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Screening of pair fluctuations in superconductors with coupled shallow
and deep bands: A route to higher-temperature superconductivity
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A combination of strong Cooper pairing and weak superconducting fluctuations is crucial to achieve and
stabilize high-Tc superconductivity. We demonstrate that a coexistence of a shallow carrier band with strong
pairing and a deep band with weak pairing, together with the Josephson-like pair transfer between the bands to
couple the two condensates, realizes an optimal multicomponent superconductivity regime: it preserves strong
pairing to generate large gaps and a very high critical temperature but screens the detrimental superconducting
fluctuations, thereby suppressing the pseudogap state. Surprisingly, we find that the screening is very efficient
even when the interband coupling is very small. Thus, a multiband superconductor with a coherent mixture
of condensates in the BCS regime (deep band) and in the BCS-BEC crossover regime (shallow band) offers a
promising route to higher critical temperatures.

DOI: 10.1103/PhysRevB.100.064510

I. INTRODUCTION

Multiband and multigap superconductors have demon-
strated a potential to exhibit novel coherent quantum phe-
nomena that can enhance the pairing energy and the critical
temperature Tc [1]. The well-known examples are magnesium
diboride [2–4] and iron-based superconductors [5,6], where
multiple Fermi surfaces can be effectively controlled by dop-
ing or by applying pressure [7,8]. Multiband superconductiv-
ity can also be achieved in artificial inhomogeneous structures
made of a single-band superconducting material—nanofilms,
nanostripes, or samples with spatially controlled impurity
distributions [9–12].

The phenomenon entangled with the multiband supercon-
ductivity, important in this work, is the BCS-BEC crossover
[13–16]. Proximity to this crossover in multiband materials
with deep and shallow bands can give rise to a notable increase
of superconducting gaps [17–20], which on the mean-field
level leads to higher Tc. The physical reason is the deple-
tion of the Fermi motion in a shallow band, which yields
short-sized pairs. In such materials, the superconducting state
is a coherent mixture of a BCS condensate in deep bands
and the BCS-BEC crossover or even nearly BEC conden-
sate in shallow bands. This takes place in, e.g., MgB2 [19],
many iron-based superconductors [8,21–24], and in nanoscale
samples [17,18]. Besides the widely explored case of the
BCS-BEC crossover in the FeSe family of superconductors,
interestingly enough in the Co-doped LiFe1−xCoxAs, with a
critical temperature in the range 15–18 K, the BEC regime
has been detected for increasing Co doping, with a large

superconducting gap opening even when the chemical poten-
tial is below one of the conduction bands [25].

However, the largest enemy of the high-Tc superconduc-
tivity in such materials is superconducting fluctuations. They
are significant for the same reason, which leads to a higher
Tc—the depletion of the carrier motion in a shallow band
that is associated with a low superconducting stiffness. The
fluctuations give rise to the pseudogap state in the interval
Tc < T < Tc0, where Tc0 extracted from the mean-field cal-
culations marks the appearance of incoherent and short-lived
Cooper pairs. The latter develop a coherent state below Tc—
the true critical temperature of the superconducting conden-
sate [26,27]. For shallow bands, Tc � Tc0 and this eliminates
all gains of the BCS-BEC crossover regime.

In this paper, we consider the mechanism to suppress
these fluctuations, which involves the interference of multi-
ple pairing channels with significantly different stiffness. In
particular, we investigate how the fluctuation-induced shift in
the critical temperature of a superconductor with one shallow
and one deep band is affected by the Josephson-like pair
transfer between the bands. Our results demonstrate that even
a very small coupling to the stable condensate of a deep
band is enough to screen severe superconducting fluctua-
tions and “kill” the pseudogap regime, thereby stabilizing
the BCS-BEC-crossover condensate of the shallow band at
high temperatures. While a similar effect has been included
previously to model the momentum-dependent interactions in
underdoped cuprates [28] and to study the vortex states [29],
only in the present paper is fluctuation screening proposed as
a key mechanism for stabilizing a higher Tc.
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II. GINZBURG-LANDAU FUNCTIONAL

We adopt the standard microscopic model of a two-band
superconductor introduced in [30,31], with deep (ν = 1) and
shallow (ν = 2) bands. The conventional s-wave pairing is
assumed for both bands, with the symmetric real coupling
matrix ǧ and its elements gνν ′ . The intraband coupling gνν is
chosen so that the shallow-band mean-field critical tempera-
ture is significantly larger than the deep-band one for the zero
Josephson-like coupling g12 = 0. The parabolic dispersion is
adopted for both bands εν,k = εν,0 + h̄2k2/2mν , with εν,0 the
lowest energy of the band and mν the band effective mass. For
the deep band μ � ε1,0 (μ is the chemical potential), whereas
for the shallow one μ ≈ ε2,0; below we set μ = ε2,0 for
simplicity. For illustration we choose two-dimensional (2D)
bands (many multiband materials exhibit quasi-2D Fermi
surfaces). The system is assumed in the clean limit.

The fluctuations are calculated using the two-band free-
energy functional that in the Ginzburg-Landau (GL) domain
is written as [32–39]

F =
∫

d2r

[
2∑

ν=1

fν + ( ��, Ľ ��)

]
,

fν = aν |�ν |2 + bν

2
|�ν |4 + Kν |∇�ν |2,

Ľ = ǧ−1 −
(
A1 0
0 A2

)
, (1)

where �� = (�1,�2)T , (., .) is the scalar product in the band
space, and the coefficients read [29]

Aν = Nν ln

(
2eγ h̄ωc

πTc0

)
, aν = αν (T − Tc0), αν = Nν

Tc0
,

bν = 7ζ (3)

8π2

Nν

T 2
c0

, Kν = MK,ν

Nν h̄2v2
ν

T 2
c0

, (2)

where Nν is the band density of states, Tc0 is the mean-
field critical temperature of the two-band system, h̄ωc de-
notes the energy cutoff (the same for both bands), γ is the
Euler constant, ζ (x) is the Riemann zeta function, MK,1 =
7ζ (3)
32π2 , MK,2 = 3ζ (2)

8π2 , and the characteristic band velocities are
v1 = √

2(μ − ε1,0)/m1 and v2 = √
2Tc0/m2.

Tc0 is obtained from the linearized gap equation Ľ �� = 0
[38,39], solved by �� = ψ �η, where ψ is the order parameter
and �η is an eigenvector of Ľ with the zero eigenvalue (see
also Appendix A). Then Tc0 is the largest of the two solutions
of det Ľ = 0. The eigenvector �η can be represented as �η =
(S−1/2, S1/2)T with [38]

S = 1

2λ12

⎡
⎣λ22 − λ11

χ
+

√(
λ22 − λ11

χ

)2

+ 4
λ2

12

χ

⎤
⎦, (3)

where χ = N2/N1 and λνν ′ = gνν ′ (N1 + N2). For the critical
temperature one obtains

Tc0 = 2eγ

π
h̄ωcexp

[
− (1 + χ )(λ22 − λ12S)

λ11λ22 − λ2
12

]
. (4)

Next we rewrite Eq. (1) using the substitution �� = ψ �η +
φ�ξ , where �ξ is orthogonal to �η. One finds

F =
∫

d2r( fψ + fφ + fψφ ), (5)

where

fψ = aψ |ψ |2 + bψ

2
|ψ |4 + Kψ |∇ψ |2, (6)

while fφ is obtained from Eq. (6) by changing φ → ψ (also in
aψ, bψ , and Kψ ), and fψφ comprises coupling terms between
the modes ψ and φ. One notes that only fψ describes the
critical behavior of the system while fφ adds small noncritical
corrections. This difference follows from the fact that aψ = 0
at T = Tc0, whereas aφ = (�ξ, Ľ�ξ ) 
= 0 in the same limit (see
also Appendix A). Consequently, in the GL domain both the
mean-field solution [38] and the fluctuations are defined by
the single-component GL functional fψ of Eq. (6). The related
coefficients read

αψ = α1

S
+ α2S, bψ = b1

S2
+ b2S2, Kψ = K1

S
+ K2S,

(7)

and aψ = αψ (T − Tc0).

III. FLUCTUATION-DRIVEN SHIFT OF Tc0

In weakly coupled superconductors, Tc0 is the supercon-
ducting transition temperature at which Cooper pairs are
created and form the condensate state. However, in the vicinity
of the BCS-BEC crossover the fluctuations destroy the con-
densate near Tc0 so that the superconducting transition takes
place at Tc < Tc0. In the interval Tc < T < Tc0 the system is
in the pseudogap regime of incoherent and fluctuating Cooper
pairs [15,16,26,27].

The actual transition temperature Tc is obtained by calcu-
lating the fluctuation corrections to the mean-field result Tc0.
Since the fluctuations are determined by the single-component
GL functional, the calculation can be done using standard
approaches, e.g., the diagrammatic method [40], the renormal-
ization group (RG) [41], or the perturbative calculation of the
superfluid density [40]. Here, for the sake of simplicity, we
obtain Tc by a method based on the mean-field treatment of
the fluctuation-mode interactions.

We split the order parameter into “slow” (fluctuation aver-
aged part) ϕ(r) and “fast” (fluctuation) contribution η(r) as
ψ (r) = ϕ(r) + η(r). Then, the fluctuation part of Eq. (6) is
approximated by the Gaussian “Hamiltonian” that is generally
written in the form (for details, see Appendix B)

H =
∑

q

[
Aq

(
x2

q + y2
q

)+Bq(xqx−q − yqy−q)
]
, (8)

where ηq = xq + iyq, with ηq the Fourier transform of η(r),
and the coefficients for the diagonal and off-diagonal terms
Aq and Bq depend on a chosen model for the fluctuations.

The interaction of the fluctuation modes is taken into ac-
count in a way similar to the Popov approximation for the fluc-
tuation corrections to the Gross-Pitaevskii equation [42,43]. In
this way, in addition to the linear terms, higher powers of η are
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retained in the GL equation and then linearized within a mean-
field approximation. The corresponding fluctuation-averaged
GL equation is given by (the subscript ψ of the coefficients
a, b, and K is suppressed below)

(a + 2b〈|η|2〉)ϕ + bϕ|ϕ|2 − K∇2ϕ = 0, (9)

where 〈· · · 〉 stands for the fluctuation averaging. For “Hamil-
tonian” (8) one obtains 〈η〉 = 〈η|η|2〉 = 〈∇2η〉 = 0. The
anomalous average 〈η2〉 is zero only when Bq = 0. However,
in practical cases |Aq| � |Bq| [40], which means that |〈η2〉| �
〈|η|2〉, and 〈η2〉 can be ignored (this is equivalent to the
random phase approximation). In our calculation, Bq = 0 [see
Eq. (10) below].

At T � Tc we have ϕ = 0, and hence η obeys the standard
GL equation resulting from (6). This equation is linearized
by invoking the mean-field approximation η|η|2 ≈ 2η〈|η|2〉,
where the factor 2 ensures the critical enhancement of fluctu-
ations at T = Tc. This yields

Aq = a + 2b〈|η|2〉 + Kq2, 〈|η|2〉 = 1

L2

∑
q

T

Aq
, (10)

while Bq = 0.
The shifted transition temperature is obtained from the

condition that the linear term in Eq. (9) vanishes, yielding

Tc = Tc0 − 2b〈|η|2〉c

α
, (11)

where 〈|η|2〉c is calculated at T = Tc and given by a formally
divergent integral

〈|η|2〉c =
∫

�0<q<�∞

d2q
(2π )2

Tc

Kq2
= Tc

2πK ln

(
�∞
�0

)
, (12)

regularized by the infrared �0 and ultraviolet �∞ cutoffs.
The latter is determined by the applicability of the GL theory,
which limits the spatial fluctuation length by the BCS coher-
ence length ξ (0) so that �∞ = 1/ξ (0) [40]. The upper limit
of the fluctuation field length is naturally related to the GL
coherence length ξ (TGi), calculated at the Ginzburg-Levanyuk
temperature TGi = Tc0(1 − Gi). Recall that Gi defines the
interval in the vicinity of Tc0, where the mean-field theory
is compromised by fluctuations and for the case of interest
Gi = b/(4παK). The renormalization-group (RG) analysis
yields �0 = 2/ξ (TGi); see Appendix C for details. Using the
standard definition of the GL coherence length ξ = √−K/a,
one obtains

δTc

Tc
≡ Tc0 − Tc

Tc
= 2 Gi ln

(
1

4 Gi

)
, (13)

which recovers the known two-dimensional RG result for the
critical temperature shift at Gi → 0 [40]. The corresponding
RG analysis is outlined in Appendix C, where we demonstrate
that the RG shift of the mean-field critical temperature is
the same as that obtained in the main paper in the range of
validity of our approximations, supporting the robustness of
our results, even when a more refined theoretical approach is
applied.

We note in passing that when the system enters the
Berezinskii-Kosterlitz-Thouless (BKT) regime with large

fluctuations, the temperature shift can be estimated using the
Nelson-Kosterlitz criterion [44], which yields (δTc/Tc)BKT ∝
Gi (see Fig. 15.1 of [40] and Appendix D). However, as we
demonstrate, here the fluctuations are suppressed by the cou-
pling to the deep band, and therefore the critical temperature
shift is determined by Eq. (13).

IV. RESULTS

To investigate the sensitivity of the pair fluctuations to the
interband coupling, we consider the limit v2/v1 → 0 (as v2 �
v1) so that Gi = b/(4παK) [b, α, and K are given by Eq. (7),
and the subscript ψ is suppressed] is reduced to

Gi = Gideep
1 + S4

1 + S2
, (14)

with S given by Eq. (3) and Gideep the Ginzburg number of the
deep band. (A similar calculation of the effective Gi number
has been done in Ref. [29] to study the effect of fluctuations
in the intertype domain of a multiband superconductor with
magnetic field.) The latter depends on μ − ε1,0 and is a
tuneable parameter assuming small enough values. Tc0 and Tc

as functions of λ12 are found from Eqs. (3), (4), (13), and (14),
where we use λ11 = 0.25 and λ22 = 0.30, and N1 = N2. Our
qualitative conclusions are not sensitive to a particular choice
of λ11, λ22, and χ = N2/N1. The only restriction is that the
mean-field critical temperature of the uncoupled shallow band
Tc0,2 is significantly larger than that of the deep band Tc0,1.

Obtained Tc0 and Tc are shown in units of Tc0,1 in Fig. 1
(Tc0,2 is also given as a guide for the eye). Three panels are for
Gideep = 10−5 (a), 10−4 (b), and 10−3 (c). The validity range
of our results is given by Gi � 1/(4e), where 1/(4e) ≈ 0.092
is the maximum of the right-hand side of Eq. (13). At larger
Gi, Eq. (13) cannot be applied, which reflects a huge impact
of the fluctuations.

Strikingly, the results in Fig. 1 reveal that the fluctuations
are screened almost completely even for extremely small
values of λ12, especially when the fluctuations of the BCS
condensate in the deep band are weak enough. For example,
for Gideep = 10−5 [Fig. 1(a)] the pseudogap interval becomes
negligible at λ12 � 0.002 ≈ 0.01λ22. Here the system is in the
BCS-BEC crossover regime, governed by the shallow band,
but Tc is close to Tc0,2.

Notice that for real materials, λ12 is usually in the range
0.005 � λ12 � 0.4 (see Ref. [45] and references therein).
Also, the chosen values of Gideep are in line with conserva-
tive estimations for materials with 2D bands [46]. Finally,
we recall that although our calculations are performed for
μ = ε2,0 (for simplicity), increasing the Lifshitz parameter
(μ − ε2,0)/ε2,0 does not change our conclusions as long as
v1 � v2.

Suppression of fluctuations can be qualitatively explained
by noting that the bands contribute differently to the coeffi-
cients of the effective single-component GL functional (6),
which determines both Tc0 and fluctuations. Its coefficients are
given by Eq. (7) as sums of the band contributions with the
weight factors that are powers of S for the shallow band and
of S−1 for the deep one. In the presence of the strong shallow
band, S � 1, so that coefficients a and b are determined
mainly by that band. However, the stiffness K is controlled
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FIG. 1. The mean-field and fluctuation-shifted critical tempera-
tures Tc0 and Tc vs the interband coupling λ12. Panels (a)–(c) corre-
spond to Gideep = 10−5, 10−4, and 10−3, respectively. The mean-field
transition temperature of the uncoupled shallow band Tc0,2 is given as
a reference value.

by the deep band, because K2 is proportional to the square of
the nearly zero characteristic carrier velocity in the shallow
band. This implies that the “light” condensate excitations in
the shallow band are necessarily accompanied (“dressed” or

“screened”) and suppressed by the “heavy” excitations in the
deep band. The only exception is the case of a vanishingly
small interband coupling λ12 → 0 for which S−1 → 0 so that
the influence of the deep band condensate is “switched off.”

V. DISCUSSIONS AND CONCLUSIONS

As previously mentioned, we do not claim that the fluctua-
tion screening mechanism, based on the interference of multi-
ple pairing channels with different stiffness, is the only possi-
ble scenario to obtain a higher critical temperature. Clearly,
other effects can give rise to a higher critical temperature.
However, whatever those mechanisms might be, the respective
transition temperature Tc is calculated within the mean-field
approach.

For example, it has been recently demonstrated [47] that
even within the standard BCS theory, the interplay between
the interparticle distance and the finite range of the pairing
potential gives rise to a domelike shape of the density depen-
dence of Tc with a clearly defined maximum. This can be used
to optimize the system for the highest Tc. This prediction can
be further improved by invoking the Eliashberg approach to
take into account the dynamics of the pairing and the Coulomb
repulsion.

However, neither of those mean-field mechanisms of
reaching a higher Tc takes into account the crucial effect
of superconducting fluctuations, which grows in importance
with the increasing ratio Tc/EF (EF is the Fermi energy).
Consequently, one must still overcome the problem of large
fluctuations that always accompany this high mean-field Tc.
Hence, once the mean-field problems toward high Tc are
overcome, we remain with the problem of avoiding severe
fluctuations you might find in low-dimensional systems, in
the moderate and strong-coupling regime of pairing, and
in low-density systems. Our work points toward a bright
mechanism to solve this ultimate obstacle to reach a very
high-temperature superconductivity.

This work focuses on the regime of the weak-to-moderate
pairing coupling. This regime is, however, relevant even
for the room-temperature superconductivity. As an exam-
ple, we point to metallo-organic materials (e.g., K-doped
paraterphenyl) or the newly discovered class of superhy-
drites that have dimensionless couplings of the order of
λ = 0.3–0.4 but very large phononic frequencies, exceeding
100 meV (1160 K). These materials have a multiband elec-
tronic structure and reveal Lifshitz transitions [20,48,49] and
thus are relevant for the analysis of this work. Hence, the
coupling of the equation for the critical temperature (given
by the Thouless criterion) with the density equation for the
chemical potential can be disregarded at this level, being
overall the system of our interest at the BCS side of the
BCS-BEC crossover.

In the case of two-band or two-component ultracold atomic
fermions, in order to investigate the BCS-BEC crossover in
the two-band configuration from the weak-interaction (BCS
side) to the strong-interaction (BEC side) regimes, the cou-
pling of the equation for the critical temperature with the
density equation for the chemical potential is indeed crucial,
differently from the case considered in the paper.
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In conclusion, this paper reveals a very effective mech-
anism to suppress the pairing fluctuations in a two-band
superconductor with one deep and one shallow band. The
shallow band is in the regime of the BCS-BEC crossover,
where the mean-field critical temperature is expected to be
high. Although superconducting fluctuations in the shallow
band alone are very large and would normally destroy the
superconductivity, they are screened by the pair transfer to
the deep band. Remarkably, the suppression is very effective,
almost complete, even when the interband coupling is so small
that the superconducting temperature is fully determined by
the shallow band. Our results provide a solid explanation of
the recent striking observation that the pseudogap was not de-
tected in the multiband BCS-BEC-crossover superconductor
FeSe, which was called by the authors “a unique feature that is
absent in a single band system”. Notice that superconductivity
is the most robust phase with respect to other instabilities that
can arise when shallow bands and high density of states are
present in the system.

This opens new perspectives in searching for novel multi-
band superconductors with higher critical temperatures as
the fluctuation screening arising from the interference of
multiple pairing channels is a fundamental mechanism to
protect the superconductivity. One notes that many other sce-
narios have been proposed to achieve a high Tc—an interplay
between the finite-range pairing potential and the interparticle
distance is one of the latest [47]. However, all those are based
on the mean-field analysis and neglect enhanced fluctuations.
The present mechanism is a unique one to avoid severe su-
perconducting fluctuations being an ultimate obstacle toward
very high superconducting temperatures.

Finally, we point to the universality of this screening
mechanism that can also suppress particle-hole fluctuations
in multiband charge or spin ordered systems, expanding the
applicability of our results. For example, it can be relevant
for multiband superfluidity of ultracold fermions in optical
lattices [50,51], for multiorbital fermions with pairing of
different channels [52], and also for electron-hole superfluids
in double-bilayer graphene devices [53] that can have multi-
component effects [54].
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APPENDIX A: DETAILS OF GINZBURG-LANDAU
FUNCTIONAL FOR TWO BANDS

We consider a standard microscopic model of a two-band
superconductor as described in Refs. [30,31]. The conven-
tional s-wave pairing in both bands is controlled by the
intraband interaction strength gνν (ν = 1, 2) and the interband
coupling g12 = g21 of the Josephson type. We assume one
band is deep (ν = 1) and the other is shallow ν = 2, and both
bands are two-dimensional with the parabolic dispersion. We
consider a system in the clean limit, i.e., without impurity
potential. The mean-field Hamiltonian of the model reads

H =
∑
ν=1,2

∫
d2r [ψ̂†

νσ (r) Tν (r) ψ̂νσ (r)

+ [ψ̂†
ν↑(r)ψ̂†

ν↓(r) �ν (r) + H.c.]] + ( ��, ǧ−1 ��), (A1)

where ψ̂†
νσ (r) and ψ̂νσ (r) are the field operators for the

charge carriers in band ν (ν = 1, 2), and Tν (x) is the single-
particle energy minus the chemical potential. We use the
vector notation �� = (�1,�2)T with band gaps �ν=1,2 and
the scalar product defined as ( �A, �B) = ∑

ν A∗
νBν . Finally, ǧ−1

is the inverse of the coupling matrix ǧ with elements gνν ′ .
The Hamiltonian H is to be solved with the self-

consistency condition

�� = ǧ �R, (A2)

where �R = (R1, R2)T and Rν = 〈ψ̂ν↑(r)ψ̂ν↓(r)〉, with 〈· · · 〉
denoting the statistical average. Near the mean-field critical
temperature Tc0 the anomalous Green function Rν can be
approximated as (see, e.g., [38,39])

Rν[�ν] � Aν�ν + �ν[�ν], (A3)

with

�ν[�ν] = −aν�ν − bν�ν |�ν |2 + Kν∇2�ν, (A4)

where the coefficients Aν, aν, bν , and Kν are given by Eq. (2)
in the text. Notice that the zero-field case is considered.
Then, the self-consistency condition (A2) is represented as the
matrix gap equation

Ľ �� = ��, (A5)

where �� = (�1,�2)T and the matrix Ľ is defined by Eq. (1)
in the paper. The solution to Eq. (A5) is the stationary point
of the free-energy functional given by Eq. (1) in the paper.

The mean-field transition temperature Tc0 is obtained from
the linearized matrix gap equation Ľ �� = 0 [38,39], which can
be explicitly written as(

g22 − GA1 −g12

−g12 g11 − GA2

)(
�1

�2

)
= 0. (A6)

Notice that aν → 0 for T → Tc0 [see Eq. (2) of the text] and
so the term aν�ν does not contribute to Eq. (A6). The solution
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to this equation is represented as

�� = ψ (r)�η, (A7)

where �η = (η1, η2)T is an eigenvector of Ľ corresponding to
its zero eigenvalue, and ψ (r) is the Landau order parameter
that controls the spatial distribution of both band condensates
[38,39]. Notice that the linearized gap equation does not give
any information about such a distribution, and one should go
beyond the linearized equation to find ψ [38]. The appear-
ance of the single-component order parameter in the equa-
tion for the mean-field critical temperature Tc0 is connected
with the mean-field description of a two-band superconductor
by the single-component Ginzburg-Landau (GL) formalism
[38]. This is in agreement with the Landau theory of phase
transitions according to which the number of order-parameter
components is determined by the relevant irreducible group
representation rather than by the number of the contributing
bands; see the discussions in [39].

Introducing the quantity

S ≡ (g22 − GA1)/g12, (A8)

the equation det Ľ = 0, which determines Tc0 (one chooses the
largest Tc0 of the two solutions), is written as

1/S = (g11 − GA2)/g12. (A9)

Then, using Eqs. (A8) and (A9), �η can be chosen in the form

�η =
(

S−1/2

S1/2

)
. (A10)

We remark that the normalization of the eigenvector (A10) is
arbitrary—it is absorbed in the order parameter ψ in Eq. (A7).
Using Eq. (2) of the text together with Eqs. (A8) and (A9)
here, one finds the explicit expressions for S and Tc0 given by
Eqs. (3) and (4) in the paper.

APPENDIX B: DETAILS OF THE GAUSSIAN
APPROXIMATION FOR TWO BANDS

To investigate the superconductive fluctuations in the GL
domain, we express superconducting gaps �ν using �η and �ξ ,
where �ξ is any vector orthogonal to �η (the normalization is not
important), as

�� = ψ �η + φ�ξ, (B1)

where φ = φ(r) is a new spatial mode in addition to ψ (r)
introduced in the previous section. Using Eq. (B1), the free-
energy functional given by Eq. (1) in the main paper is
expressed in terms of ψ and φ, see Eqs. (5) and (6) in the
paper. The relevant coefficients in Eq. (6) of the main text are
given by

aψ =
∑

ν

aν |ην |2, aφ = (�ξ, Ľ�ξ ) +
∑

ν

aν |ξν |2,

Kψ =
∑

ν

Kν |ην |2, Kφ =
∑

ν

Kν |ξν |2,

bψ =
∑

ν

bν |ην |4, bφ =
∑

ν

bν |ξν |4, (B2)

where ην and ξν denote components of �η and �ξ . The key
difference between the modes ψ and φ is that the expression
for aφ contains (�ξ, Ľ�ξ ), which is nonzero because eigenstates
of Ľ are not degenerate. [The eigenvectors corresponding to
the zero eigenvalue form a one-dimensional subspace, except
for the unrealistic case of two equivalent bands with zero inter-
band coupling.] Taking into account that aν → 0 at T → Tc0,
one sees that aψ → 0 but aφ 
→ 0 in this limit. This means
that the coherence length associated with the mode φ is not
divergent at Tc0 (and neither is the corresponding contribution
to the heat capacity), while the mode ψ is critical and the
corresponding length diverges. Thus, investigating the con-
tribution of the superconducting fluctuations near Tc0, one
needs to consider only the critical mode ψ . The mode φ can
be safely neglected and one arrives at the single-component
GL description of the superconducting transition with the
single-component order parameter ψ ; see the discussion in
the previous section after Eq. (A7). Using Eq. (A10), one can
easily get Eq. (7) of the main text.

To get the Gaussian fluctuation functional, one represents
the order parameter ψ as the sum of its “slow” part ϕ(r)
(averaged over fluctuations) and “fast” contribution η(r) (fluc-
tuations). The standard Gaussian terms in the functional cor-
respond to |η|2, η2, η∗2, and |∇η|2. Then, introducing the real
xq and imaginary yq parts of the Fourier transform of the fluc-
tuation field ηq (ηq = xq + iyq), the fluctuation “Hamiltonian”
can generally be written as Eq. (8) in the main paper. The
terms involving x2

q and y2
q come from |η|2 and |∇η|2 whereas

xqx−q and yqy−q result from both η2 and η∗2. Performing
the standard calculations with the partition function based
on Eq. (8), one finds the fluctuation contribution to the free
energy in the form

Ffluct = −T

2

∑
q

[
ln

πT

Aq + Bq
+ ln

πT

Aq − Bq

]
, (B3)

which agrees with the expression in the textbook by Larkin
and Varlamov [40]. In Eq. (B3), Aq is the momentum-
dependent coefficient for the diagonal term x2

q + y2
q in

the Gaussian functional, whereas Bq is the coefficient for
the off-diagonal contribution xqx−q − yqy−q; see Eq. (8) in the
paper.

To find the explicit expressions for Aq and Bq, one inserts
the relation ψ (r) = ϕ(r) + η(r) into the GL equation for
ψ (r) and then averages the resulting expression over the
fluctuations. As explained in the paper, when taking into ac-
count interactions between the fluctuation fields, the averaging
procedure results in Eq. (10) of the text. Subtracting this
equation from the initial GL equation for ψ , one finds a rather
complicated equation for the fluctuation field η. However, it is
significantly simplified for T � Tc, where Tc is the fluctuation-
shifted critical temperature. In this case, one finds Aq and Bq
as given by Eq. (10) of the text.

APPENDIX C: RENORMALIZATION-GROUP ANALYSIS

Equation (13) of the main text can be obtained more
rigorously by taking into account the fluctuation corrections
using the diagrammatic analysis [40] or, equivalently, by the
renormalization group (RG) approach [41]. For the reader’s
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convenience, we briefly describe how the latter recovers
Eq. (13) of the main text. The analysis of the fluctuation
effects starts with writing the partition function of the D-
dimensional system in the form of the functional integral

Z =
∫

D[ψ] exp

(
− 1

T

∫
dDr f (r)

)
,

f (r) = a|ψ (r)|2 + b

2
|ψ (r)|4 + K|∇ψ (r)|2, (C1)

with a = α(T − Tc0), and α, b, and Tc0 defined in the main
text; see Eq. (7) [the index ψ is suppressed]. The fluctuations
are studied using the following recursive scheme. First, one
splits the functional integral into two parts: the contribution
of the “slow” Fourier components ψq of ψ (r) with q < �

and the contribution of the “fast” Fourier components with
� > q [42]. If the cutoff � is large enough, the contribution of
the fast components is small and can be approximated by the
Gaussian functional, obtained perturbatively from Eq. (C1).
Integrating with respect to the “fast” components changes
the remaining “slow”-variables functional. The latter is ap-
proximated by the GL form (higher-order contributions are
neglected) with the modified coefficients a� and b� (K is
not altered). Then, by introducing the new cutoff �′ < �,
the variables in the new functional can also be divided into
the “slow” and “fast” ones with q < �′ and �′ < q < �,
respectively. Similarly, the integration with respect to these
“fast” variables yields another modified GL-like functional of
the new “slow” variables with the coefficients a�′ and b�′

given by recursive relations. Considering the cutoff � as a
continuous variable, one can write these recursive relations
for a�(T ) and b�(T ) as the following differential equations
[40]:

da�

d�
= −2T μDb��D−1

a� + K�2
,

db�

d�
= 5T μDb2

��D−1

(a� + K�2)2
, (C2)

where μD depends on the dimensionality D as

μD = D

2DπD/2�
(
1 + D

2

) , (C3)

with �(·) the Euler gamma function.
The connection to the superconductivity transition follows

the standard assumption of the RG theory that

a�=0(Tc) = 0 (C4)

defines the renormalized (shifted) critical temperature Tc. The
theory has the ultraviolet cutoff �∞ = 1/ξ (0), with ξ (0) the
Cooper pair size [40], at which a� and b� assume their
“bare” values given by the standard GL theory a�=�∞ = a
and b�=�∞ = b; see Eq. (C1).

To solve Eqs. (C2), it is convenient to introduce the scaled
variables

t =
√
K
χ

�, at = a�

χ
, bt = b�

b
, (C5)

with

χ = K−D/(4−D)(2T μDb)2/(4−D), (C6)

0 1 2 3 4 5 6

-1

0

at
ln(1/t)

FIG. 2. The solution for at (solid line) is plotted together with its
large-t asymptote ln(1/t ) (dashed-dotted line).

for which Eqs. (C2) appear in the dimensionless form

dat

dt
= − bttD−1

at + t2
,

dbt

dt
= 5

2

b2
t tD−1

(at + t2)2
. (C7)

These equations are to be solved with the boundary conditions
at=0 = 0 and bt=t∞ = 1 (with t∞ = √

K/χ�∞).
Solutions to Eqs. (C7) [and, hence, to Eqs. (C2)] differ

qualitatively for different dimensionalities. For the case D =
3, one can assume that in the interval of interest at � t2

and that bt � 1 remains constant, which yields the solution
at � t . Returning to the original variables and inserting the
obtained solution in Eq. (C4), one obtains the known result
Tc0 − Tc ∝ Tc0

√
Gi3, with Gi3 being the Ginzburg number for

D = 3 [40].
However, for the case D = 2 this approximation yields the

logarithmic solution that is singular in the lower limit t → 0.
Assuming that the solution is restricted by the infrared cutoff
t0 in the lower limit, one obtains

at=t∞ = at=t0 − ln(t∞/t0). (C8)

Then applying Eq. (C4) at the lower cutoff expressed in the
original units as �0 = t0

√
T b/π/K, one obtains

Tc0 − Tc = 4πbTc

αK ln

(
�∞
�0

)
, (C9)

which recovers Eqs. (11) and (12) for the shifted critical
temperature in the main text, having the same uncertainty
for �0.

It can be shown, however, that the logarithmic singularity
for t → 0 in Eq. (C8) is an artefact of the used approxima-
tions. It disappears when Eqs. (C7) are solved simultaneously.
Indeed, for the complete system one obtains the infrared
asymptote at ∝ t2 (t → 0), as is seen from the numerical
solution shown in Fig. 2. However, at t � 2 the solution at

can be accurately approximated by its ultraviolet logarithmic
asymptote also shown in Fig. 2. Taking this logarithmic ap-
proximation for the solution and returning back to the original
variables, one recovers Eq. (C9) with the same effective
infrared cutoff,

�0 = 1

K

√
Tcb

π
� 1

K

√
Tc0b

π
= 2

ξ (Gi)
, (C10)

as is used in the main text. Notice that the logarithmic approx-
imation is correct when t∞ � 2, which yields the applicability
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domain of our results as Gi � 1/2. This condition is certainly
fulfilled for the typical values of Gi = 10−3,−4,−5 assumed for
this work.

APPENDIX D: BKT EFFECTS

To estimate the shift of the critical temperature in the
regime of the Berezinskii-Kosterlitz-Thouless (BKT) fluctu-
ations, we take the order parameter ψ (r) in the form

ψ (r) = ψ0 eiθ (r), (D1)

where ψ0 is the uniform solution of the single-component
GL equation given by the functional (6) (the subscript ψ is
suppressed) in the main text. As we consider only the phase
fluctuations governed by the Nambu-Goldstone field θ (r), the
corresponding free-energy functional is reduced to

F = F0 +
∫

d2r
J|∇θ (r)|2

2
, (D2)

where F0 results from the uniform solution ψ0, and J (T ) =
2Kα(T − Tc0)/b is the phase stiffness. The compactness of
the phase θ (r) implies that∮

C
∇θ (r) · dr = 2πq (D3)

for any closed contour C. Here q = 0,±1,±2, . . . is the
integer number associated with the corresponding quantum
vortex (positive q) or antivortex (negative q). As shown by
Kosterlitz and Thouless [56], in the two-dimensional case
(D = 2), the total number of quantized vortices varies as a
function of the temperature: at zero temperature there are no
vortices; however, as the temperature increases, vortices start
to appear as the vortex-antivortex pairs. The pairs are bound
at low temperatures until the Berezinskii-Kosterlitz-Thouless
unbinding transition occurs at T = TBKT. Above TBKT a pro-
liferation of free vortices and antivortices takes place and the
global coherence is destroyed. The BKT temperature TBKT for
two-dimensional superconductors can be estimated using the
expression [56]

TBKT = π

2
J (TBKT). (D4)

From Eq. (D4) we find

Tc − TBKT

TBKT
= 4 Gi, (D5)

where Gi = b/(4παK) is the corresponding Ginzburg num-
ber associated with the initial GL functional given by Eq. (6).
For large fluctuations, the critical temperature shift is con-
trolled by Eq. (D5). However, one should use Eq. (13) of the
main text for the values of the interband coupling at which the
pseudogap is washed out, i.e., in the limit Gi → 0.
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