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Gate-tunable semiconductor-superconductor nanowires with superconducting leads form exotic Josephson
junctions that are a highly desirable platform for two types of qubits: Those with topological superconductivity
(Majorana qubits) and those based on tunable anharmonicity (gatemon qubits). Controlling their behavior,
however, requires understanding their electrostatic environment and electronic structure. Here we study gated
InAs nanowires with epitaxial aluminum shells. By measuring current-phase relations and comparing them
with analytical and numerical calculations, we show that we can tune the number of modes, determine the
transparency of each mode, and tune into regimes in which electron-electron interactions are apparent, indicating
the presence of a quantum dot. To take into account electrostatic and geometrical effects, we perform microscopic
self-consistent Schrodinger-Poisson numerical simulations, revealing the energy spectrum of Andreev states
in the junction as well as their spatial distribution. Our work systematically demonstrates the effect of device
geometry, gate voltage, and phase bias on mode behavior, providing insights into ongoing experimental efforts
and predictive device design.
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I. INTRODUCTION

Studies of hybrid structures of superconductors and semi-
conducting nanowires have recently spurred advances in fun-
damental physics, materials science, and technology [1]. A
growing body of experimental evidence supports propos-
als that nanowire-superconductor hybrids can host Majorana
modes, the building blocks in schemes for topological quan-
tum computing [2–13]. Gate-tunable nanowire Josephson
junctions have also been integrated into a cavity-QED archi-
tecture, providing electrostatic control of the qubit transition
frequency [14,15]. Improving the design and operation of
these devices will rely on understanding their electrostatic
environment and electronic structure, with several recent
works examining mode behavior in wire devices [16–21].
Moreover, electron-electron interactions, often overlooked in
both experiment and theory, should also be considered as they
are expected to play an important role, particularly in one or
fewer dimensions.

Here we report measurements of the current-phase relation
(CPR) of a Josephson junction based on an InAs nanowire,
carried out using a scanning superconducting quantum in-
terference device (SQUID) microscope. The amplitude and
phase dependence of the CPR are sensitive to the transparency

*These authors contributed equally to this work.

and number of modes contributing to supercurrent in the junc-
tion [17,22–25]. Microscopic regimes with one or multiple
modes can be distinguished through comparison to a simple
analytic model, by a model-independent analysis, and by
comparison to numerical simulations. The qualitative agree-
ment of the current-phase relations between our simulations
and experiment enables the use of numerical modeling for
visualizing the microscopic effect of electrostatic gating. In
the regime of low electron density in the junction, we find
evidence of interactions which modify both the spectrum and
the phase dependence of current flow in the device (i.e., lead to
a sign reversal of the supercurrent). Our simulation of the de-
vice behavior, combined with our understanding and control
of both interactions and anharmonicity, provides insight into
recent experiments and allows for more deterministic device
design.

II. MEASURING THE CURRENT-PHASE RELATION
OF AN InAs NANOWIRE JOSEPHSON JUNCTION

To investigate the CPR of the InAs nanowire Josephson
junction, we fabricated a superconducting ring consisting of a
100-nm-thick annular film of evaporated aluminum bridged
by a hybrid epitaxial aluminum-InAs nanowire [Fig. 1(a)].
The Josephson junction is located at the center of the
nanowire. To measure the current-phase relation, we posi-
tioned the pickup loop and field coil of a SQUID microscope
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FIG. 1. Experimental setup to measure the current-phase relation of an InAs nanowire-based Josephson junction. (a) The sample ring
consists of an evaporated aluminum ring (blue), which is interrupted by an InAs nanowire (green with yellow gates) to form a Josephson
junction. To measure the current-phase relation of the junction, the sensing head of a SQUID microscope is positioned above the sample ring.
A current bias applied to the field coil (light gray) tunes the magnetic flux through the sample ring, providing control of the phase difference
across the junction. This phase difference determines the supercurrent in the junction via its current-phase relation. The supercurrent circulates
in the sample ring, leading to a signal which is measured by the pickup loop (dark gray). Drawing is to scale. (b) A scanning electron
micrograph depicts a top view of the portion of the sample ring spanned by the InAs nanowire. As depicted in the bottom panels, the nanowire
has a hexagonal cross section and is coated epitaxially on four facets with a 7-nm layer of aluminum (blue). This epitaxial aluminum layer is
chemically removed along a 100-nm span beneath the cutter gate, while the wire is isolated from the gate with a 5-nm layer of HfO2 (pink),
shown in bottom left cross section. The center and right cross sections indicate the structure of the wire in ungated sections and in sections with
a side gate. The respective locations of the cross sections are labeled by red, blue, and yellow arrows on the SEM image. (c) A cross-sectional
side view of the wire shows the layer structure of the device. The sample ring rests on a doped silicon substrate, providing the ability to gate
the device globally from below.

approximately 1 μm above the sample ring [26]. When a
current is applied to the field coil, a magnetic flux � is
generated in the sample ring. This flux directly tunes the
phase difference φ across the nanowire junction, leading to a
supercurrent in the junction due to its current-phase relation.
The supercurrent circulates in the sample ring and is measured
as a flux in the pickup loop [23,24,27]. The center position of
the ring can be found with submicron precision by the diamag-
netic response from the ring. By modeling the SQUID-sample
geometry and calibrating the mutual inductance against the
periodicity of the current-phase relation, we convert the flux
signal into a Josephson supercurrent in the ring [28]. The

mutual inductance can change up to 5% over long periods of
time due to drift in the SQUID position. Since we calibrate the
mutual inductance for each CPR measurement, our analysis is
not affected by this drift.

The hybrid nanowires are grown by molecular beam epi-
taxy [29]. Au-catalyzed InAs nanowires are first grown via
the vapor-liquid-solid method, followed by a low-temperature
in situ growth step of 7 nm of aluminum on four of the six
side facets [Fig. 1(b)]. The four-facet coverage is realized
in two steps of two-facet growth with an intermediate 120◦
rotation of the nanowire orientation with respect to the atomic
aluminum beam, which ensures a flat, continuous aluminum
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FIG. 2. CPR measurements probe the evolution of supercurrent-carrying modes with gate voltage. (a) The amplitude and shape of the CPR
evolve as the voltage applied to the cutter gate decreases from 0 to −2 V, corresponding to changes in the structure of the Andreev bound
states as a function of applied electric field. Each curve is a measured current-phase relation at a particular cutter gate voltage. The waterfall
plot represents an evenly spaced subset of the gate sweep and is offset vertically for clarity. (b) The dependence of CPR amplitude and shape
on cutter gate voltage. The black curve shows the critical current amplitude (left y axis) vs gate voltage. The light blue curve shows CPR
skew vs gate voltage (right y axis). The skew is calculated as the ratio between the second and first harmonics (i.e., Fourier component) of the
CPR, S = − A2

A1
. Recurring peaks at VC < −1.16V (red dashed line) signified resonant tunneling in the single-channel regime. (c) Fitting CPR

data at VC = −1.22 V (black dots) to Eq. (2) (red line) results in a single channel with τ = 1, T = 98 mK, and � = 128 μeV. (d) Scatterplot
of CPR amplitude vs skew for all measured cutter gate voltages between 0 and −2 V reveals distinct regimes. Red dots are taken from
VC < −1.16 V, showing highly correlated amplitude and skew expected from a single channel. The blue curve is the expected single-channel
behavior calculated from Eq. (2) (with T = 98 mK and � = 128 μeV). (e) Extracted transmission coefficients {τ1 · · · τ6} from best fits to
Eq. (2), showing the evolution of the number and transparency of supercurrent-carrying channels with cutter gate voltage. Different colors are
only for visual clarity and are not meant to differentiate physical states. The vertical width of shaded regions represents the 68% confidence
interval of the fitted parameters.

film on all four facets. This epitaxial aluminum makes elec-
trical contact with the evaporated aluminum film to close the
ring. In the center of the nanowire, the epitaxial aluminum
is chemically removed over a span of 100–150 nm to form
the junction. The junction lies under a Ti/Au “cutter” gate,
while two additional side gates overlap the wire in regions
still contacted with epitaxial aluminum [see Fig. 1(c)]. A
5-nm layer of HfO2 (shown in pink) isolates the gates and
the wire. The side gates are expected to be mostly screened
by aluminum but can still affect the wire via fringe electric
fields. Finally, the sample ring sits on a doped silicon substrate
capped with a thin layer of oxide, allowing the wire to be
gated from below. We found that the cutter gate and back
gate have qualitatively similar effects, indicating that both

gates primarily affect the same junction region (under the
cutter gate) due to screening from the epitaxial aluminum
[28]. Hence, we focus mainly on the modulation of the CPR
by the cutter gate and side gates.

III. MODEL-INDEPENDENT ANALYSIS
OF CURRENT-PHASE RELATION VERSUS

CUTTER GATE VOLTAGE

To explore the effect of local gating on the nanowire
junction, we measured the CPR at a series of voltages VC

applied to the cutter gate [Fig. 2(a)]. As the cutter gate voltage
is tuned from −2 to 0 V, the amplitude of the CPR evolves
through several qualitatively distinct regimes. At the most
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negative gate voltages, the onset of supercurrent gives way
to a set of recurring peaks in the critical current [plotted
in black in Fig. 2(b)]. As the gate voltage increases above
VC ≈ −1.16 V, the critical current begins to fluctuate with
gate voltage. Finally, above VC ≈ −0.45 V, the fluctuations
diminish, and the critical current begins to increase more
steeply with gate voltage.

These gate-dependent features of the junction’s critical
current are accompanied by strong variations in the phase de-
pendence, or shape, of the CPR [visible in Fig. 2(a)]. The most
prominent feature of these shape variations is their forward
skew, meaning that the critical current occurs at an advanced
phase compared to a sine wave. The skew of a CPR can be
characterized by taking its Fourier transform and defining
a quantity S = −A2/A1, where A1 and A2 are the first and
second harmonics of the CPR. Positive S indicates forward
skew, and hereafter, we use S and “skew” interchangeably.

Plotting the skew on the same gate voltage axis as the
critical current reveals an intricate interplay between the shape
of the CPR and its amplitude [light blue in Fig. 2(b)]. At the
most negative gate voltages, recurring peaks in the critical
current are accompanied by coincident peaks in the skew.
In the intermediate regime of fluctuating critical current, the
skew also fluctuates, and some correlations are observable
between critical current and skew. As the critical current be-
gins to increase sharply at the most positive gate voltages, the
skew remains relatively constant near S = 0.3. Throughout
the gate trace, it is remarkable that the CPR is almost always
forward skewed (S > 0), in sharp contrast to the sinusoidal
behavior (S = 0) found in the conventional Josephson effect.
At certain gate voltages, the skew is not calculated due to the
CPR amplitude being too small to obtain a reliable result.

Figure 2(d) more clearly distinguishes the different regimes
mentioned above. For VC < −1.16 V, the CPR shows highly
correlated amplitude and skew (red dots), distinct from VC >

−1.16 V. Next, by comparing the relationship between ampli-
tude and skew to a well-known theoretical model, we quan-
titatively identify these distinct regimes as having different
numbers of supercurrent-carrying modes.

IV. SHORT-JUNCTION THEORY REVEALS MODE
NUMBER AND TRANSPARENCY

The variations of the CPR amplitude and shape with gate
voltage contain considerable information about the electronic
structure of the junction. The CPR depends on the elec-
tronic properties of the junction according to the fundamental
relation

I (φ) = 2e

h̄

dF

dφ
, (1)

where F is the free energy and φ is the phase difference across
the Josephson junction [30]. In the limit where the junction
length is short compared to the superconducting coherence
length, the dominant contribution to the supercurrent comes
from discrete spectrum of bound states in the junction, with
energies εp = �

√
1 − τp sin2(φ/2) [25]. The energies εp of

these states, called Andreev bound states, are related to the
transmission probabilities τp of the underlying normal con-
duction channels in the junction. Here � is the amplitude of

the Andreev states, and in the short-junction limit it is equal to
the superconducting gap. With this spectrum, Eq. (1) can be
simplified to a well-known formula [31–33]:

I (φ) = −2e

h̄

N∑
p=1

dεp

dφ
tanh

(
εp

2kBT

)

= e�2

2h̄
sin φ

N∑
p=1

τp

εp
tanh

(
εp

2kBT

)
. (2)

Here N corresponds to the number of Andreev bound states in
the junction.

This simplified model illustrates that the CPR is a sensitive
probe of both the number of modes and their transparencies
τp. In the simplest case of a single channel, the amplitude and
skew of the CPR both increase with τ1. In a state with low
transparency (τ1 � 1), a sinusoidal CPR is expected (S → 0).
In a state with high transparency (τ1 ∼ 1), the CPR is forward
skewed (S > 0), up to the limit of S = 0.4 for T = 0 K and
τ1 = 1. When more than one channel contributes to the CPR,
the shape and amplitude of the CPR become sensitive to a set
of N > 1 transmission probabilities.

First, we performed fits to Eq. (2) with a highly for-
ward skewed CPR at VC = −1.22 V, with free parameters
{�, T, τ1, τ2, . . . }. The best fit result is shown in Fig. 2(c),
with � = 128 μeV, T = 98 mK, τ1 = 1, and τp = 0 for p> 1
[28]. The nominal sample stage temperature is ∼60 mK.
Although the fitted effective temperature is slightly elevated,
we are still in the regime of T � Tc and thus should be free
from any noise-induced quasiparticle excitation that could
affect the CPR. All wires connected to both the sample and
the scanning SQUID are filtered by rf filters with at least
45-dB attenuation above 10 MHz [34]. The extracted ampli-
tude parameter � = 128 μeV is the energy of Andreev states
at zero phase bias. The comparison between this value and the
proximity-induced gap reported in normal-superconducting
transport experiments for similar epitaxial-Al-covered InAs
nanowires [12] is presented in Sec. VII. Systematic experi-
mental uncertainty is also considered in [28].

We subsequently performed fits of Eq. (2) to the CPR
data (with � = 128 μeV and T = 98 mK held constant),
allowing up to N = 6 contributing modes. The best fit result
is summarized in Fig. 2(e). Below VC ≈ −1.16 V, the CPR is
well described by a single contributing channel. This perfectly
coincides with the single-channel regime identified by our
model-independent analysis earlier [in Figs. 2(b) and 2(d)].

Throughout the regime of fluctuating critical current, VC ≈
−1.16 V to VC ≈ −0.45 V, a second and third channel can
be seen to contribute [Fig. 2(e), red and blue]. Although
their respective transparencies fluctuate strongly, the num-
ber of channels nevertheless increases monotonically with
increasing gate voltage, agreeing with the intuition of gate
tuning the number of occupied electron states in the junction.
This regime is also characterized by random scatters of CPR
amplitude vs skew, with little correlation.

Above VC ≈ −0.45 V, additional channels enter with trans-
mission coefficients approaching unity rapidly with gate volt-
age. This regime is characterized by consistently forward
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FIG. 3. Numerical simulations of the InAs junction. (a) Top: Schematics of the simulated model, consisting of two wire segments and the
junction, each augmented with an electric gate. Empty spaces at the interface of the wire and vacuum in the junction indicate the zero boundary
value of potential. Color indicates the calculated electrostatic potential for the left/right gate voltage of −0.29 V and cutter voltage of 0.06 V.
Bottom: Two-dimensional cuts of the electrostatic potential along the x direction (left) and along the z direction (right). (b) The density of the
lowest positive Andreev state at phase φ = π in the junction at a cutter voltage of (b1) 0.07 V and (b2) 0.06 V, corresponding to the regimes
of low and high transparency in the junction, respectively. The color scale shows the probability density calculated as the square of the wave
function amplitude. (c) Top: Calculated dependence of the critical current (red and black) and skew (blue) on the cutter gate voltage. Arrows
indicate the gate voltages of (b1) and (b2). Bottom: The dependence of the calculated critical current on the skew. In both panels red indicates
the single-channel regime. (d) The dependence of the position of the highest occupied level in the junction on the cutter gate voltage.

skewed CPR (S ∼ 0.3) and monotonically increasing critical
current amplitude with gate voltage.

V. USING NUMERICAL SIMULATIONS TO STUDY THE
INTERPLAY OF ELECTROSTATIC POTENTIAL, SPATIAL

STRUCTURE, AND THE SPECTRUM
OF ANDREEV STATES

Although the short-junction model provides an intuitive
description of the number and transparency of modes in the
junction, it is limited in its ability to faithfully represent device
behavior. In a real device, the spectrum and spatial distribution
of states will be influenced by the device geometry, material
composition, and details of the electrostatic potential [35–37].
Understanding these effects is important for device engineer-
ing in qubit and Majorana applications, motivating a more
detailed model of the observed CPR.

We study a microscopic model of the system, consisting
of two wires and a junction, with the geometry shown in

Fig. 3(a). The wire’s state is controlled by three electric gates:
Two below the wires and the cutter gate in the junction. In
the normal state it is described by the following low-energy
Hamiltonian:

Ĥn = 1

2m∗
(
k̂2

x + k̂2
y + k̂2

z

)+ V (x, z)−α(k̂xσy−k̂yσx ), (3)

where operators k̂x,y,z denote the momentum in the x, y, z
directions, σx,y,z are Pauli matrices, m∗ = 0.026me [1] is
the effective mass in InAs (me is the electron mass), α =
0.01 eV nm is the spin-orbit coupling [1], and V is the
electrostatic potential, created by the electric gates. The po-
tential is translationally invariant along the y direction and can
be calculated by solving the Poisson equation ∇2V (x, z) =
− en(x,z)

ε0εr
, with εr = 15.2 and the boundary conditions set by

the voltages of the surrounding gates and the band offset at
the interface of InAs and Al, which we take as W = 0.25 eV.
Boundary conditions between the wire and vacuum in the
junction region are set to zero to model a well with a resonant
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character of current transmission through the junction, as
observed in Fig. 2(e). In order to obtain the potential one
has to self-consistently determine the density of electrons
and the potential in a Schrodinger-Poisson loop, which is
computationally prohibitive. Instead, we employ the Thomas-

Fermi approximation for the density n = 1
3π2 ( 2m∗φ

h̄2 )
3
2 , which

produces excellent agreement for the potential with the full
Schrodinger-Poisson method [35,38].

Superconductivity is included using a Bogoliubov–de
Gennes Hamiltonian and adding pairing potentials � and
�eiφ to the left and right proximitized segments of the wires,
respectively, leading to the phase difference φ across the
junction. The numerical complexity is alleviated by projecting
the Hamiltonian in the y direction to the basis of sinusoidal
eigenstates [35,39].

The zero-temperature CPR is calculated from the Andreev
spectrum by taking the derivative of the ground-state energy
with respect to φ [see Eq. (1)] [40]. The gate dependence
of the simulated critical current is shown in the top panel of
Fig. 3(c) (black) and is qualitatively similar to the experimen-
tal data. As the gate voltage increases, an insulating regime
transitions into three well-separated peaks, which then evolve
into a regime of fluctuating critical current. Within the regime
of recurring peaks, the simulated supercurrent is dominated
by the contribution from a single mode. The well-separated
peaks in the Josephson current are indicative of tunneling
through resonant levels in the junction [25]. The skew of
the modeled CPR tends to increase and decrease with the
critical current [light blue in Fig. 3(c)]. Plotting the simulated
skews and critical currents against one another reveals that
this relationship strongly resembles the experiment [bottom
panel in Fig. 3(c)]. The simulated behavior with only one
contributing mode, plotted in red, shows strong correlation
between critical current and skew. These single-channel points
lie predominantly along the bottom part of the scatterplot, as
found experimentally.

The excellent agreement between the measured and sim-
ulated CPRs provides an opportunity to further examine the
electronic structure of the device. In Fig. 3(b), the local
density of states in the single-channel regime reveals a striking
difference in the structure of low- and high-transparency states
[also indicated by black arrows in Fig. 3(c)]. In both cases
the band offset between aluminum and InAs leads to an
enhanced density of states in the nanowire near the aluminum
coating. At high transparency (τ ≈ 0.98), the density of states
becomes much larger in the junction than that at low trans-
parency (τ ≈ 0.32). The change between regimes occurs in
the range of 10 mV difference in VC , indicating the delicate
nature of the quantum states in the junctions formed by InAs
nanowires.

Figure 3(d) shows the evolution with cutter gate voltage
of the highest occupied level energy in the junction, where
zero energy corresponds to the chemical potential of the leads.
This simulation demonstrates that sweeping the cutter gate
voltage can be expected to bring a series of states in and
out of resonance with the leads. In particular, the vertical
jumps indicate that the resonant-level spacings �E are of
the order of a few meV. This �E 
 �SC (where �SC is
the superconducting gap of the leads) gives rise to multiple

resonance peaks in the single-channel regime. As further
proof of resonant tunneling behavior, the level energy minima
near VC = 0.058 V and VC = 0.1 V coincide with the Fermi
energy of the leads (E = 0) and at the same time correspond
precisely to the first two supercurrent peaks in Fig. 3(c). All
other energies in Fig. 3(d) are far from E = 0 and correspond
to suppressed supercurrent in Fig. 3(c).

VI. INTERACTING BEHAVIOR IN THE
SINGLE-MODE PEAKED REGIME

We now focus on the single-channel regime to investigate
in more detail the series of recurring peaks in critical current
[Fig. 4(a)]. When the cutter gate voltage VC is tuned away
from the peaks, the CPR is consistent with noninteracting
short-junction theory. Near two of these peaks, however, the
CPR deviates from the noninteracting behavior and instead
displays a shoulder near phase φ = π [Fig. 4(b)]. The shoul-
der features are a precursor to π -junction behavior result-
ing from the Coulomb blockade effect [41–49] and have
been studied experimentally in a carbon nanotube Josephson
junction [50]. Related phenomena have also been observed
in nanowire-superconductor hybrids [17,51–54], but without
quantitative modeling of the CPR.

To understand the shoulder behavior in the CPR, we con-
sider a scenario where a quantum dot (QD) is formed in the
junction. The QD is characterized by the strength of the local
Coulomb electron-electron interaction U and a single spin-
degenerate level with energy ξ measured relative to the chem-
ical potential of the leads [see Fig. 4(c)]. Coupling strengths to
the right/left leads �R/L and the energy ξ depend on the cutter
gate voltage. Following Ref. [43], we treat interactions within
the mean-field approximation and introduce a local exchange
field J = U (〈n↓〉 − 〈n↑〉)/2, where 〈n↑/↓〉 are single-level oc-
cupation probabilities for spin-up and spin-down electrons.
In the limit when �R = �L = � 
 �, the resulting Andreev
energies can be obtained analytically:

ε± = �

√
cos2 φ/2 + 2E2 + Z2(Z2 + sin2 φ/2) ± 2XS(φ)

Z4 + 2(X 2 + E2) + 1
.

(4)

Here φ is the phase difference φL − φR between the left and
right leads, S(φ) =

√
Z2 cos2 φ/2 + E2 + (sin2 φ)/4, E =

ξ/2�, X = J/2�, and Z2 = X 2 − E2. With the above formula
for the Andreev spectrum, we have the following expression
for the current-phase relation:

I (φ) = − e

h̄

[
tanh

(
ε+

2kBT

)
dε+
dφ

+ tanh

(
ε−

2kBT

)
dε−
dφ

]
. (5)

In this model, the expected junction behavior results from
an interplay between the level energy ξ and the on-site ex-
change coupling J . The characteristic peaks in the supercur-
rent observed in the experiment [see Fig. 4(a)] are related
to the charge-degeneracy points. We now analyze the CPR
using the simple model above and consider the ξ/� = 0
case. Without interactions, such a situation corresponds to a
resonant transmission through the QD, with the CPR given by
the red line in Fig. 4(d). The exchange interactions effectively
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FIG. 4. Using the CPR to elucidate the role of interactions in the single-channel regime. (a) In the single-channel regime, the CPR amplitude
develops recurring peaks, indicated by arrows. (b) At two of these peaks, a shoulder appears in the CPR near phases equal to π modulo 2π .
The colored borders surrounding the plots correspond to colored arrows in (a). The appearance of the shoulders in the CPR is evidence of finite
charging energy in the junction region of the device. (c) Modeling our device with finite charging energy allows calculation of CPRs in this
regime. The two leads, with gap � and chemical potential μs, are coupled to the junction symmetrically with coupling �. The charging energy
is modeled as an exchange energy J in the device, which splits a state at energy ξ in the junction into odd- and even-parity states with respective
energies ε↓ and ε↑. (d) and (e) The model allows calculation of the spectrum of Andreev states and the CPR, shown here without charging
energy (red dashed lines) and with finite charging energy (black solid lines). The appearance of a shoulder is characteristic of finite charging
energy when ξ/� ≈ 0 and can be used in fits to the data [red curves in (b)]. (f) Fitting the model to the data throughout the single-channel
regime reveals the evolution of energy levels in the device. (g) The model can also be fit to the data at different values of side gate voltage,
revealing that more negative side gate voltage corresponds to increased J/�.

split the spin-degenerate level, creating level crossings away
from φ = π [black curves in Fig. 4(d)]. Using this spectrum,
one finds the appearance of a shoulder near φ = π in the CPR.
Larger interaction strength leads to level crossings farther
away from φ = π and thus wider shoulders in CPR. By fitting
the experimental data to Eq. (5), we find good agreement with
the measured CPR data, with best-fit values for the interaction
strength given by J/� = 0.39 and 0.42 when VC = −1.54
and −1.79 V, respectively [the red curve in Fig. 4(b) is the
best fit].

Away from the single-particle resonance (i.e., ξ �= 0), the
dispersion of the Andreev states with φ gets suppressed due
to the reduction in transmission probability through the QD.
A nonzero exchange energy splits the Andreev level spin
degeneracy as before, but as long as ξ 
 J , the levels will
not cross at zero energy. Thus, one expects the reversal of

the supercurrent to appear in the CPR only when the junction
is tuned near resonance. Indeed, we observe shoulders in the
CPR only near peaks in the critical current, consistent with the
theoretical predictions.

Fitting the measured CPR to Eq. (5) throughout the single-
channel regime allows one to extract the cutter gate depen-
dence of the normalized site energy ξ/� [Fig. 4(f)]. As the
cutter gate increases from −2 to −1.16 V, three levels are
tuned in and out of resonance with the leads. In addition to
shifting the spectrum, the cutter gate is expected to modify
the shape of the confining potential in the junction and the
coupling �. We speculate that the coupling � may increase
with VC , contributing to the decrease in slopes in Fig. 4(f)
as VC becomes more positive. The experimentally extracted
evolution of levels agrees qualitatively with numerical simu-
lations [see Fig. 3(d)].
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In the measurements discussed so far, only the cutter
gate voltage was varied, with all other gates grounded. With
negative voltage VS applied to the two side gates, we ob-
served additional CPRs with shoulderlike features. Fitting
these CPRs to Eq. (5) yielded values for the normalized
exchange energy J/�. As the side gate voltages become more
negative, we find an increase in the mean value of J/� at each
gate voltage (Fig. 4(g) and [28]). Fringe electric fields at the
two ends of the junction may lead to decreased coupling �

with more negative VS , consistent with this finding. We ob-
served no shoulderlike features in any CPR with positive side
gate voltage.

VII. DISCUSSION

Our fits to the current-phase relationship in Fig. 2 indicate
the amplitude of Andreev bound states of � = 128 μeV,
which is smaller than the proximity-induced gap for similar
devices [12]. Unlike conventional metallic Josephson junc-
tions, where a normal region is sandwiched between two
superconducting leads, our junction is formed by two semi-
conducting wire segments with a proximity-induced gap and
contains an emergent resonant level. Therefore, the scattering
processes that lead to the Andreev bound states involve both
normal scattering from the resonant level in the junction to
the semiconducting wire segments and Andreev reflections at
the interface with the superconductor. The Andreev spectrum
here is closely related to that of a resonant level coupled to
two superconductors, and the amplitude of the Andreev states
in this scenario depends on the coupling of the dot to the
wires [55].

In the absence of a Zeeman field, spin-orbit coupling
gives a small correction to the Andreev spectrum [40,56].
Spin-orbit-induced corrections to two energy levels related
by time-reversal symmetry have opposite signs. Since the
total Josephson current is a summation over all time-reversed
pairs of Andreev bound states, spin-orbit-induced correc-
tions to the supercurrent are small. The main effect of
spin-orbit coupling here is actually a modification to the
Fermi momentum mismatch that affects normal reflection
[40], thus largely indistinguishable from a small change in
the Josephson junction transmission coefficient in the short-
junction model.

In comparison to Ref. [17], the present work focuses on
a narrower range of negative gate voltage corresponding to
the few-mode regime. In this regime, we observed quali-
tatively similar resonant peaks followed by CPR amplitude
and shape fluctuations as the number of supercurrent-carrying
modes increased from one to several. Such features are not
universal but depend on the geometry-induced electrostatic
environment, as evidenced by our numerical modeling. The
nanowire in Ref. [17] had a six-facet Al shell and a global
Au bottom gate, whereas the nanowire in this work has a
four-facet Al shell and a wraparound finger gate. As a result,
the gate dependence of the mode structure is expected to
differ quantitatively, as observed. Common to both works,
as more modes are added to the junction, the CPR becomes
consistently forward skewed (S ∼ 0.2 in Ref. [17] and S ∼
0.3 in the present work).

The analysis of the effect of Coulomb interaction, evident
from the appearance of a “shoulder” at phase = π , is consis-
tent with the observation of “backward skewness” in Ref. [17].
When side gates are tuned to −1.5 V, the CPR evolves into a
“backward-skewed” shape, where the maximum occurs at a
phase < π

2 (Fig. S3 in [28]). The dot behavior in the present
device is emergent and not gate defined. Due to the location
of the side gates and screening from the epitaxial Al shell,
we are unable to independently control tunnel barriers and the
position of energy levels on the dot. To achieve full supercur-
rent reversal (as demonstrated in Ref. [53]), one needs to tune
the system into a strong Coulomb blockade regime, which is
difficult to do in our system.

VIII. CONCLUSION

Our measurements and analysis distinguish between a
multichannel regime and a single-channel regime with widely
tunable anharmonicity and interactions. Our CPR-based tech-
nique for comparing experiment and numerical simulations
allows detailed study of the interplay between mode struc-
ture and electrostatics and may be extended to the de-
sign and analysis of future superconductor-semiconductor
heterostructures [57].

The propensity for quantum dot formation in a nanowire-
based junction, even in the absence of tunnel barrier gates,
may be related to the electrostatic potential induced by the
Al shell and thus must be carefully considered for Majorana
measurements on superconductor-nanowire hybrids.

The presence of interactions at low electron density also
has implications for experiments examining mode behavior
in superconductor-nanowire hybrids, where interactions are
sometimes neglected. For example, a recent work examined
multiple Andreev reflections as a probe of transparency in
few-mode junctions but ignored interaction effects which are
known to influence IV characteristics [18,58]. Spectroscopy
experiments also studied anharmonicity and Zeeman-induced
spin splitting of Andreev levels in the few-mode regime but
may also be affected by splitting effects from interactions
as examined in our work [16,19]. Overall, our ability to
accurately model device behavior, as well as to understand and
control both interactions and anharmonicity, will elucidate the
interpretation of current experiments and provide a method for
device design.
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