of more than
40. To determine the correlation length critical exponent ν,
we calculate the derivative of the wrapping probability R with
respect to the temperature T from the covariance of R and
energy. For the Villain model at criticality, a quantity of this
type is found to exhibit negligible finite-size corrections and
yields ν = 0.671 83(18). This estimate is consistent with the

TABLE II. Estimates of the critical temperatures for the 3D
XY and Villain models and the critical hopping amplitude for the
two-dimensional (2D) unitary-filling BH model. ‘SCE’ is the abbre-
viation of ‘strong-coupling expansion.’

Model Ref. Method Year Tc or (t/U )c

XY [15] MC 1993 2.201 67(10)
[32] MC 1996 2.201 843(19)
[33] MC 2002 2.201 833(19)
[31] MC 2005 2.201 840 5(48)
[13] MC (GPU) 2012 2.201 831 2(6)
[13] MC (GPU) 2012 2.201 852(1)
[14] MC (GPU) 2014 2.201 836(6)

this work MC 2019 2.201 844 1(5)

Villain [34] MC 2003 0.333 05(5)
[23] MC 2014 0.333 067 0(2)

this work MC 2019 0.333 067 04(7)

BH [28] SCE 1993 0.059 74(4)
[29] MC 2008 0.059 74(3)

this work MC 2019 0.059 729 1(8)

most precise Monte Carlo results ν = 0.671 7(1) [11] and
0.671 7(3) [12] with a comparable precision and suggests
that the experimental determination ν = 0.670 9(1) [18] and
the graphics processing unit (GPU) simulation result ν =
0.670 98(16) [13] are unlikely. In addition, we obtain the
critical exponent η = 0.038 53(48) from a susceptibilitylike
quantity, which is very close to a recent conformal bootstrap
estimate η = 0.038 52(64) [17].

In the remainder of this paper, we present details for the
definition of the models, the methodology, and the scaling
analyses of numerical results. Section II introduces the models
addressed in this work. Section III elaborates the methodology
which contains a unified formulation of worm Monte Carlo
algorithm for the XY and Villain models, the definitions of
sampled quantities, and finite-size scaling ansatze. Section IV
presents Monte Carlo results and scaling analyzes. A short
summary is finally given in Sec. V.

II. MODELS

The Hamiltonian of the XY model reads

HXY = −
∑
〈rr′〉

Sr · Sr′ , (1)

where Sr = (cos θr, sin θr ) denotes a planar spin vector with
unit length at site r and the summation runs over pairs of
nearest neighboring sites on a simple-cubic lattice. As listed
in Table II, the most recent estimates of Tc (we have set kB = 1
for convenience) include 2.201 840 5(48) [31], 2.201 831 2(6)
[13], 2.201 852(1) [13], and 2.201 836(6) [14]. Albeit these
estimates are all based on Monte Carlo simulations, they are
not completely consistent with each other.

We perform a high-temperature expansion on model (1) for
the directed flow representation. We begin with the partition
function

ZXY =
(

1

2π

)N ∫
e− HXY

T

∏
r

dθr, (2)
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where N is the number of lattice sites on the simple-cubic
lattice and the exponential e− HXY

T can be expanded as

e− HXY
T =

∏
〈rr′〉

e
cos(θr−θr′ )

T . (3)

Next, we combine (2) and (3) with the Fourier transform

e
cos(θr−θr′ )

T =
+∞∑

Crr′=−∞
JCrr′

(
1

T

)
eiCrr′ (θr−θr′ ), (4)

where JCrr′ (
1
T ) represents the Crr′ th order modified Bessel

function of the first kind in variable of 1
T ; JCrr′ (

1
T ) = J−Crr′ (

1
T ).

It follows that

ZXY =
(

1

2π

)N ∑
{Crr′ }

∫ ⎛
⎝∏

〈rr′〉
JCrr′

(
1

T

)
eiCrr′ (θr−θr′ )

⎞
⎠ ∏

r

dθr

=
(

1

2π

)N ∑
{Crr′ }

⎛
⎝∏

〈rr′〉
JCrr′

(
1

T

)⎞
⎠

×
∫ ∏

〈rr′〉
eiCrr′ (θr−θr′ )

∏
r

dθr

=
(

1

2π

)N ∑
{Crr′ }

⎛
⎝∏

〈rr′〉
JCrr′

(
1

T

)⎞
⎠ ∫ ∏

r

eiDrθr
∏

r

dθr.

We represent the term Crr′ (θr − θr′ ) by a vector flow variable
Crr′ from r to r′. As Crr′ is positive (negative), it means that
the flow is from r to r′ (r′ to r); Crr′ = −Cr′r. Dr = ∑

r′ Crr′

denotes the divergence of flow at r. The inner integration
would be zero unless �C = 0 := (∀ r,Dr = 0). Hence �C =
0 represents the null divergence of flow over lattice sites and
mimics the Kirchhoff’s current law. As a result we have

ZXY =
∑
�C=0

∏
〈rr′〉

JCrr′

(
1

T

)
, (5)

where the summation runs over all the directed flow states
with �C = 0. Up to now, we have finished an exact transfor-
mation of standard XY model onto a directed flow model, for
which we illustrate a configuration in Fig. 1.

A variant of the standard XY model is the Villain model
with partition function

ZVillain =
(

1

2π

)N ∫ ∏
r

dθr

+∞∑
Lrr′ =−∞

e
− 1

2T

∑
〈rr′ 〉

(θr′−θr−2πLrr′ )2

.

(6)

The 2π periodicity persists in the interaction potential of the
Villain model, which is believed to capture the characteristics
of the XY model [23,24,34–36]. A high-temperature expan-
sion [37] can be performed on the Villain model to build the
directed flow representation. As a result, the partition function

k=0

k=1

k=2

k=3

y

x
z

FIG. 1. A directed flow configuration of the XY and Villain
models on a cross section of 6 × 6 × 6 periodic simple-cubic lattice.

in the directed flow space �C = 0 reads

ZVillain =
∑
�C=0

∏
〈rr′〉

e
−C2

rr′
2T . (7)

Note that the Villain model has a simple form of statistical
weight allocation in the directed flow representation. Esti-
mates of Tc for the 3D Villain model are summarized in
Table II.

We consider the 2D unitary-filling BH model with the
Hamiltonian

ĤBH = −t
∑
〈rr′〉

(â+
r âr′ + â+

r′ âr ) + U

2

∑
r

n̂r(n̂r − 1), (8)

where â+
r (âr) represents the local bosonic creation (annihi-

lation) operator at site r; n̂r=â+
r âr. The first summation runs

over the pairs of nearest-neighboring sites on a square lattice
and the second one is over sites. When the particle density is
fixed at integer numbers, a quantum phase transition between
the compressible SF phase and the incompressible Mott insu-
lating phase occurs by tuning the ratio t/U . The transition falls
in the 3D U(1) universality and features a relativistic (particle-
hole) symmetry with the dynamical critical exponent z = 1. In
this work we study the unitary-filling case for which the QCP
has been estimated as (t/U )c = 0.059 74(4) by a high-order
strong-coupling expansion [28] and (t/U )c = 0.059 74(3) by
QMC simulations [29]. These two estimates have become
benchmarks for the location of QCP of the 2D unitary-filling
BH model (Table II).

III. METHODOLOGY

A. Monte Carlo algorithms

Our Monte Carlo simulations of both the classical (XY
and Villain) and quantum (BH) models employ worm-type
algorithms. For the classical models the worm algorithm
was first proposed in Ref. [22]. An explicit formulation of
worm algorithm for the Villain model has been presented
in Ref. [34]. It has been demonstrated [38] that the worm
algorithm stands out from state-of-the-art algorithms when
sampling certain quantities for the 3D Ising model. For com-
pleteness, we shall formulate a worm algorithm for the XY
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and Villain models. As for the BH model, we use the standard
worm QMC algorithm in the continuous imaginary time path-
integral (world-line) representation [39,40], for which we
refrain from a detailed elaboration and refer the readers to
Refs. [39–42].

1. Worm algorithm for the XY model

Extending state space. A character of worm algorithm is
enlarging state space. It extends the original directed flow
space �C = 0 by including two additional degrees of free-
dom, namely, two defects I and M individually on a site, by
defining that the subspace with I = M recovers exactly the
original space �C = 0 and that the subspace with I �= M is
exactly outside the original space. The latter is called worm
(W) sector, where the Kirchhoff’s current law does not hold
for sites I and M, namely, DI �= 0,DM �= 0. Accordingly, the
partition function for the extended state space can be separated
into two parts [43]. The first part

ZXY = 1

N

∑
�C=0;I,M

δI,M

∏
〈rr′〉

JCrr′

(
1

T

)
(9)

corresponds to the original partition function (5), with δ

the Kronecker delta function. The summation runs over the
extended state space. The second part relates to W sector and
reads

ZW = 1

N

∑
�C=0;I,M

(1 − δI,M )
∏
〈rr′〉

JCrr′

(
1

T

)
. (10)

The Monte Carlo simulations will be performed in the ex-
tended state space with the partition function

ZExt = ZXY + 	ZW , (11)

where 	 is a tunable parameter often (but not necessarily) set
as 	 = 1.

Worm updates. The worm process moves I or/and M
around the lattice and updates the directed flow configuration
by changing the local flow variable through a biased random
walk designed with detailed balance. More specifically, as I
(M) moves to a neighboring site IN (MN ), the flow on edge
IIN (MMN ) will be updated accordingly by adding a unit,
directed flow from I to IN (MN to M). The movement repeats
until I and M meet (I = M), when the original state space is
hit. Hence the movement of I or M serves as a step of random
walk in the W sector or in between the W sector and the
original state space. The core steps are given as follows.

Core steps of the worm algorithm for the XY model
Step 1. If I = M, randomly choose a new site I ′ and set

I = M = I ′, sign(I ) = 1, sign(M ) = −1.
Step 2. Interchange I ↔ M and sign(I ) ↔ sign(M ) with

probability 1/2.
Step 3. Randomly choose one neighboring site IN of I .
Step 4. Propose to move I → IN by updating the flow

along edge-IIN , CIIN , to C ′
IIN :

C ′
IIN = CIIN + sign(I → IN )sign(I ),

where sign(I → IN ) = ±1, parametrizing the flow direction
along edge-IIN .

Step 5. Accept the proposal with probability

Pacc = min
(

1,
JC ′

IIN

(
1
T

)
JCIIN

(
1
T

))

according to the Metropolis scheme.
Monte Carlo simulations are constituted by repeating

steps 1 to 5. The exploration of the XY model is achieved by
sampling quantities as the original state space is hit. Besides,
the worm process itself is informative for detecting two-
point correlations. A susceptibilitylike quantity Tw (integral
of two-point correlation) can be evaluated by the number
of worm steps between subsequent hits on the original state
space, which is known as returning time τw. Accordingly, the
definition of Tw is given by

Tw = 〈τw〉, (12)

which scales as Tw ∼ L2−η at the critical point and is useful
for determining the critical exponent η.

2. Worm algorithm for the Villain model

The worm algorithm formulated in Sec. III A 1 applies
to the Villain model once a substitute of step 5 is taken as
follows.

Step 5. Accept the proposal with probability

Pacc = min

(
1, e

−(C′2
IIN

−C2
IIN

)

2T

)

according to the Metropolis scheme.
The definition of Tw (12) applies to the Villain model as

well.

B. Sampled quantities

Wrapping probability has been studied for random cluster
models (including its limiting situations percolation, Ising and
Potts models, etc.) [44–52]. Thus far, however, the method has
not been employed for the U(1) lattice models which, as we
have shown, admit a graphic representation such as directed
flow representation. Moreover, the applicability of wrapping
probability approach to quantum models has not yet been
addressed.

y

x
z

Rx = 1
Ry = 0

Rx = 0
Ry = 1

Rx = 1
Ry = 1

FIG. 2. Illustration of wrappings for directed flow configurations
of the 3D XY and Villain models on a cross section of 3 × 3 × 3
periodic simple-cubic lattice.
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TABLE III. Fits of the wrapping probabilities Rx , Ra, R2 to (24) and the scaled SF stiffness ρsL to (28) for the 3D Villain model. ‘Qua.’ is
the abbreviation of ‘quantities.’ The correction exponents ω1 = 0.789 and ω2 = 1.77 are adopted. The symbol ‘—’ denotes the absence of the
corresponding correction term in the fit.

Qua. Lmin χ 2/DF Tc 1/ν Q0 a1 b1 b2

16 27.2/26 0.333 067 035(15) 1.43(6) 0.378 65(4) −1.26(39) −0.0459(4) –
24 24.8/22 0.333 067 038(16) 1.43(6) 0.378 66(5) −1.32(41) −0.0461(7) –
32 22.0/18 0.333 067 039(17) 1.43(6) 0.378 67(6) −1.31(41) −0.046(1) –

Rx 64 21.0/14 0.333 067 045(22) 1.43(6) 0.378 7(1) −1.31(43) −0.047(3) –
8 29.1/29 0.333 067 047(16) 1.44(6) 0.378 72(5) −1.25(38) −0.0480(9) 0.025(5)

16 26.9/25 0.333 067 041(18) 1.44(6) 0.378 68(7) −1.25(39) −0.047(2) 0.01(2)
24 24.7/21 0.333 067 041(21) 1.43(6) 0.378 7(1) −1.31(41) −0.047(4) 0.02(7)
32 21.9/17 0.333 067 044(25) 1.43(6) 0.378 7(2) −1.30(41) −0.048(7) 0.04(14)

24 33.5/22 0.333 067 020(18) 1.41(6) 0.688 70(7) −1.90(65) −0.031(1) –
32 23.3/18 0.333 067 032(19) 1.42(6) 0.688 79(8) −1.78(62) −0.033(2) –

Ra 64 20.7/14 0.333 067 044(24) 1.42(7) 0.688 9(2) −1.81(65) −0.037(4) –
8 34.9/29 0.333 067 058(18) 1.43(6) 0.689 05(7) −1.73(59) −0.044(1) 0.194(8)

16 33.0/25 0.333 067 046(20) 1.43(6) 0.689 0(1) −1.72(59) −0.040(3) 0.15(3)
24 29.9/21 0.333 067 050(24) 1.42(6) 0.689 0(2) −1.83(63) −0.042(6) 0.19(10)
32 22.8/17 0.333 067 046(28) 1.43(6) 0.689 0(3) −1.76(62) −0.04(1) 0.14(21)

16 31.7/26 0.333 067 074(21) 1.47(9) 0.264 10(4) −0.81(37) −0.034 7(5) –
24 16.1/22 0.333 067 060(23) 1.47(9) 0.264 06(5) −0.83(39) −0.033 8(8) –
32 13.5/18 0.333 067 059(25) 1.47(9) 0.264 05(6) −0.82(39) −0.034(1) –

R2 64 12.2/14 0.333 067 049(31) 1.46(9) 0.264 0(1) −0.89(43) −0.032(3) –
8 31.2/29 0.333 067 062(23) 1.47(9) 0.264 06(5) −0.83(38) −0.033 3(9) −0.015(6)

16 29.1/25 0.333 067 050(26) 1.47(9) 0.264 00(8) −0.82(38) −0.032(2) −0.04(2)
24 16.0/21 0.333 067 052(31) 1.47(9) 0.264 0(1) −0.84(39) −0.032(4) −0.03(7)
32 13.0/17 0.333 067 041(36) 1.47(9) 0.263 9(2) −0.82(39) −0.029(8) −0.10(15)

16 30.4/26 0.333 067 019(15) 1.45(6) 0.515 45(6) −2.21(67) −0.1452(8) –
24 25.5/22 0.333 067 028(16) 1.44(6) 0.515 51(8) −2.30(70) −0.146(1) –
32 24.7/18 0.333 067 029(18) 1.43(6) 0.515 5(1) −2.38(74) −0.147(2) –

ρsL 64 24.0/14 0.333 067 035(22) 1.43(6) 0.515 6(2) −2.39(76) −0.149(5) –
8 30.0/29 0.333 067 040(16) 1.45(6) 0.515 66(8) −2.14(65) −0.152(2) 0.078(9)

16 28.5/25 0.333 067 034(18) 1.45(6) 0.515 6(1) −2.17(66) −0.150(3) 0.05(4)
24 25.4/21 0.333 067 033(22) 1.44(6) 0.515 6(2) −2.28(70) −0.149(7) 0.04(12)
32 24.7/17 0.333 067 033(26) 1.43(6) 0.515 6(3) −2.38(74) −0.15(1) 0.05(24)

The original definition of wrapping is based on the cluster
representation of percolation [44]. Here we extend its original
definition to describe a broader class of graphic representation
constituted by the directed flows (XY and Villain models) or
the particle lines in the imaginary-time path-integral config-
uration (BH model) by exploiting the wrapping of directed
flows or particle lines around the lattice torus. As the flow is
nondivergent, the wrapping for XY and Villain models around

a certain direction can be justified by the presence of net flow
passing through the perpendicular cross section. Moreover, in
the present worm Monte Carlo simulations for the XY, Villain,
and BH models, the wrapping of directed flows or particle
lines can be justified by tracking the movements of defects (I
and M). Directed flow configurations with wrapping, namely,
Rκ = 1 for κ = x, y, or/and z, are illustrated by Fig. 2 for XY
and Villain models.

TABLE IV. Fits of Tw to (32) for the 3D Villain model. The correction exponents ω1 = 0.789 and ω2 = 1.77 are adopted.

Lmin χ 2/DF Tc η 1/ν Q0 a1 b1 b2

16 29.8/28 0.333 066 996(17) 0.0392(2) 1.52(4) 1.360(1) −3.06(67) −0.307(6) –
24 24.2/24 0.333 067 021(21) 0.0386(4) 1.52(4) 1.356(2) −3.04(67) −0.29(1) –
32 21.7/20 0.333 067 027(25) 0.0385(5) 1.53(4) 1.355(4) −2.95(66) −0.28(2) –
64 21.1/15 0.333 067 027(55) 0.0385(16) 1.53(4) 1.36(1) −2.90(66) −0.28(9) –

8 29.4/31 0.333 067 040(20) 0.0380(3) 1.52(4) 1.351(2) −3.01(66) −0.24(1) −0.40(5)
16 26.1/27 0.333 067 042(29) 0.0379(7) 1.53(4) 1.351(5) −2.96(65) −0.24(4) −0.4(2)
24 24.0/23 0.333 067 034(39) 0.0382(11) 1.52(4) 1.353(9) −3.03(67) −0.26(8) −0.2(6)
32 21.7/19 0.333 067 027(67) 0.0385(25) 1.53(4) 1.36(2) −2.95(66) −0.3(2) 0(2)
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1. Sampled quantities for the 3D XY and Villain models

Some wrapping-related quantities for 3D XY and Villain
models are defined as follows. The wrapping probabilities in
the directed flow representation are given by

Rx = 〈Rx〉 = 〈Ry〉 = 〈Rz〉, (13)

Ra = 1 − 〈(1 − Rx )(1 − Ry)(1 − Rz )〉, (14)

R2 = 〈RxRy(1 − Rz )〉 + 〈RyRz(1 − Rx )〉
+〈RzRx(1 − Ry)〉, (15)

where Rx, Ra, and R2 define the probabilities that the wrapping
of directed flows exists in x direction, in at least one direction
and in two (and only two) directions, respectively. For a
wrapping observable (say Rκ ), we define its covariance with
energy E as

GRκ E = 1

T 2
(〈RκE〉 − 〈Rκ〉〈E〉), (16)

which is equivalent to the derivative of Rκ with respect to T .
Recall the definition of a winding number on a torus. If

a direction (say κ) is specified, the event wrapping (namely,
Rκ = 1) relates to a nonzero winding number Wκ �= 0 of di-
rected flow. The latter has a close connection to the definition
of SF stiffness [53]. We sample the SF stiffness by winding
number fluctuations, which can be written as

ρs = 〈
W2

x + W2
y + W2

z

〉
/3L. (17)

Moreover, we estimate the derivative of ρs with respect to
T by

GρsE = 1

3LT 2

(〈(
W2

x + W2
y + W2

z

)
E
〉

− 〈
W2

x + W2
y + W2

z

〉〈E〉). (18)

2. Sampled quantities for the 2D BH model

For the 2D BH model, the wrapping probabilities of parti-
cle lines in the world-line representation read

Rx = 〈Rx〉 = 〈Ry〉, (19)

Ra = 1 − 〈(1 − Rx )(1 − Ry)〉, (20)

R2 = 〈RxRy〉, (21)

where Rx, Ra, and R2 define the probabilities that the wrapping
of particle lines exists in the x direction, in at least one
direction, and in two directions, respectively. For a given spa-
tial direction (say κ), the event wrapping (namely, Rκ = 1)
relates to a nonzero winding number Wκ �= 0 of particle lines.
We sample the SF stiffness by winding number fluctuations
through [53]

ρs = 〈
W2

x + W2
y

〉
/4tβ. (22)

C. Finite-size scaling ansatze

In order to formulate the finite-size scaling for the ther-
modynamic phase transition of the classical (XY and Villain)
models and the quantum phase transition of the quantum (BH)
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FIG. 3. Wrapping probabilities Rx and Ra, scaled SF stiffness
ρsL and scaled susceptibilitylike quantity TwL−2+η versus T in the
neighborhood of critical temperature for the 3D Villain model.
The linear lattice sizes are L = 32, 64, 128, 256, 384, and 512. The
symbols stand for Monte Carlo raw data, and the lines are drawn with
a preferred fit with χ 2/DF ≈ 1. Note that the same domain of vertical
coordinate is focused on around the crossing points (estimated by Q0

in the fits) for the quantities to make it is fair to compare finite-size
corrections. The vertical dashed lines represent our finite estimate of
critical temperature Tc = 0.333 067 04(7).

model in a more or less unified manner, a quantum to classical
mapping is required. For the QCP of the unitary-filling BH
model, the dynamic critical exponent z = 1 [54] has been
verified extensively [34,35]. In our QMC simulations of the
BH model, we use the temperature contour β ≡ 1/T = 2L.
This treatment eliminates the variable β/Lz in the finite-size
scaling ansatz of the BH model.

Wrapping probabilities are dimensionless quantities whose
finite-size scaling is described by

Rκ = R̃κ (εL1/ν ) (23)

where R̃κ is a scaling function, and ε denotes the distance to
critical point. We set for the XY and Villain models ε = Tc −
T and for the BH model ε = (t/U )c − t/U .
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FIG. 4. Scaled Rx and Ra with correction terms versus L at Tc and
its neighborhoods for the 3D Villain model. The corrections terms
quote preferred fitting results in Table III.
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R2-0.264021
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FIG. 5. Corrections to leading scaling revealed by Rκ − Q0 for
Rκ (κ = x, a, 2), by ρsL − Q0 for ρsL, and by TwL−2+η − Q0 for
Tw at the estimated critical temperature Tc = 0.333 0670 39 of the
3D Villain model. The parameter Q0 is determined from Table III
for Rκ (κ = x, a, 2) and ρsL, and from Table IV for Tw . The critical
exponent η takes our finite estimate η = 0.038 53.

Performing a Taylor’s expansion and incorporating correc-
tions to scaling, we have

Rκ = Q0 +
∑

n

anεLn/ν +
∑

m

bmL−ωm , (24)

where Q0 is a somewhat universal constant, an (n = 1, 2, ...)
and bm (m = 1, 2, ...) are nonuniversal constants, and ωm

(m = 1, 2, ...) refers to correction-to-scaling exponents. To
estimate the critical exponent ν we analyze GRκ E = dRκ

dT which
should scale as

GRκ E = L1/νG̃Rκ E (εL1/ν ), (25)

and we have

GRκ E = L1/ν

(
Q0 +

∑
n

anεLn/ν +
∑

m

bmL−ωm

)
. (26)
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FIG. 6. Wrapping probabilities Rx and Ra, scaled SF stiffness
ρsL, and scaled susceptibilitylike quantity TwL−2+η versus T in
the neighborhood of critical temperature for the 3D XY model.
The linear lattice sizes are L = 64, 128, 256, 384, and 512. The
same domain of vertical coordinate is focused on for the quantities.
The vertical dashed lines represent our finite estimate of critical
temperature Tc = 2.201 844 1(5).

TABLE V. Critical wrapping probabilities Rc
x , Rc

a, Rc
2 and critical

winding number fluctuations ρc
s L for the 3D Villain and XY models.

Villain XY

Rc
x 0.378 7(2) 0.378 8(4)

Rc
a 0.688 9(4) 0.688 9(6)

Rc
2 0.264 0(3) 0.264 1(5)

ρc
s L 0.515 6(3) 0.515 8(9)

The finite-size scaling of ρs can be figured out by ρs ∼
ξ 2−d−z [54,55] with ξ the correlation length. For the present
case (three space-time dimensions), we have d + z = 3. It
follows that

ρsL = ρ̃s(εL1/ν ) (27)

and

ρsL = Q0 +
∑

n

anεLn/ν +
∑

m

bmL−ωm . (28)

The scaling form of GρsE = dρs

dT reads

GρsE = L(−1+ 1
ν

)G̃ρsE (εL1/ν ), (29)

and we have

GρsE = L(−1+ 1
ν

)

(
Q0 +

∑
n

anεLn/ν +
∑

m

bmL−ωm

)
. (30)

Besides, for the XY and Villain models, one may use
the following scaling form of Tw to determine the critical
exponent η,

Tw = L2−ηT̃w(εL1/ν ), (31)

which gives

Tw = L2−η

(
Q0 +

∑
n

anεLn/ν +
∑

m

bmL−ωm

)
. (32)
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FIG. 7. Wrapping probabilities Rx , Ra, R2 and scaled SF stiffness
ρsL in the neighborhood of QCP for the 2D unitary-filling BH
model. The linear lattice sizes are L = 8, 16, 32, 48, 64, 80, 96,
and 112; for each L, the inverse temperature is β = 2L. The same
domain of vertical coordinate is focused on for the quantities. The
vertical dashed lines represent our finite estimate of QCP, namely,
(t/U )c = 0.059 729 1(8).
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TABLE VI. Fits of GRxE , GRaE , GR2E , and GρsE to (33) at the
estimated critical temperature Tc = 0.333 067 039 of the 3D Villain
model. The correction exponent ω1 = 0.789 is adopted.

Qua. Lmin χ 2/DF 1/ν Q0 b1

16 17.4/13 1.488 47(14) 0.989 0(5) –
20 16.8/12 1.488 53(17) 0.988 8(7) –
24 14.5/11 1.488 38(20) 0.989 4(8) –
32 14.4/10 1.488 33(24) 0.990(1) –

GRxE 40 11.3/9 1.488 66(31) 0.988(1) –
48 9.2/8 1.488 45(34) 0.989(2) –
16 17.4/12 1.488 49(54) 0.989(3) 0.001(13)
20 16.4/11 1.488 13(64) 0.991(3) −0.01(2)
24 14.3/10 1.488 67(75) 0.988(4) 0.01(2)
32 13.5/9 1.489 2(10) 0.985(5) 0.03(3)
40 11.0/8 1.488 0(12) 0.992(7) −0.03(5)
48 9.1/7 1.488 9(14) 0.987(8) 0.02(6)

16 15.0/12 1.487 82(62) 1.344(4) 0.10(2)
20 13.5/11 1.487 32(74) 1.348(5) 0.08(3)

GRaE 24 10.9/10 1.488 01(85) 1.343(6) 0.11(4)
32 10.3/9 1.488 5(11) 1.339(8) 0.14(5)
40 8.7/8 1.487 5(14) 1.35(1) 0.07(8)
48 8.4/7 1.487 9(15) 1.34(1) 0.1(1)

16 16.7/12 1.489 18(72) 0.768(3) 0.10(1)
20 16.5/11 1.488 96(86) 0.769(4) 0.09(2)

GR2E 24 14.9/10 1.489 6(10) 0.766(4) 0.11(2)
32 11.8/9 1.491 1(13) 0.760(6) 0.16(4)
40 10.0/8 1.489 6(17) 0.766(8) 0.10(6)
48 9.9/7 1.489 9(19) 0.765(9) 0.11(7)

16 16.7/12 1.488 42(54) 1.825(5) −0.52(2)
20 16.7/11 1.488 33(65) 1.826(6) −0.53(3)

GρsE 24 15.2/10 1.488 83(77) 1.821(8) −0.49(5)
32 14.9/9 1.489 2(10) 1.82(1) −0.47(7)
40 13.0/8 1.488 1(12) 1.83(1) −0.6(1)
48 10.6/7 1.489 0(14) 1.82(1) −0.5(1)

In principle, an analytic background should be added up to
(31) and (32). For the present case, this analytic background is
effectively higher-order corrections compared with the correc-
tion terms taken into account explicitly throughout this work.

IV. NUMERICAL RESULTS AND FINITE-SIZE
SCALING ANALYSES

In this section, we present Monte Carlo results which
are analyzed by performing finite-size scaling. In Sec. IV A,
firstly, the scaling behaviors of wrapping probabilities and
some other quantities are explored for 3D Villain and XY
models. We find that certain wrapping probabilities exhibit
smaller corrections in finite-size scaling than those of the
“conventional” quantities such as SF stiffness and susceptibil-
itylike quantities. Universal values of critical dimensionless
quantities are confirmed numerically for the XY and Villain
models. Subsequently, we extend the wrapping probability
approach to determine the QCP of the 2D unitary-filling BH
model. For each of the Villain, XY, and BH models, an
unprecedentedly precise estimate of critical point is obtained.
In Sec. IV B, we determine the critical exponents ν and η

following extensive simulations at the high-precision Tc of
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FIG. 8. (a) Scaled quantity GRxE L−1/ν with ν = 0.671 83 (esti-

mate of this work) and ν = 0.670 9 (experimental result [18]) at the
estimated critical temperature Tc = 0.333 067 039 of the 3D Villain
model. The horizonal dashed line denotes Q0 = 0.989 which is
determined from Table VI. (b) Scaled quantity TwL−2+η with η =
0.038 53. A correction term quoted from Table VII is included. The
horizonal dashed line denotes Q0 = 1.355 75 which is determined
from Table IV.

the Villain model. We find that the quantity GRxE exhibits a
negligible (if nonzero) amplitude of leading correction, which
helps to determine a precise estimate of critical exponent ν.
Moreover, the critical exponent η is estimated by analyzing
the susceptibilitylike quantity Tw.

A. Determining critical points

1. 3D Villain model

We simulate the 3D Villain model on periodic L × L × L
simple-cubic lattices with linear sizes L = 16, 24, 32, 64, 128,
256, 384, and 512 for different T around T = 0.333 067. The
simulations use the worm Monte Carlo algorithm described in
Sec. III A 2. The finite-size scaling for the finite-temperature
phase transition of 3D Villain model is performed by fitting
the Monte Carlo data of wrapping probabilities Rx, Ra, and
R2 to (24), of scaled SF stiffness ρsL to (28), and of suscep-
tibilitylike quantity Tw to (32). These fits are carried out with
the least squares method. For a preferred fit, one expects that
χ2 per degree of freedom (DF) χ2/DF is O(1). Moreover, for
a precaution against systematic errors brought about by the
exclusion of high-order correction terms, we prefer the fits
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TABLE VII. Fits of Tw to (33) at the estimated critical temperature Tc = 0.333 0670 39 of the 3D Villain model. The correction exponent
ω2 = 1.77 is adopted. Some of the fits are performed with fixed Q0 = 1.355 75 which is determined from Table IV.

Lmin χ 2/DF η Q0 b1 ω1 b2

20 13.3/11 0.038 59(16) 1.356(1) −0.288(7) 0.789 –
24 13.3/10 0.038 59(19) 1.356(1) −0.289(9) 0.789 –
32 13.2/9 0.038 55(23) 1.356(2) −0.29(1) 0.789 –
48 11.6/7 0.038 60(31) 1.356(3) −0.29(2) 0.789 –
12 17.7/12 0.038 45(23) 1.355(2) −0.27(2) 0.789 −0.23(9)
16 16.8/11 0.038 29(28) 1.354(2) −0.26(2) 0.789 −0.4(2)
20 13.3/10 0.038 65(34) 1.357(3) −0.29(3) 0.789 0.1(3)
24 13.2/9 0.038 68(40) 1.357(3) −0.30(4) 0.789 0.1(4)
20 14.5/11 0.038 53(4) 1.355 75 −0.29(2) 0.791(20) –
24 14.5/10 0.038 53(5) 1.355 75 −0.29(2) 0.790(27) –
32 14.3/9 0.038 51(7) 1.355 75 −0.27(3) 0.776(39) –
48 12.8/7 0.038 52(9) 1.355 75 −0.27(7) 0.776(69) –
12 18.8/12 0.038 51(7) 1.355 75 −0.25(4) 0.760(46) −0.3(2)
16 17.0/11 0.038 45(9) 1.355 75 −0.19(5) 0.694(68) −0.7(3)
20 14.5/10 0.038 53(9) 1.355 75 −0.3(1) 0.790(94) 0.0(6)
24 14.5/9 0.038 53(11) 1.355 75 −0.3(1) 0.79(12) 0.0(9)

with a stability against varying the cutoff size Lmin, which
denotes the smallest lattice of which the data are included in.

We quote the leading correction exponent ω1 = 0.789(11)
predicated by a d = 3 loop expansion [56] and verified by
a finite-size scaling of Monte Carlo data [11] that produced
ω = 0.785(20). We shall perform a test for this correction
exponent in below. As for the subleading correction term, we
adopt the correction exponent ω2 = 1.77 [56]. We observe
that the incorporating of correction terms stabilizes fits. In
Table III, we list the details of the fits for dimensionless
quantities Rx, Ra, R2, and ρsL. The fitting results for Tw

are given by Table IV. It is found that the amplitudes of
leading correction (namely, |b1|) for these quantities differ
from each other. Each of the wrapping probabilities Rx, Ra,
and R2 suffers from minor corrections to scaling, with |b1| �
0.05. By contrast, the “conventional” quantity ρsL and Tw

exhibit more significant corrections with |b1| ≈ 0.15 and 0.3,
respectively. The distinct amplitudes of finite-size corrections
for the quantities can be inferred from Fig. 3.

We should not trust blindly a sole fitting even though
χ2/DF is close to 1 and we do not take any individual fitting
result as our final estimate. In fact, we take the medium out of
all preferred fitting results of the quantities to estimate Tc. To
be conservative, the estimated error bar measures the distance
between the final estimate and the farthest bound among those
indicated by individual fits. Accordingly, by using the finite-
size scaling analyses of the dimensionless quantities and the
quantity Tw, respectively, presented in Tables III and IV, we
estimate the critical temperature as Tc = 0.333 067 04(7). As
an illustration, we plot in Fig. 4 the size-dependent behavior
of Rx and Ra with correction terms at Tc = 0.333 067 039 (we
take Tc = 0.333 067 04(7) and keep one more decimal place)
and at its neighborhoods T = 0.333 066 7 and 0.333 067 4.
At Tc, the data becomes asymptotically a constant as L →
∞, whereas it is either upward or downward as T devi-
ates from Tc. These suggest for the present size scale that
Tc = 0.333 067 039 is a reasonable estimate and that T =
0.333 0667 and 0.333 0674 deviate from the critical region.
The relatively small finite-size corrections of Rx, Ra, and

R2 compared with those of ρsL and Tw can be observed in
Fig. 5, which demonstrates the corrections to leading scaling
for each of the quantities. We determine by Table III (from
the estimates of Q0) the critical wrapping probabilities as
Rc

x = 0.378 7(2), Rc
a = 0.688 9(4), and Rc

2 = 0.264 0(3), and
the critical winding number fluctuations (namely, the critical
scaled SF stiffness) as ρc

s L = 0.515 6(3).

2. 3D XY model

By means of the worm algorithm formulated in
Sec. III A 1, we simulate the 3D XY model (1) on periodic
simple-cubic lattices with linear sizes L = 8, 16, 32, 64,
128, 256, 384, and 512 around T = 2.201 84. We aim at

TABLE VIII. Fits of the wrapping probabilities Rx , Ra, R2 and the
scaled SF stiffness ρsL to (33) with yQ = 0 at the estimated critical
temperature Tc = 0.333 067 039 of the 3D Villain model. The Q0’s
are fixed at their estimates determined from Table III. The correction
exponent ω2 = 1.77 is adopted.

Qua. Lmin χ 2/DF Q0 b1 ω1 b2

16 4.6/12 0.378 685 −0.034(6) 0.723(40) −0.10(5)
20 2.9/11 0.378 685 −0.04(1) 0.769(53) −0.02(9)

Rx 24 2.9/10 0.378 685 −0.04(2) 0.777(69) 0.0(1)
32 2.9/9 0.378 685 −0.05(2) 0.78(10) 0.0(3)

16 4.9/12 0.688 920 −0.025(8) 0.702(71) 0.01(7)
20 2.2/11 0.688 920 −0.04(2) 0.804(95) 0.2(1)

Ra 24 1.9/10 0.688 920 −0.03(2) 0.76(12) 0.1(2)
32 1.8/9 0.688 920 −0.04(4) 0.79(18) 0.1(4)

16 8.6/12 0.264 021 −0.016(4) 0.647(59) −0.16(4)
20 8.5/11 0.264 021 −0.015(6) 0.635(77) −0.18(7)

R2 24 8.3/10 0.264 021 −0.013(6) 0.603(96) −0.21(9)
32 7.8/9 0.264 021 −0.009(6) 0.52(14) −0.3(2)

16 8.5/12 0.515 565 −0.13(1) 0.767(22) −0.10(9)
20 5.3/11 0.515 565 −0.16(2) 0.801(30) 0.1(2)

ρsL 24 5.1/10 0.515 565 −0.17(3) 0.812(38) 0.2(3)
32 4.4/9 0.515 565 −0.21(6) 0.852(59) 0.6(5)
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estimating the critical temperature Tc of this paradigmatic
model and exploring universal features of critical wrapping
probabilities. We fit the quantities Rκ (κ = x, a, 2) and ρsL
to their finite-size scaling ansatze (24) and (28), respectively.
The fitting results are detailed in Appendix A by which we es-
timate the critical temperature as Tc = 2.201 844 1(5), which
is more precise than the best results available in literature,
as listed in Table II. The estimate Tc = 2.201 844 1(5) is
further confirmed by the finite-size scaling analysis with a
fixed ν (Appendix A). Figure 6 illustrates the quantities Rx,
Ra, ρsL, and TwL−2+η as a function of T . Shown by Table V,
the Villain model and the XY model share universal critical
values of wrapping probabilities and of winding number
fluctuations.

3. 2D unitary-filling BH model

We extend the applicability of wrapping probability ap-
proach to the 2D unitary-filling BH model (8), aiming to
precisely locate the U(1) QCP. We simulate the model in
canonical ensemble with the worm QMC method within the
imaginary-time path-integral representation. The simulations
are performed on periodic L × L lattices with L = 8, 16, 32,
48, 64, 80, 96, and 112 for the temperature contour β = 2L.
Particle line wrapping probabilities Rx, Ra, and R2 together
with the SF stiffness ρs are sampled. Figure 7 illustrates these
quantities around the QCP. Least squares fits are performed

for the finite-size scaling analyses described in Sec. III C. It is
observed that the sampled wrapping probabilities Rx, Ra, and
R2 all exhibit slight finite-size corrections with the amplitudes
of leading correction |b1| � 0.04. By contrast, the scaled SF
stiffness ρsL demonstrates more significant corrections with
the amplitude |b1| ≈ 0.2. The observation of small corrections
for the wrapping probabilities is reminiscent of that for the
aforementioned 3D classical models. The fitting results are
summarized in Appendix B by which we estimate the critical
hopping amplitude as (t/U )c = 0.059 729 1(8).

B. Determining critical exponents ν and η

Estimating critical exponents by performing fits at the
precise critical temperature Tc takes the advantage of reducing
a fitting parameter. We perform extensive simulations with
a number of lattice sizes (L = 12, 16, 20, 24, 32, 40, 48,
64, 80, 96, 128, 160, 192, 256, 384, and 512) right at the
high-precision critical temperature Tc = 0.333 067 039 of the
3D Villain model. For a quantity Q (Q = GRxE , GRaE , GR2E ,
GρsE , Tw), the scaling ansatz reduces to

Q = LyQ

(
Q0 +

∑
m

bmL−ωm

)
, (33)

with yQ = 1/ν for GRxE , GRaE and GR2E , yQ = −1 + 1/ν for
GρsE , and yQ = 2 − η for Tw.

TABLE IX. Fits of the wrapping probabilities Rx , Ra, R2 to (24) and the scaled SF stiffness ρsL to (28) for the 3D XY model. The correction
exponents ω1 = 0.789 and ω2 = 1.77 are adopted.

Qua. Lmin χ 2/DF Tc 1/ν Q0 a1 b1 b2

16 28.4/31 2.201 844 12(13) 1.58(7) 0.378 70(5) 0.06(2) −0.030 7(7) –
32 26.8/26 2.201 844 12(15) 1.59(8) 0.378 69(8) 0.06(2) −0.031(2) –
64 25.3/21 2.201 844 05(19) 1.57(8) 0.378 8(1) 0.06(2) −0.033(4) –

Rx 128 16.9/15 2.201 844 00(33) 1.60(9) 0.378 8(4) 0.05(2) −0.04(2) –
8 30.1/35 2.201 844 01(14) 1.59(8) 0.378 80(7) 0.05(2) −0.034(1) 0.041(9)

16 28.4/30 2.201 844 11(17) 1.58(8) 0.378 7(1) 0.06(2) −0.031(3) 0.00(4)
32 26.3/25 2.201 844 01(23) 1.58(8) 0.378 8(2) 0.06(2) −0.037(9) 0.1(2)

16 31.8/31 2.201 844 47(13) 1.59(8) 0.688 61(8) 0.07(3) −0.015(1) –
32 26.8/26 2.201 844 32(15) 1.62(8) 0.688 8(1) 0.06(3) −0.019(2) –
64 24.4/21 2.201 844 16(20) 1.61(8) 0.689 0(2) 0.07(3) −0.027(6) –

Ra 128 17.2/15 2.201 844 15(34) 1.63(9) 0.689 0(5) 0.06(3) −0.03(2) –
8 31.8/35 2.201 844 07(14) 1.62(8) 0.689 1(1) 0.06(3) −0.033(2) 0.21(1)

16 27.1/30 2.201 844 23(17) 1.61(8) 0.688 9(2) 0.06(3) −0.026(5) 0.12(6)
32 25.1/25 2.201 844 09(24) 1.61(8) 0.689 2(3) 0.07(3) −0.04(1) 0.4(3)

16 38.6/31 2.201 844 05(17) 1.62(10) 0.264 09(6) 0.04(2) −0.023 7(7) –
32 30.0/26 2.201 844 25(20) 1.60(10) 0.263 97(8) 0.04(2) −0.021(2) –
64 24.4/21 2.201 843 98(27) 1.57(10) 0.264 2(1) 0.05(3) −0.027(4) –

R2 128 16.0/15 2.201 844 27(45) 1.63(11) 0.263 9(4) 0.04(2) −0.01(2) –
8 40.8/35 2.201 844 08(18) 1.61(10) 0.264 07(7) 0.04(2) −0.023(1) −0.002(9)

16 35.9/30 2.201 844 29(22) 1.60(10) 0.263 9(1) 0.04(2) −0.018(3) −0.06(4)
32 27.8/25 2.201 843 89(32) 1.59(10) 0.264 3(2) 0.04(2) −0.04(1) 0.3(2)

16 32.9/31 2.201 844 19(14) 1.58(8) 0.515 6(1) 0.11(5) −0.098(1) –
32 26.7/26 2.201 844 13(16) 1.59(8) 0.515 7(2) 0.10(4) −0.100(3) –
64 23.9/21 2.201 843 92(22) 1.59(8) 0.516 0(3) 0.10(5) −0.112(8) –

ρsL 128 15.9/15 2.201 844 15(35) 1.68(10) 0.515 5(7) 0.06(3) −0.09(3) –
8 33.4/35 2.201 843 98(15) 1.59(8) 0.515 9(1) 0.10(5) −0.109(3) 0.14(2)

16 31.8/30 2.201 844 07(18) 1.59(8) 0.515 8(2) 0.10(5) −0.104(7) 0.08(8)
32 24.7/25 2.201 843 84(26) 1.58(8) 0.516 2(4) 0.10(5) −0.13(2) 0.5(4)
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We estimate the critical exponent ν from the derivatives of
wrapping probabilities GRκ E (κ = x, a, 2) and the derivative
of SF stiffness GρsE by fitting them to (33). The details of
the least squares fits are given in Table VI. We find that the
amplitudes of leading corrections for GRxE , GRaE , and GR2E

are typically smaller than that for GρsE , even though leading
corrections are clearly there for GRaE and GR2E . Moreover, it is
hard to detect a finite amplitude of leading correction for GRxE ,
which should be very small if nonzero. This is a useful feature
for locating ν as the leading correction term can be precluded
out for the less uncertainties of fitting parameters. By fitting
GRxE to (33) without correction term, we determine ν =
0.671 83(6) for Lmin = 16, ν = 0.671 80(8) for Lmin = 20,
ν = 0.671 87(9) for Lmin = 24, ν = 0.671 89(11) for Lmin =
32, ν = 0.671 75(14) for Lmin = 40, and ν = 0.671 84(15) for
Lmin = 48, with χ2/DF ≈ 1 for all of these fits. Note that the
fitting is already stable as Lmin � 16. On this basis, we esti-
mate, more or less conservatively, that ν = 0.671 83(18). As
an illustrative test of our estimate of ν, we plot in Fig. 8(a) the
scaled quantity GRxE L−1/ν (without correction term) at Tc with
ν = 0.671 83 and find that GRxE L−1/ν converges fast. By con-
trast, the experimental estimate ν = 0.670 9 [18] is ruled out.
Hence, our estimate of ν is further evidenced. For GRaE , GR2E ,

and GρsE , correction terms are needed to achieve a stable fit-
ting, bringing about more uncertainties for fitting parameters.

In order to estimate η, we fit the finite-size Tw data to (33)
with yQ = 2 − η. Obvious corrections to scaling are present in
the finite-size scaling. We explore the situations with different
combinations of correction terms and the situations with Q0

being fixed or unfixed. By comparing all the fitting results
listed in Table VII, our final estimate is η = 0.038 53(48).
The scaled quantity TwL−2+η with a leading correction term
is shown in Fig. 8(b) for η = 0.038 53.

On the basis of the fits for Tw (Table VII), the leading
correction exponent is estimated as ω1 = 0.77(13), which is
consistent with the literature results ω1 = 0.789(11) [56] and
ω1 = 0.785(20) [11]. Besides, we estimate the leading correc-
tion exponent ω1 from the finite-size scaling of quantities Rx,
Ra, R2, and ρsL, according to (33), with yQ = 0. As shown by
Table VIII, we obtain ω1 ≈ 0.7 which agrees with the estimate
ω1 = 0.77(13) from analyzing Tw.

V. SUMMARY

In this work we utilize the geometric wrapping proba-
bility to exploit the quantitative aspects of the U(1) crit-
icality in three dimensions in the contexts of the finite-

TABLE X. Fits of the wrapping probabilities Rx , Ra, R2 to (24) and the scaled SF stiffness ρsL to (28) for the 3D XY model. The critical
exponent ν is fixed at our final estimate 0.671 83 for a consistent check of the fits with unfixed ν (Table IX). The correction exponents
ω1 = 0.789 and ω2 = 1.77 are adopted.

Qua. Lmin χ 2/DF Tc 1/ν Q0 a1 b1 b2

16 30.0/32 2.201 844 13(13) 1/0.67183 0.378 68(5) 0.095(4) −0.0305(7) –
32 28.5/27 2.201 844 15(16) 1/0.67183 0.378 66(8) 0.095(4) −0.030(2) –
64 26.6/22 2.201 844 05(21) 1/0.67183 0.378 7(1) 0.095(4) −0.033(4) –

Rx 128 18.6/16 2.201 843 92(38) 1/0.67183 0.378 9(4) 0.094(4) −0.04(2) –
8 31.8/36 2.201 844 02(15) 1/0.67183 0.378 77(7) 0.094(4) −0.034(1) 0.040(9)

16 30.0/31 2.201 844 14(18) 1/0.67183 0.378 7(1) 0.095(4) −0.030(3) 0.00(4)
32 27.9/26 2.201 844 00(25) 1/0.67183 0.378 8(2) 0.094(4) −0.04(1) 0.1(2)

16 33.6/32 2.201 844 52(14) 1/0.67183 0.688 57(8) 0.132(5) −0.015(1) –
32 29.4/27 2.201 844 37(17) 1/0.67183 0.688 7(1) 0.131(5) −0.019(2) –
64 26.6/22 2.201 844 17(22) 1/0.67183 0.689 0(2) 0.130(6) −0.027(6) –

Ra 128 19.5/16 2.201 844 07(40) 1/0.67183 0.689 1(6) 0.130(6) −0.03(2) –
8 34.5/36 2.201 844 08(16) 1/0.67183 0.689 1(1) 0.129(5) −0.032(2) 0.21(1)

16 29.6/31 2.201 844 27(19) 1/0.67183 0.688 9(2) 0.130(5) −0.025(5) 0.11(6)
32 27.4/26 2.201 844 08(27) 1/0.67183 0.689 2(3) 0.130(6) −0.04(1) 0.4(3)

16 40.3/32 2.201 844 05(18) 1/0.67183 0.264 07(6) 0.076(4) −0.0235(7) –
32 31.3/27 2.201 844 29(21) 1/0.67183 0.263 94(8) 0.077(4) −0.020(2) –
64 25.2/22 2.201 843 99(29) 1/0.67183 0.264 2(2) 0.076(4) −0.027(5) –

R2 128 17.5/16 2.201 844 23(53) 1/0.67183 0.263 9(4) 0.076(4) −0.02(2) –
8 42.5/36 2.201 844 10(20) 1/0.67183 0.264 05(7) 0.076(4) −0.023(1) −0.003(9)

16 37.2/31 2.201 844 35(24) 1/0.67183 0.263 9(1) 0.077(4) −0.017(3) −0.07(4)
32 28.9/26 2.201 843 87(35) 1/0.67183 0.264 3(2) 0.076(4) −0.04(1) 0.3(2)

16 34.2/32 2.201 844 20(14) 1/0.67183 0.515 5(1) 0.178(7) −0.097(1) –
32 28.4/27 2.201 844 14(17) 1/0.67183 0.515 6(2) 0.177(7) −0.099(3) –
64 25.3/22 2.201 843 89(24) 1/0.67183 0.516 0(3) 0.175(7) −0.112(9) –

ρsL 128 19.9/16 2.201 843 96(43) 1/0.67183 0.515 9(8) 0.174(8) −0.10(3) –
8 34.9/36 2.201 843 97(16) 1/0.67183 0.515 9(1) 0.176(7) −0.109(3) 0.13(2)

16 33.3/31 2.201 844 07(20) 1/0.67183 0.515 7(2) 0.177(7) −0.103(7) 0.07(8)
32 26.0/26 2.201 843 79(29) 1/0.67183 0.516 3(5) 0.175(7) −0.13(2) 0.6(4)
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temperature transitions in Villain and XY models and the
quantum phase transition in the BH model. For both the clas-
sical and quantum models, we observe that certain wrapping
probability-related quantities exhibit weak corrections in the
finite-size scaling. The critical temperatures of the 3D XY
and Villain models are estimated as Tc = 2.201 844 1(5) and
0.333 067 04(7), respectively. The QCP of the 2D unitary-
filling BH model is estimated as (t/U )c = 0.059 729 1(8). As
demonstrated by Table II, our locations of critical points for
the 3D XY, 3D Villain, and 2D unitary-filling BH models
significantly improve over the best literature results. For the
3D classical models, the universal critical wrapping proba-
bilities are determined as Rc

x = 0.378 7(2), Rc
a = 0.688 9(4),

and Rc
2 = 0.264 0(3), which have not yet been reported. The

critical winding number fluctuation is estimated as ρc
s L =

0.515 6(3), which agrees well with ρc
s L = 0.516 0(6) re-

ported in Ref. [12] and has a better precision. Moreover,
we find that the derivative of a wrapping probability with
respect to T , namely GRxE , suffers from negligible corrections.
Making use of this feature, we determine the correlation
length critical exponent as ν = 0.671 83(18), which is com-
parable with the most precise results available in literature
(Table I). In addition, we estimate the critical exponent η

as η = 0.038 53(48), which is close to the recent confor-
mal bootstrap result η = 0.038 52(64) [17]. To sum up, this
work is a reference for applying wrapping probability-related
quantities to determine the quantitative aspects of critical
behaviors and provides several benchmarks for the 3D U(1)
criticality.
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APPENDIX A: FINITE-SIZE SCALING FOR THE
THERMODYNAMIC PHASE TRANSITION OF THE

3D XY MODEL

The finite-size scaling of the dimensionless quantities
Rx, Ra, R2, and ρsL for the 3D XY model are detailed in
Table IX. For each quantity, the least squares fit with a leading
correction term is performed. In some cases, a subleading
correction term is further included. The leading correction
amplitudes are found to be |b1| ≈ 0.03, 0.03, and 0.02 for
wrapping probabilities Rx, Ra, and R2, respectively. For ρsL,
we observe more significant corrections with the amplitude
|b1| ≈ 0.1. By comparing the fitting results of the dimension-
less quantities, our final estimate of critical temperature is
Tc = 2.201 844 1(5).

In Table X, we present the fitting results of the di-
mensionless quantities with ν being fixed at our final esti-
mate ν = 0.671 83. These fits produce an estimate of Tc as
2.201 844 1(6), which is consistent with Tc = 2.201 844 1(5)
obtained by the fits without a prior knowledge of ν

(Table IX).

TABLE XI. Fits of the wrapping probabilities Rx , Ra, R2 to (24) and the scaled SF stiffness ρsL to (28) for the 2D unitary-filling BH model.
The correction exponents ω1 = 0.789 and ω2 = 1.77 are adopted.

Qua. Lmin χ 2/DF (t/U )c 1/ν Q0 a1 b1 b2

48 31.0/28 0.059 728 85(22) 1.39(13) 0.205 0(2) −3(2) – –
64 25.9/20 0.059 729 00(26) 1.39(16) 0.205 2(3) −3(2) – –

Rx 16 34.2/43 0.059 729 08(18) 1.464(44) 0.206 0(2) −2.0(4) −0.020(2) –
32 32.1/35 0.059 729 33(35) 1.452(87) 0.206 5(7) −2.1(8) −0.028(9) –
8 37.4/50 0.059 729 21(21) 1.467(38) 0.206 3(3) −2.0(3) −0.027(4) 0.06(2)

16 33.5/42 0.059 729 40(43) 1.465(44) 0.207(1) −2.0(4) −0.04(2) 0.2(2)

48 24.5/28 0.059 729 01(23) 1.41(13) 0.336 1(3) −4(2) – –
64 20.3/20 0.059 729 14(27) 1.40(16) 0.336 3(4) −4(3) – –

Ra 16 31.0/43 0.059 728 98(17) 1.467(41) 0.336 6(3) −3.0(5) −0.016(3) –
32 27.1/35 0.059 729 40(34) 1.453(79) 0.338(1) −3(1) −0.03(1) –
8 32.4/50 0.059 729 23(20) 1.471(37) 0.337 6(5) −2.9(4) −0.037(6) 0.18(3)

16 29.0/42 0.059 729 50(41) 1.470(41) 0.339(2) −2.9(5) −0.06(3) 0.4(3)

48 32.3/28 0.059 728 25(35) 1.22(20) 0.073 9(2) −3(2) – –
64 23.9/20 0.059 728 64(41) 1.31(25) 0.074 1(2) −2(2) – –

R2 16 36.2/43 0.059 729 28(27) 1.459(77) 0.075 3(2) −1.0(3) −0.023(2) –
32 34.1/35 0.059 729 03(54) 1.45(13) 0.075 0(5) −1.1(6) −0.020(7) –
8 41.4/50 0.059 729 04(32) 1.466(55) 0.074 9(3) −1.0(2) −0.017(3) −0.06(1)

16 35.9/42 0.059 728 99(66) 1.463(77) 0.074 9(8) −1.0(3) −0.02(2) −0.07(15)

48 34.3/28 0.059 728 88(28) 1.24(15) 0.981(1) −27(17) – –
64 28.4/20 0.059 729 08(35) 1.19(18) 0.982(2) −34(27) – –

ρsL 16 44.8/43 0.059 729 12(19) 1.477(50) 0.989(1) −10(2) −0.18(1) –
32 41.1/35 0.059 729 60(39) 1.429(86) 0.994(4) −12(4) −0.25(5) –
8 48.3/50 0.059 729 30(23) 1.488(40) 0.992(2) −9(2) −0.24(2) 0.5(1)

16 43.0/42 0.059 729 65(45) 1.480(50) 0.996(6) −10(2) −0.3(1) 1(1)
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TABLE XII. Fits of the wrapping probabilities Rx , Ra, R2 to (24) and the scaled SF stiffness ρsL to (28) for the 2D unitary-filling BH
model. The critical exponent ν is fixed at our final estimate 0.671 83 for a consistent check of the fits with unfixed ν (Table XI). The correction
exponents ω1 = 0.789 and ω2 = 1.77 are adopted.

Qua. Lmin χ 2/DF (t/U )c 1/ν Q0 a1 b1 b2

48 31.6/29 0.059 728 78(18) 1/0.67183 0.205 0(2) −1.80(4) – –
64 26.2/21 0.059 728 94(22) 1/0.67183 0.205 1(2) −1.80(4) – –

Rx 16 34.5/44 0.059 729 05(17) 1/0.67183 0.205 9(2) −1.80(3) −0.020(2) –
32 32.2/36 0.059 729 29(32) 1/0.67183 0.206 4(6) −1.80(4) −0.027(9) –
8 37.7/51 0.059 729 18(20) 1/0.67183 0.206 3(3) −1.81(3) −0.027(4) 0.06(2)

16 33.8/43 0.059 729 37(41) 1/0.67183 0.207(1) −1.80(3) −0.04(2) 0.2(2)

48 24.9/29 0.059 728 94(18) 1/0.67183 0.336 0(3) −2.71(6) – –
64 20.6/21 0.059 729 07(22) 1/0.67183 0.336 2(3) −2.70(6) – –

Ra 16 31.3/44 0.059 728 95(16) 1/0.67183 0.336 5(3) −2.72(5) −0.016(3) –
32 27.3/36 0.059 729 35(32) 1/0.67183 0.337 8(9) −2.71(6) −0.03(1) –
8 32.6/51 0.059 729 21(19) 1/0.67183 0.337 6(5) −2.72(5) −0.036(6) 0.18(3)

16 29.2/43 0.059 729 48(40) 1/0.67183 0.339(2) −2.71(5) −0.06(3) 0.4(3)

48 34.1/29 0.059 728 19(28) 1/0.67183 0.073 9(1) −0.90(3) – –
64 24.4/21 0.059 728 57(34) 1/0.67183 0.074 1(2) −0.89(3) – –

R2 16 36.3/44 0.059 729 26(26) 1/0.67183 0.075 3(2) −0.90(3) −0.023(1) –
32 34.2/36 0.059 728 99(50) 1/0.67183 0.075 0(5) −0.89(3) −0.019(7) –
8 41.6/51 0.059 729 03(31) 1/0.67183 0.074 9(2) −0.90(3) −0.017(3) −0.06(1)

16 36.1/43 0.059 728 96(64) 1/0.67183 0.074 8(8) −0.90(3) −0.02(2) −0.1(1)

48 37.1/29 0.059 728 70(21) 1/0.67183 0.980(1) −9.4(2) – –
64 31.2/21 0.059 728 86(24) 1/0.67183 0.981(1) −9.4(2) – –

ρsL 16 44.8/44 0.059 729 10(18) 1/0.67183 0.989(1) −9.4(2) −0.18(1) –
32 41.6/36 0.059 729 52(35) 1/0.67183 0.993(4) −9.4(2) −0.25(5) –
8 48.3/51 0.059 729 30(22) 1/0.67183 0.992(2) −9.4(2) −0.24(2) 0.5(1)

16 43.0/43 0.059 729 63(44) 1/0.67183 0.996(6) −9.4(2) −0.3(1) 1(1)

APPENDIX B: FINITE-SIZE SCALING FOR THE
QUANTUM PHASE TRANSITION OF 2D

UNITARY-FILLING BH MODEL

The QCP of the 2D unitary-filling BH model is determined
by finite-size scaling analyses of the dimensionless quantities
Rx, Ra, R2, and ρsL. The details of least squares fits are
summarized in Table XI. For each quantity, we perform fits
without correction term or with different combinations of
leading and subleading correction terms. It is observed that

the leading correction amplitudes |b1| for the wrapping prob-
abilities are |b1| � 0.04. For ρsL, it is found that |b1| ≈ 0.2.
Note that the leading finite-size corrections of Rx, Ra, and R2

are considerably smaller than that of ρsL. By comparing the
fitting results in Table XI, we provide the final estimate of
QCP as (t/U )c = 0.059 729 1(8).

We also perform fits with fixed critical exponent ν =
0.671 83. The results are summarized in Table XII, which
yields (t/U )c = 0.059 729 1(7), agreeing with the analyses
with unfixed ν.
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