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Dilute dipolar Ising magnets remain a notoriously hard problem to tackle both analytically and numerically
because of long-ranged interactions between spins as well as rare region effects. We study a new type of
anisotropic dilute dipolar Ising system in three dimensions [A. Sen and R. Moessner, Phys. Rev. Lett. 114,
247207 (2015)] that arises as an effective description of randomly diluted classical spin ice, a prototypical spin
liquid in the disorder-free limit, with a small fraction x of nonmagnetic impurities. The Metropolis algorithm
within a parallel thermal tempering scheme fails to achieve equilibration for this problem already for small
system sizes. Motivated by previous work [J. C. Andresen, H. G. Katzgraber, V. Oganesyan and M. Schechter,
Phys. Rev. X 4, 041016 (2014)] on uniaxial random dipoles, we present an improved cluster Monte Carlo
algorithm that is tailor made for removing the equilibration bottlenecks created by clusters of effectively frozen
spins. By performing large-scale simulations down to x = 1/128 and using finite-size scaling, we show the
existence of a finite-temperature spin glass transition and give strong evidence that the universality of the critical
point is independent of x when it is small. In this x � 1 limit, we also provide a first estimate of both the thermal
exponent, ν = 1.27(8), and the anomalous exponent, η = 0.228(35).
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I. INTRODUCTION

The term “spin glass” was originally coined to describe di-
lute magnetic alloys like AuFe [1] composed of nonmagnetic
metals (like Au) weakly diluted with magnetic impurities (like
Fe) where the impurity spins interact with a Ruderman-Kittel-
Kasuya-Yosida exchange [2]. Since then, glassy behavior of
spins has been realized in a variety of magnetic systems [3]
and the general wisdom is that both frustration and disor-
der are necessary ingredients for glassiness. Most theoretical
studies have focused on Edwards-Anderson-type models [4]
where the spin interactions are short ranged and random in
sign. Extensive numerical simulations have now established
the presence of a finite-temperature spin glass transition for
Ising spins in three dimensions and its associated critical
exponents have been accurately computed [5,6]. Such Ising
systems are, however, experimentally rare, where it is much
more common to have Heisenberg spins [3,7]. With these
isotropic degrees of freedom, the nature of the transition is still
controversial in the corresponding Edwards-Anderson model
[8–11].

Disordered dipolar Ising magnets such as LiHoxY1−xF4

provide another class of candidate systems [12], qualitatively
distinct from their short-ranged counterparts, where the twin
ingredients of frustration (due to the nature of the magneto-
static dipole-dipole interaction) and disorder (in the spatial
arrangement of the magnetic ions like Ho3+ when randomly
substituted by nonmagnetic Y3+ ions) are both present. Ex-
periments have found a spin glass phase for x < xc [13],
where xc ≈ 0.25 at low temperature. An analysis of the ac
susceptibility shows that a spin glass phase may exist even at
extreme dilutions of x = 0.045 [14], suggesting that a finite-

temperature spin glass phase may extend all the way from xc

down to x → 0+.
However, unlike their short-ranged counterparts, the nature

of the spin glass ordering in dilute dipolar Ising systems has
been a long-standing open issue as conventional analytical and
numerical techniques suffer different problems, particularly
in the high-dilution limit. Mean-field theory suggests that
the spin glass order is maintained even in the high-dilution
limit, with the critical temperature being linear in the con-
centration of the spins [15,16]. However, at high dilution,
spatial inhomogeneities are large and could easily modify the
mean-field theory predictions. In numerical simulations, long
equilibration times severely limit the studied system sizes and
concentrations. Even in experiments, equilibration is difficult
to achieve due to ultraslow dynamics above the transition
temperature (which may be around 107 slower than in short-
ranged spin glass materials [17]). Due to these difficulties,
even the existence of the spin glass transition in such magnets
has been a matter of long-standing debate [18–21]. Recent
large-scale numerical simulations have shown a spin glass
phase down to experimentally relevant low concentrations
[22,23]. The universality class of the highly dilute dipolar
Ising magnet in three dimensions, though, is still unknown.

In this work, we study a different, experimentally mo-
tivated, example of an emergent dilute anisotropic dipolar
system that arises on weakly diluting dipolar spin ice materials
on the three-dimensional pyrochlore lattice of corner-sharing
tetrahedra with nonmagnetic impurities, e.g., Dy2−xYxTi2O7/

Ho2−xYxTi2O7, where the magnetic Dy3+/Ho3+ ions are
replaced randomly by nonmagnetic Y3+ ions [24,25]. The
disorder-free problem is known to exhibit a topological
Coulomb phase [26] characterized by several nontrivial
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features like a pinch-point motif in the spin structure factor
[27–29], large residual entropy of the spins at low temperature
[30], and emergent magnetic monopoles [31]. In the weak
dilution limit (x � 1), it was shown in Ref. [32] that the
dense but disordered network of Ising spins can be mapped
to a dilute network of emergent Ising spins (dubbed ghost
spins) that reside on the sites of the missing spins, have the
same local Ising easy axes as the corresponding missing spins
(the cubic symmetry of the pyrochlore lattice does not allow
collinear Ising axes; rather, each spin points along the line
joining the centers of two connected tetrahedra), and are again
coupled by a magnetostatic dipole-dipole interaction but with
a renormalized coupling constant. We note that, statistically,
this model retains the full cubic symmetry of the pyrochlore
lattice.

We perform large-scale numerical simulations of this effec-
tive dilute dipolar magnetic system using an improved version
of a cluster algorithm used in Ref. [23] (the basic idea was
also introduced previously in Refs. [33,34]) to establish the
presence of a finite-temperature spin glass transition. Our
algorithm differs from Ref. [23] both in the definition of a
cluster and in the relative importance associated to different
clusters during a Monte Carlo step. We comment on the
relation of our cluster construction to dynamically frozen spin
clusters. We also discuss the manner in which the efficiency
of the algorithm may be controlled by tuning the cluster
construction parameters since it is not rejection free (unlike
Swendsen-Wang [35] and Wolff [36] algorithms for unfrus-
trated spin models).

Using our cluster algorithm, we have reached a total num-
ber of spins, N , that is roughly twice as large compared to
the previous large-scale simulations of related uniaxial Ising
systems [23] (note that the CPU time increases quadratically
with N for every Monte Carlo sweep of the system owing
to long-ranged interactions between the spins). When x �
1, this problem provides a different lattice realization of
(presumably) the same universal physics of the spin glass
transition as uniaxial Ising spins interacting via a dipolar
coupling in the dilute limit. Using finite-size scaling, we
show that Tx ∝ x and the universality class of the transition
is independent of x when it is small. The study of this model
enables us to provide an estimate of both the thermal exponent
ν and the anomalous exponent η at small x unlike the uniaxial
dipolar model studied earlier in Refs. [22,23] (where only ν

could be reliably estimated).

II. THE MODEL

In dipolar spin ice, the Ising spins on the pyrochlore lattice
have local easy axis directions, êi, that are defined by the
line joining the centers of the pair of tetrahedra which share
them. The simplest appropriate interaction Hamiltonian of
Ising spins with moments �μi, j of size μ, separated by ri j ,
contains short-ranged exchange interactions in addition to the
usual magnetic dipolar term, DDi j , of strength D, with

Di j = 1

μ2

(
a

ri j

)3

(�μi · �μ j − 3(�μi · r̂i j )(�μ j · r̂i j )), (1)

where a is the nearest-neighbor distance on the pyrochlore
lattice [26].

Following Ref. [32], a weakly diluted system of spins can
be mapped to a highly diluted system of emergent ghost spins.
The pairwise interaction between the ghost spins, H̃i j , has the
standard dipolar form H̃i j = D̃Di j , where D̃ is the effective
dipolar coupling constant between the ghost spins which has
an entropic contribution coming from the fluctuations of the
spins in the bulk [32] on top of the simple magnetostatic
coupling constant D:

D̃ = D + 3T√
2π

. (2)

Henceforth, we consider the dipolar coupling constant to
be set to D = 1.41 K (as in Ho2Ti2O7 and Dy2Ti2O7 [37]).
The renormalization of D to D̃ simply renormalizes the transi-
tion temperature to be Tc(x) = Tx/(1 − 3Tx√

2π
), where Tx is the

transition temperature with the coupling set to be D. Here x
denotes the density of the ghost spins (which is assumed to be
small). Thus, the Hamiltonian H that is studied numerically
in this work has the form

H = D
∑
i> j

[(
a

ri j

)3

(êi · ê j − 3(êi · r̂i j )(ê j · r̂i j ))

]
SiS j

=
∑
i> j

Ji jSiS j, (3)

where μi = μSiêi with Si = ±1. The long-ranged nature of
the dipolar interactions is treated using the Ewald summation
technique [38] without a demagnetization factor.

III. DYNAMIC HETEROGENEITY

Monte Carlo simulations with a single-spin-flip Metropolis
algorithm in combination with parallel tempering in tem-
perature [39] is the method of choice to simulate Edwards-
Anderson-type models [5,6]. However, this local algorithm
fails to equilibrate the Ising system considered in Eq. (3)
because of long autocorrelation times except for very small
system sizes when x � 1. Apart from the computational effort
scaling as O(x2L6) due to the long-ranged interactions, the
other more serious bottleneck to equilibration is the presence
of clusters of effectively frozen spins at low temperature
under a single-spin-flip dynamics. Their presence can be seen
by monitoring the acceptance ratio, Ri, of the spin flips at
each site i in a particular disorder realization by performing
a simulation using the Metropolis algorithm (without any
parallel tempering in temperature). A disorder realization is
produced by placing (ghost) spins on a fraction x of sites
that are randomly selected [40] from the 16L3 sites of the
system of linear dimension L (with 16 sites in the conventional
cubic unit cell of the pyrochlore lattice). Figures 1(a) and 1(b)
show the spatial distribution of Ri for a particular disorder
realization at L = 6, x = 1/32, at two different temperatures,
T = 0.072 (≈2Tx ) and T = 0.047 (≈1.3Tx ), respectively. The
data for Ri were obtained by averaging over 2000 different
runs where the different initial configurations at a temperature
T were equilibrated using our cluster algorithm, after which
106 spin-flip attempts (per spin) were made using a Metropolis
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FIG. 1. A particular disorder realization for L = 6 and x = 1/32. Colors at different sites in (a) and (b) represent different acceptance ratios
of spin flips (Ri) using a conventional single-spin-flip Metropolis algorithm. Sites with 0 < R < 10−4 are denoted by violet, 10−4 < R < 10−3

by blue, 10−3 < R < 10−2 by green, 10−2 < R < 0.1 by yellow, 0.1 < R < 0.25 by orange, and 0.25 < R < 1 by red. With the chosen cluster
parameters (as = 1.3125, bs = 0.75, and CL = N/5), three cluster sets C0, C1, and C2 are obtained for this disorder realization. (c) Member
sites of the clusters that belong to the set C2 (in violet). (d) Additional member sites of the clusters in C1 that are already not part of C2 (in
green) and the additional member sites of the clusters in C0 that are already not part of C2, C1(in orange). The figures were generated using the
graphics software QMGA [41].

algorithm. A strong dynamic heterogeneity in the behavior
of Ri is visible at both temperatures. The spins have a wide
range of Ri with several spins remaining practically frozen
[violet and blue sites in Figs. 1(a) and 1(b)], others having
an intermediate Ri [green and yellow sites in Figs. 1(a) and
1(b)], and the rest having a high Ri [orange and red sites in
Figs. 1(a) and 1(b)]. These effectively frozen spin clusters
make the Metropolis algorithm highly inefficient for such
dilute dipolar systems. Parallel tempering in temperature also
fails to equilibrate such systems since the clustering effects
persist even at temperatures like T ≈ 2Tx [Fig. 1(a)] and
above. Such clustering was also observed previously in a
numerical study of the dynamics of uniaxial Ising spins [17]
interacting via dipolar interactions in a dilute system.

IV. CLUSTER ALGORITHM

To ameliorate the slow equilibration due to these spin
clusters, we present a modified version of a cluster algorithm
used in Ref. [23] (see also Refs. [33,34]). The key idea is to
incorporate correlated multispin flips to deal with the dynam-
ically frozen spin clusters. The emergence of these clusters
can be understood as follows: While the average distance
between spins scales as rav ∼ ax−1/3 and therefore the average
of the magnitude of |Ji j | ∼ Dr−3

av ∼ Dx (the average value of
|Ji j | in a disorder realization is denoted by Jav henceforth),
which is also the reason behind the expectation that Tx ∝ x
at small x, the minimum distance between the spins is fixed
by the lattice constant a and is independent of x. Therefore,
in any given disorder realization at small x, there will be
spin pairs (i, j) such that |Ji j | is much greater than Jav .
Figure 2(a) shows the distribution of |Ji j | in one disorder
realization for L = 10 at x = 1/32. While Jav ∼ 10−3 in this
case, there are several spin pairs for which |Ji j | 	 Jav with
the maximum value of |Ji j | ∼ 0.2. These tightly bound spin
pairs will be effectively frozen under a local single-spin-
flip Metropolis update at temperatures T ∼ O(Tx ) wherever
|Ji j | 	 T . Furthermore, the wide distribution in the values
of |Ji j | at small x [Fig. 2(a)] due to the power-law nature of
the interactions explains the wide spread in the values of Ri

as seen in Figs. 1(a) and 1(b) under a local single-spin-flip
dynamics.

An additional correlated flip of these spin pairs (apart from
the usual single-spin flips) satisfying detailed balance may
seem to be the cure for this problem. However, there will also
be frozen clusters in the system which are bigger than size 2
[Fig. 2(b)] and cannot be handled by these pair flips alone.
Consider any subset of these tightly bound spin pairs that
form a connected cluster [Fig. 2(b)] such that it is possible
to get from every site in that cluster to every other site in
it through these strong bonds, where a strong bond is set
by the condition that |Ji j | 	 T ; then all these spins in the
cluster are mutually frozen as well with respect to single-spin
flips at T . Ignoring the rest of the weak bonds in the system
effectively breaks it into these connected clusters of spins.
This suggests an immediate low-energy move where all the
Ising spins {Si} that belong to a cluster are flipped together
to {−Si} irrespective of the values of these spins relative to
each other. In Ref. [23], the clusters were chosen to be fully
connected such that all the n(n − 1)/2 bonds between the
spins of an n-spin cluster are strong bonds. However, consider
a case where two (or more) fully connected clusters share one
or more sites [e.g., two size-2 clusters formed by sites (i, j)
and ( j, k) share a common spin at site j but with |Jik| small
enough to be a weak bond]. Then flipping all the spins of
one such fully connected cluster would not necessarily be a
low-energy move since it will only flip a subset of spins of the
other one(s). To remedy this, one simply needs to flip all the
member spins of these fully connected clusters that share the
common site(s) simultaneously but this is the same as flipping
a single connected cluster in our approach.

Our cluster construction procedure requires specifying
three parameters as, bs, and CL. We then generate different sets
of spin clusters for every disorder realization at the beginning
of the simulation. We select all the bonds (i, j) where |Ji j | �
asJav and prepare a list [(i, j)] of the bonds in which their
strengths are arranged in ascending order of their magnitudes.
We consider the smallest value of |Ji j | from this list as Js

and initially set JT = Js, where JT is a given target energy.
We then search for all the bonds (i, j) from the list [(i, j)]
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FIG. 2. (a) Variation of the number of bonds, N (|Ji j |), with
|Ji j | for a particular disorder realization at L = 10 and x = 1/32.
While Jav ∼ 10−3 here, the maximum value |Ji j | ∼ 0.2. The y axis is
truncated at 300 for clarity. (b) The clusters in the set Cn (constructed
with the largest JT ) for a particular disorder realization at L = 10
and x = 1/32. The cluster construction parameters used were as =
1.3125, bs = 0.75, and CL = N/5. While the majority of the clusters
in Cn have size 2 (indicated in green), there are n-spin clusters
with n > 2 as well (indicated in red). Long bonds due to periodic
boundary conditions have not been shown here.

such that |Ji j | � JT and group them into connected clusters.
The clusters contain only the site indices and a cluster move
is the simultaneous flipping of all its Ising spins Si to −Si.
Therefore, the flipping of spins during the simulation does not
change the definition of the clusters. The collection of clusters
for a given JT forms a cluster set. If the size of the largest
cluster (i.e., the number of its member spins) in the set exceeds
a threshold size CL, we reject this cluster set and go to the next
higher value in the list [(i, j)] using JT � JT + �J , where
�J = bsJs which we then use to generate a new set of clusters
and again check the size of the largest cluster in it. In this way
we sequentially build and reject the sets of clusters until we
find a set in which the size of the largest cluster is � CL. We
call this set “C0.” After the formation of C0, we form the next
set “C1” by using only the bonds that have |Ji j | � JT , where
JT � JT + �J (and JT is again taken from the list [(i, j)]).
We continue to generate more cluster sets up to the last set of
clusters “Cn” in this manner.

The parameter as controls the starting point of cluster
constructions for the set C0. The requirement is simply to
start the construction such that the first “test” set may have
at least one cluster of size > CL. We consider the parameter
bs to ensure that two successive sets are sufficiently different
from each other. CL can be chosen according to the size of
the largest frozen cluster (with respect to single-spin flips)
which clearly increases as the temperature or x is lowered. For
most of the simulations, we consider the following parameter
values: as = 1.3125, bs = 0.75, and CL = N/5, where N =
16xL3 is the total number of ghost spins in the respective
configurations. The thermalization timescale of the algorithm
depends on the parameters as, bs, and CL but we leave their
systematic optimization to a future study (for some discus-
sion, see Appendix A).

Each cluster set contains clusters of different sizes. Each
set has a majority of size-2 clusters. However, even the final
set Cn may consist of multiple clusters of size >2, especially
at large L [see Fig. 2(b)]. A small cluster in set Cl may well
be a part of a larger cluster present in another set Cm where
m < l . A particular cluster may be a member of multiple sets.
Going from a cluster set Cm to a set Cl where m > l entails the
following: (a) formation of new clusters not present in Cm, (b)
growth of clusters contained in the set Cm, and (c) clusters in
Cm merging to form bigger clusters in Cl .

The multiple cluster sets C0, . . . ,Cn, each with a different
JT , are constructed since the interaction Ji j has a power-law
nature and thus each disorder realization has a hierarchy of
energy scales [Fig. 2(a)]. The clusters in the set Cn (that has
the highest JT ) mimic the dynamically frozen spin clusters
that are formed at higher temperatures [Fig. 1(c)], whereas the
clusters in C0 mimic frozen spin clusters at lower temperatures
[Fig. 1(d)]. The member spins of the clusters in set Cn are
typically composed of spins that have the lowest Ri under
a local single-spin-flip Metropolis algorithm [see Fig. 1(c)].
New members of Cn−1, etc. (which do not already belong
to the previous sets Cn, etc.), typically have progressively
higher values of Ri (but still much lower than the spins with
the highest values of Ri in the system), as can be seen from
Fig. 1(d). Our cluster algorithm thus correctly identifies the
majority of the frozen spins present in the system at small x
as well as the heterogeneity in their dynamic behavior (Fig. 1)
by associating them to different sets.

We need to include conventional single-spin-flip moves
in our cluster algorithm as well not only to keep the Monte
Carlo dynamics ergodic (since there are spins which are not
part of any cluster) but also for breaking the size-2 clusters
which is only possible via single-spin flips. Similarly, the
clusters in a set Cm are instrumental in breaking the bigger
clusters in a set Cl where m > l . During our simulation,
at each step, we apply either a single-spin-flip move or a
cluster-flip move. The probability that a single-spin flip is
attempted is taken as 85% and that a cluster-flip move is
attempted is then taken as 15% in most of the simulations.
In previous works [23,33,34], a cluster was randomly (uni-
formly) selected from all possible sets and then a cluster flip
was attempted. In our approach, each cluster set is assigned
a probability of being chosen during the cluster-flip move
which is taken to be nonuniform, with the highest (lowest)
weight given to clusters in Cn (C0). This way we ensure that
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the more strongly coupled spins are attempted to be flipped
more often.

Specifically, we select the set Cn with probability Pn = 1/2;
the probability that we select the “kth” set Ck is Pk = (1 −∑n

i=k+1 Pi )/2. The probability that we select the set C0 is then
P0 = (1 − ∑n

i=1 Pi ). Once a particular cluster set is chosen,
then all the clusters of that set have equal probability to be
chosen for the actual cluster-flip attempt. The relative impor-
tance of the different cluster sets in achieving equilibration is
discussed further in Appendix B.

Both the single-spin flips and cluster flips are accepted
with the Metropolis probability min[1, exp(−�E/T )], where
�E is the energy difference between the new configuration
and the old configuration, to preserve detailed balance. One
Monte Carlo step (MCS) consists of N spin- and/or cluster-
flip attempts in total. We further use parallel tempering in
temperature [39] in combination with the cluster algorithm to
accelerate equilibration. In detail, we simulate 2NT replicas
at NT different temperatures in parallel [thus, two indepen-
dent replicas at each temperature so that we can calculate
overlap observables defined in Eq. (4)], with the consecutive
temperatures scaled by a factor c such that Tn = (1 + c)nT0,
where n = 0, 1, 2, . . . , NT − 1 [22]. The parameters T0, c,
and NT are adjusted so that the acceptance ratio for parallel
tempering swaps between neighboring temperatures is >50%.
For the exchange process, the replica pairs (Tm, Tm+1) are
divided into two subgroups, i.e., odd-m and even-m groups.
The exchange trial is performed for one of these subgroups
after every 20 MCSs. This sequence which we denote as a
Monte Carlo (MC) sweep is repeated several times during
the course of the simulation. A large number of independent
disorder realizations (denoted by Nsample, which is 1500 or
more) are taken to perform the disorder averaging.

V. OBSERVABLES

Let us now describe the observables. The spin glass order
parameter, qαβ

EA(k), at wave vector k is defined as

qαβ

EA(k) = 1

N

N∑
i=1

μ
α(1)
i μ

β(2)
i exp(ik · ri ), (4)

where α, β = x, y, z are the spin components (where the ghost
spins point along the local easy axes) and (1) and (2) denote
two identical disorder realizations of the system with the same
set of interactions. From this, we calculate the spin glass
susceptibility, χSG(k), defined as

χSG(k) = N
∑
α,β

[〈∣∣qαβ

EA(k)
∣∣2〉]

, (5)

where 〈· · · 〉 and [· · · ] denote thermal and disorder averages,
respectively. In particular, χSG ≡ χSG(k = 0) is an indicator
for the spin glass transition since above (below) the transition,
χSG is finite (diverges) as L → ∞. Furthermore, a spin glass
correlation length ξ can also be defined by using the following
relation:

ξ = 1

2 sin |kmin|
2

(
χ (k = 0)

χ (kmin)
− 1

) 1
2

, (6)

where kmin = 2π
L (1, 0, 0). The ratio ξ/L approaches a univer-

sal value characteristic of the critical point as L → ∞ in case
the spin glass transition is continuous in nature.

VI. EQUILIBRATION TEST AND AUTOCORRELATION
TIME ANALYSIS

To test the equilibration of the algorithm, we measure
qαβ

EA(k = 0) using a double replica (DR) [Eq. (4)] and a single
replica (SR) estimator and calculate χSG using Eq. (5). The
estimators are as follows:

qαβ

DR(t0) = 1

Nt0

t0∑
t=1

N∑
i=1

μ
α(1)
i (t0 + t )μβ(2)

i (t0 + t ), (7a)

qαβ

SR(t0) = 1

Nt0

t0∑
t=1

N∑
i=1

μ
α(1)
i (t0 + t )μβ(1)

i (2t0 + t ), (7b)

where each time step denotes a MCS and t0 = 2n where
n = 1, 2, 3, . . .. The DR (SR) estimator for the spin glass
susceptibility at k = 0 is then calculated using qαβ

DR(SR)(t0) in
Eq. (5) and averaging over 300 disorder realizations. For the
initial condition, the two replicas for each disorder realization
are taken to be in uncorrelated random spin configurations due
to which χDR(t0) ∼ O(1) while χSR(t0) ∼ O(N ) at small t0. At
sufficiently large t0, determined by the autocorrelation time of
the algorithm, τeq, both the estimators should converge to the
correct equilibrium value after which it becomes independent
of t0 (within statistical errors) [42]. We show the results
obtained as a function of t0(= 2n) using both the single-spin-
flip algorithm and the cluster algorithm in combination with
parallel tempering in Fig. 3(a) for L = 6, x = 1/32 at a low
temperature of T = 0.03. From the data, it is clear that, even
for such a small system size, the cluster algorithm provides
a reduction of the autocorrelation time (in units of MCS) by
a factor of around 256 as compared to the single-spin-flip
algorithm. We plot the autocorrelation times τeq estimated
using both the algorithms as a function of N at two different
x = 1/32, 1/64 in Fig. 3(b). For x = 1/32 (1/64), we take
T0 = 0.030 (0.015) (since Jav ∼ Dx), c = 0.065, and NT = 15
for parallel tempering and show the results at the lowest
temperature T0 for both x.

First, we notice the rapid growth of equilibration time by
nearly a factor of 4000 when N increases from 32 (L = 4) to
256 (L = 8) at x = 1/32 using the single-spin-flip algorithm.
For a smaller x = 1/64, the equilibration time is >106 MCS
even for a small size of L = 6 (N = 54). On the other hand,
the equilibration time increases much more slowly with in-
creasing N and decreasing x for the cluster algorithm. Note
that since we do not change the parallel tempering parameters
with system size for obtaining the results in Fig. 3(b), the ac-
ceptance ratio of the parallel tempering swaps is only around
12% for N = 2048 (L = 16 at x = 1/32), in spite of which
the cluster algorithm manages to equilibrate the system.

VII. RESULTS

Using our improved cluster algorithm, we study the be-
havior of χSG [Eq. (5)] and ξ/L [Eq. (6)] in the ranges
4 � L � 16 for x = 1/32, 4 � L � 20 for x = 1/64, and
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FIG. 3. (a) Time variation of χSG/N calculated from both the
double replica (DR) and the single replica (SR) estimators of the
spin overlap function as defined in Eq. (7) using both the cluster
algorithm (denoted by cluster flip) and the single-spin-flip algorithm
(denoted by single spin flip) in combination with parallel tempering
in temperature. The autocorrelation time τeq estimated from such an
analysis is shown in (b) for various N at x = 1/32 and x = 1/64.

6 � L � 22 for x = 1/128 to understand the spin glass tran-
sition at small x. The details regarding the simulation pa-
rameters are given in Appendix C. We check for the proper
thermalization of these quantities by using a standard log-
arithmic binning analysis, where the different observables
are calculated by using data only from the second half of
the measurements, the second quarter of them, the second
eighth of them, and so on. Equilibration is reliably achieved
when at least the last three bins agree within error bars. The
behavior of χSG and ξ/L as a function of T for different linear
dimensions L is shown in Figs. 4(a) and 4(b) for x = 1/128
which strongly suggests a transition to a spin glass phase as
the temperature is lowered.

To extract the transition temperature Tx and establish the
universality class of the transition, we now discuss the finite-
size scaling behavior of these two quantities. Our results
give strong evidence that the critical points at small x are
identical up to a simple x-dependent global rescaling and thus
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FIG. 4. The behavior of (a) ξ/L and (b) χSG as a function of T
shown for various L at x = 1/128.

have the same universal physics. Assuming this scenario, to
leading order in finite-size scaling, ξ/L and χSG behave as
follows [43]:

ξ/L = F1(A(x)(T − Tx )L1/ν ), (8a)

B(x)χSG = L2−ηF2(A(x)(T − Tx )L1/ν ), (8b)

where F1,2 are universal functions, ν and η are exponents
characterizing the continuous transition, Tx is the critical
temperature at x, and A(x) and B(x) are “metric factors” that
depend only on x.

We first perform the scaling collapse for ξ/L since it has
a smaller number of fitting parameters [Eq. 8(a)]. We assume
Tx = ax(1 + bx) to see the importance of the nonlinear terms
at small x. The data collapse of ξ/L [Fig. 5(a)] gives a =
1.10(2) and b = 0.62(15) which determines Tx and the critical
exponent ν = 1.27(8) with a reduced chi square per degree of
freedom χ̄2 = 1.14 [see Eq. (D1) for definition of χ̄2]. The
metric factors are determined to be A(x = 1/64) = 1.65(3)
and A(x = 1/128) = 2.77(6) keeping A(x = 1/32) = 1. Our
estimate of ν agrees with that of Ref. [23] for uniaxial dipolar
Ising spins in the dilute limit. For completeness, we show the
data collapse of ξ/L at each individual x in Figs. 7(d)–7(f) and
give the extracted Tx, ν and χ̄2 in Table III.

We also perform a crossing point analysis of ξ/L between
systems of linear dimension L and sL (with a fixed s) at each
x to extract Tx. The crossing temperature, Tcross(L, sL), should
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FIG. 5. (a) Scaling collapse of ξ/L assuming the form in
Eq. (8a). (b) Behavior of the crossing point Tcross(L, sL) as a function
of 1/L and its fit to the form shown in Eq. (9).

converge to Tx as L → ∞ in the following manner [11]:

Tcross(L, sL) = Tx + ASG(x, s)L−(1/ν+ω), (9)

where ASG(x, s) is a (nonuniversal) constant that depends on
both x and s and ω is the exponent for the leading correction to
scaling. Since Fig. 5(a) already shows strong evidence that the
universality does not depend on x (for small x), we therefore
assume the combination (1/ν + ω) to be independent of x and
use s = 2, 3/2, 4/3 to obtain the crossing of ξ/L curves for
(L, sL) for various L at x = 1/32, 1/64, 1/128. We then fit
all the crossing point data for the different x simultaneously
to Eq. (9) by assuming Tx ∝ x and ASG(x, s) to be different
constants depending on the values of x and s, respectively. The
result is shown in Fig. 5(b) and yields Tx = 1.00(3)x which is
in good agreement with the previously obtained value of Tx

[Fig. 5(a)] from the scaling collapse of ξ/L. We also obtain
1/ν + ω = 1.98(16) from the fit.

We now estimate the anomalous exponent η from the
behavior of χSG. The exponent η could not be reliably
estimated for a dilute system of uniaxial dipolar Ising
spins due to large finite-size corrections to scaling [22,23].
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FIG. 6. (a) Scaling collapse of the spin glass susceptibility χSG

assuming the form in Eq. (8b) after fixing Tx and ν from the collapse
of ξ/L. (b) The behavior of χSG/L2−η versus T for η = 0.22 at
x = 1/32. The dotted vertical lines indicate Tx ± �Tx , where Tx is
extracted from the data collapse of ξ/L and �Tx is the statistical
error bar.

However, in the microscopic model adopted in this work
(which provides a different lattice realization to the same
universal physics), we can reliably extract η. The scaling
collapse of χSG using Eq. (8b) gives a large statistical error
on the determination of η = −0.35(69) when we keep Tx(=
ax(1 + bx)), ν, η, A(x), and B(x) as free parameters for the
fit. We, therefore, reduce the number of free parameters in
the fit by fixing Tx and ν from the previous data collapse of
ξ/L. This gives us a much better estimate of η = 0.228(35)
along with A(x = 1/64) = 1.66(1), A(x = 1/128) = 2.69(3),
B(x = 1/64) = 1.52(2), and B(x = 1/128) = 2.24(4) (with
A(x = 1/32) = B(x = 1/32) = 1) with χ̄2 = 1.78 [see data
collapse of χSG in Fig. 6(a)]. We note that the metric factor
A(x) obtained here coincides (within error bars) with that
obtained from the fit of ξ/L which is consistent with the
expectation from Eqs. (8). A further check for the obtained
value of η is provided by the behavior of χSG/L2−η as a
function of T for various L at a fixed x. A value of η ≈ 0.22
gives a crossing point in T in agreement with the estimate
obtained from the data of ξ/L [see Fig. 6(b) for the case of
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x = 1/128]. The finite-size scaling procedure is summarized
in Appendix D.

VIII. CONCLUSIONS

We have studied an emergent anisotropic dipolar system
of Ising spins that arises when dipolar spin ice is weakly
diluted with a fraction x of nonmagnetic impurities in the
three-dimensional pyrochlore lattice. These emergent Ising
spins have orientations that are neither random nor collinear
but are picked according to the local easy axes of the occupied
sites. This problem provides a lattice realization for studying
the universal physics of a possible Ising spin glass transition
in three dimensions, thus complementing the known cases of
spin freezing for random dipoles, namely, dense dipoles on
a cubic lattice with random orientations [44], or dilute but
collinear dipoles on a cubic lattice [22,23].

The Metropolis algorithm supplemented by parallel tem-
pering in temperature is unable to equilibrate this problem
except for a small number of dipoles because of the rapidly
increasing autocorrelation time caused by rare-region effects
of strongly interacting spin clusters. We use an improved
cluster algorithm to relieve these equilibration bottlenecks and
simulate a much larger number of dipoles than possible using
less elaborate algorithms.

Using finite-size scaling, we have been able to establish
a finite-temperature phase transition at small x. Furthermore,
we present strong evidence that at small x, the universality
class of the transition is independent of x and estimate the
critical exponents to be ν = 1.27(8) and η = 0.228(35). The
estimation of both the exponents ν and η is a first for such
dilute dipoles in three dimensions.

Our algorithm is also expected to give a significant speed-
up for other Ising systems with atypical strong bonds, e.g.,
the recently introduced random Coulomb antiferromagnet in
three dimensions [45]. Finally, beyond the thermodynamic
phase transition, a detailed understanding of the nature of the
dynamical slowdown and the resulting spatial heterogeneity in
the local spin relaxation [17] above the transition temperature
Tx for any local dynamics [Figs. 1(a) and 1(b)] remains an
interesting open problem [46].
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APPENDIX A: DEPENDENCE OF THERMALIZATION
TIMESCALE ON as, bs, AND CL

The cluster construction requires specification of three
parameters as, bs, and CL as described in the main text. For

most of the simulations reported in the paper, we take as =
1.3125, bs = 0.75, and CL = N/5 [these parameter values and
the probability for attempting a cluster flip (15%) were chosen
by doing several trial runs at L = 10 and x = 1/32] which
is enough to make the last three bins agree for ξ/L and χSG

when performing logarithmic binning tests for equilibration.
However, this is not true for the case of L = 22 for the smallest
dilution of x = 1/128 that we considered [as can be seen from
Fig. 7(a)]. Here, we instead see that choosing as = 1.3125,
bs = 47.25, and CL = N/3 and taking the probability of a
cluster flip to be 50% (instead of 15%) improves the equili-
bration significantly [Fig. 7(a)] and we use these parameters
to also generate the data at L = 22, x = 1/128.

In our cluster construction procedure, the value of �J =
bsJs scales linearly with x if as is kept fixed. As a result, unless
bs is increased with decreasing x, the number of cluster sets
increases for highly diluted systems at very low x. This is not
ideal since (a) the different cluster sets are then not different
enough and (b) with our considered probability distribution,
the first few sets, i.e., C0 and its neighboring sets, are hardly
chosen during the cluster flip. From our numerical tests,
the number of cluster sets in the range 5–10 seems to give
optimum performance. Thus, it is useful to increase bs as
one goes to lower values of x. Furthermore, at low x, Tx

also decreases with x and hence the size of the largest frozen
cluster (with respect to single-spin flips) is also bound to
increase, thus suggesting an increase in CL. Last, since the
fraction of dynamically frozen spins under a local spin-flip
algorithm [Figs. 1(a) and 1(b)] increases with decreasing x, it
may also be desirable to increase the relative probability of
cluster flips with respect to single-spin flips at small x.

From Fig. 7(a), it is clear that increasing CL from N/5 to
N/3 and the relative probability of cluster flips with respect
to single-spin flips from 15% to 50% helps equilibration.
Though increasing bs more gently already shows improve-
ment in equilibration [as can be seen in Fig. 7(a)], we choose
the value of bs = 47.25 since that makes the last four bins
agree within a logarithmic binning test [inset of Fig. 7(a)].
The problem of optimizing over the parameters as, bs, and
CL has not been systematically addressed in this work and
understanding this should lead to further significant speed-up
at very low x as Fig. 7(a) already demonstrates.

APPENDIX B: ROLE OF DIFFERENT CLUSTER
SETS IN EQUILIBRATION

We explicitly demonstrate the role of the different cluster
sets in equilibrating the system by considering Nsample = 300
independent disorder realizations for a system of size L = 10
with x = 1/32 at a rather low temperature of T = 0.015(�
Tx/2) [Figs. 7(b) and 7(c)]. The cluster sets are constructed
for each disorder realization by taking the parameters to be
as = 1.3125, bs = 0.75, and CL = N/3. The total number of
cluster sets, (n + 1), is five or six for most of the disorder
realizations. We then create various cluster set combinations
(given in Table I) by switching on the cluster sets one by
one either from Cn−4 to Cn or from Cn to Cn−4 (in the
disorder realizations where n > 4, the cluster sets Cn−5 and
lower are not considered for this analysis). The parameters for
the parallel tempering used are T0 = 0.015, c = 0.065, and

064425-8



DIPOLAR SPIN GLASS TRANSITION IN THREE DIMENSIONS PHYSICAL REVIEW B 100, 064425 (2019)

FIG. 7. (a) Comparison of the logarithmic binning for ξ/L for L = 22 at x = 1/128 using parameter set 1 (as = 1.3125, bs = 0.75, CL =
N/5) and parameter set 2 (as = 1.3125, bs = 47.25, CL = N/3) with the local spin flip move chosen 85% (50%) in the former (latter) case. The
disorder averaging is done over Nsample = 600, and the parallel tempering parameters are T0 = 0.00675, c = 0.031, and NT = 31 (the result is
shown for the lowest temperature T0). The same figure also shows the logarithmic binning for bs = 5 and bs = 30 keeping the other parameters
the same as in set 2. The inset shows a zoomed version of the logarithmic binning for clarity. Logarithmic binning thermalization test for ξ/L
for L = 10, x = 1/32 at a low temperature of T = 0.015(� Tx/2) where the cluster sets are switched on (b) from Cn−4 to Cn and (c) from
Cn to Cn−4. The relative probabilities to pick the individual cluster sets is given in Table I. In (a)–(c), one Monte Carlo bin (MCB) equals
512 MC sweeps in all the figures. Data collapse of ξ/L at (d) x = 1/32, (e) x = 1/64, and (f) x = 1/128. The extracted values of Tx and ν are
summarized in Table III.

NT = 31. We choose a local spin (cluster) flip with probability
85% (15%). The (relative) probability to choose a particular
cluster set Cm is then taken to be Pm (see Table I) according
to the rule specified in the main text. We check the difference
in thermalization time for the various cluster set combinations
by performing a logarithmic binning analysis for ξ/L and the
results are displayed in Figs. 7(b) and 7(c).

TABLE I. The relative probabilities to pick the individual cluster
sets which have been used to generate the results of Figs. 7(b)
and 7(c).

Cluster combination Relative probabilities

Cn−4 1
Cn−4,Cn−3 1/2,1/2
Cn−4,Cn−3,Cn−2 1/4,1/4,1/2
Cn−4,Cn−3,Cn−2,Cn−1 1/8,1/8,1/4,1/2
Cn−4,Cn−3,Cn−2,Cn−1,Cn 1/16,1/16,1/8,1/4,1/2
Cn 1
Cn,Cn−1 1/2,1/2
Cn,Cn−1,Cn−2 1/2,1/4,1/4
Cn,Cn−1,Cn−2,Cn−3 1/2,1/4,1/8,1/8
Cn,Cn−1,Cn−2,Cn−3,Cn−4 1/2,1/4,1/8,1/16,1/16

It can be seen that none of (Cn−4), (Cn−4,Cn−3), or
(Cn−4,Cn−3,Cn−2) satisfies the logarithmic binning thermal-
ization test within the given number of MCSs but their per-
formance improves progressively. However, when the sets
containing a larger fraction of strong bonds are considered in
(Cn−4, . . . ,Cn−1) and (Cn−4, . . . ,Cn), the system does equi-
librate within the given number of MCSs [Fig. 7(b)]. What
happens when we start switching on the clusters from Cn to
Cn−4? Here the effect is much more dramatic and already
the cluster combination of (Cn,Cn−1) equilibrates the system
for the given number of MCSs (note that the same is not
true with just the cluster set Cn). The equilibration perfor-
mance only improves slightly when we consider the combi-
nations (Cn,Cn−1,Cn−2), (Cn, . . . ,Cn−3), and (Cn, . . . ,Cn−4)
[Fig. 7(c)]. These results clearly show that it is important to
attempt flipping clusters from the latter sets more frequently
than to attempt flipping clusters from the earlier sets. In this
manner, the average computational cost of one MCS is also
reduced as the larger clusters are flipped less often than the
smaller clusters.

APPENDIX C: SIMULATION PARAMETERS

Apart from as, bs, and CL, the other simulation parameters
that we need to specify are T0, c, and NT to set up the
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TABLE II. Parameters of the Monte Carlo simulations.

x L T0 c NT NMCS Nsample

1/32 4 0.03 0.20 15 10 × 219 2500
1/32 6 0.03 0.035 63 10 × 218 1500
1/32 8 0.03 0.035 63 10 × 217 1500
1/32 10 0.03 0.025 63 10 × 216 1500
1/32 12 0.03 0.025 63 10 × 217 1500
1/32 14 0.03 0.025 63 10 × 216 1500
1/32 16 0.03 0.030 31 10 × 217 1500
1/64 4 0.01 0.055 31 10 × 217 2100
1/64 6 0.01 0.055 31 10 × 217 2100
1/64 8 0.01 0.055 31 10 × 216 2100
1/64 10 0.01 0.040 31 10 × 217 1500
1/64 12 0.01 0.040 31 10 × 217 1500
1/64 14 0.0135 0.031 31 10 × 217 1500
1/64 16 0.0135 0.031 31 10 × 218 1500
1/64 18 0.0135 0.031 31 10 × 217 1500
1/64 20 0.0135 0.031 31 10 × 217 1500
1/128 6 0.00675 0.045 31 10 × 217 2500
1/128 8 0.00675 0.045 31 10 × 217 2500
1/128 10 0.00675 0.031 31 10 × 217 2500
1/128 12 0.00675 0.031 31 10 × 217 2500
1/128 14 0.00675 0.031 31 10 × 216 2200
1/128 16 0.00675 0.031 31 10 × 217 1500
1/128 18 0.00675 0.031 31 10 × 220 1500
1/128 20 0.00675 0.031 31 10 × 220 1500
1/128 22 0.00675 0.031 31 10 × 218 1500

parallel tempering protocol. We summarize the values of these
parameters for different L and x and also NMCS (the number of
MCSs used) and Nsample used during the production runs in
Table II.

APPENDIX D: FINITE-SIZE SCALING

To estimate the Tx and extract the critical exponents ν and
η, we use the scaling forms given in Eq. (8) sufficiently close
to the critical point. For ξ/L, we expand the scaling func-
tion F1(X ) (where X = A(x)(T − Tx )L1/ν) as a third-order
polynomial F1(X ) ≡ f (X ) = a0 + a1X + a2X 2 + a3X 3 and

TABLE III. Tx , ν, and χ̄ 2 obtained from the data collapse of ξ/L
at x = 1/32, x = 1/64, and x = 1/128 [see Figs. 7(d)–7(f)].

x Tx ν χ̄ 2

1/32 0.0351(8) 1.21(6) 0.73
1/64 0.0171(4) 1.30(7) 0.98
1/128 0.0090(2) 1.26(4) 1.06

then perform a global fit to determine the unknown pa-
rameters [a0, a1, a2, a3, a, b, ν, A(x = 1/64), A(x = 1/128)]
[where Tx = ax(1 + bx) is assumed at small x and the met-
ric factor A(x = 1/32) = 1] by minimizing the reduced chi
square per degree of freedom, χ̄2, defined by

χ̄2 = 1

Nd − M

Nd∑
i=1

(yi − f (Xi ))
2/σ 2

i , (D1)

where Nd equals the total number of data points, M denotes
the number of fitting parameters, yi denotes the mean value
of the ith data point, σi denotes the error in the ith data point,
and f (Xi ) denotes the fitting function. The fits are considered
of good quality when χ̄2 � 1. Since all temperatures are
simulated with the same disorder realization in the parallel
tempering procedure, the fitted data is correlated. We therefore
apply a bootstrap analysis to the data to estimate the statis-
tical error bars on the various fit parameters. It is useful to
emphasize here that the quoted error bars are only statistical
errors since estimating systematic errors properly requires a
reliable knowledge of the corrections due to scaling. For χSG,
we again use the scaling form given in Eq. (8b) and expand the
scaling function F2 as a third-order polynomial. We further
fix the values of a, b that determine Tx = ax(1 + bx) and the
exponent ν from the previous fit of ξ/L and then perform the
minimization of χ̄2 to determine the exponent η and the other
fitting parameters.

We show the data collapse of ξ/L at each individual x in
Figs. 7(d)–7(f) for completeness. The extracted values of Tx

and ν are shown in Table III and are fully consistent with the
scenario that Tx ∝ x and the universality of the critical point
is independent of x for small x.
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