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Maximal tunnel magnetoresistance in magnetic nanoparticle arrays with perpendicular anisotropy
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We study tunnel magnetoresistance (TMR) ratio of self-assembled 2d magnetic nanoparticle (MNP) arrays
by modeling them as interacting dipoles on a triangular lattice, which is representative of experimentally
obtained assemblies. Low-temperature Monte Carlo simulations are performed to understand the effects of
dipolar interactions and uniaxial anisotropy on TMR behavior. In magnetic tunnel junctions with a perfect
antiparallel state, the TMR amplitude reaches the ideal value 2P2/(1 − P2), where P is the spin polarization.
We show that, for MNPs with their anisotropy axes perpendicular to the array, the TMR amplitude can reach
a value as large as 2400%, which represents an order of magnitude improvement over previous studies. We
evaluate the conditions for which these large amplitudes could be obtained experimentally at room temperature
and find that spherical MNPs with large magnetocrystalline anisotropy or nanorods are suitable candidates. Our
theoretical results should stimulate experimental groups into elaborating the samples proposed in this work,
which could display large TMR amplitudes.
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I. INTRODUCTION

Self-assembled magnetic nanoparticle (MNP) arrays are
receiving a lot of interest due to their potential applications
in high-density storage devices, switches, and magnetic field
sensors [1–5]. They are usually functionalized with an insu-
lating surfactant layer to prevent aggregation which, in the
context of electrical conduction, acts as a tunnel barrier. Thus,
the conductivity occurs via spin-dependent tunneling which
forms the basis of several spintronic devices. The quantity
used to characterize their electrical properties is the tunnel
magnetoresistance (TMR) ratio. A widely used model for the
evaluation of TMR is that by Inoue and Maekawa [6]. In this
model, the conductance between a pair of moments �si and �s j

is given by

σi j ∝ (1 + P2 cos θi j ), (1)

where θi j is the angle between �si and �s j and P is the spin po-
larization of the conduction electrons. The resultant change in
conductance on application of a magnetic field H is quantified
by the TMR ratio [6–8]

MR†(H ) = σ (Hs) − σ (H )

σ (H )
= R(H ) − R(Hs)

R(Hs)
, (2)

where σ (H ) is the total conductance of the array at an applied
field H , R is the resistance of the array, and Hs is the field at
which the conductance is maximized (this definition is slightly
different from the one that we shall use later.) An antifer-
romagnetic configuration (cos θi j = −1) yields a maximum
change in conductance on application of a field and hence the
maximum TMR ratio. A ferromagnetic configuration of mo-
ments (cos θi j = 1), on the other hand, is the least favorable.
For a given P, the theoretical maximum of the TMR amplitude
is 2P2/(1 − P2). For P = 1, Eq. (2) yields a maximum TMR

amplitude of ∞ and a minimum of 0. However, as we shall
see shortly, the TMR amplitudes obtained in experiments are
far from this ideal value.

In closely packed MNP assemblies, the magnetic moments
interact via strong dipole-dipole interactions. The latter are
long ranged, anisotropic, and alternating in sign and have deep
implications on the systemic behavior. Studies on MNP arrays
have demonstrated interesting and far-reaching consequences
of these interactions such as unusual ground-state ordering
[9–11], complex remanence and coercivity behavior [11–13],
increased blocking temperature [14], and glassy magneti-
zation dynamics [14,15]. Consequently, the TMR response,
which is itself a function of the spin state, is affected as
well.

Many groups have studied the role played by dipolar inter-
actions on the TMR behavior. Kechrakos and Trohidou per-
formed Monte Carlo (MC) simulations of triangular arrays of
cobalt MNPs with random anisotropy axes [7]. They modeled
the arrays using resistor networks to obtain the conductance
and TMR. The crucial results of their study are as follows:
(i) the TMR amplitude decreases with increasing dipolar
strength and (ii) in the limit of zero dipolar strength, the max-
imum TMR that can be achieved is P2. Further, the sensitivity
of TMR response was found to depend on the direction of
the applied field. Similar conclusions were reached by Tan
et al., who used Landau-Lifshitz-Gilbert (LLG) equations to
model the magnetization dynamics of such arrays [16]. On the
other hand, MC simulations by Mao and Chen on hexagonal
arrays with positional disorder showed a TMR response which
was roughly independent of dipolar strength [17]. They also
studied the effect of aligned anisotropy axes and found that
the distribution of anisotropy axes only affected the sensitivity
of the TMR response. In a more recent study using LLG
methods, we have shown that an increase in aspect ratio of the
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array leads to a destruction of the TMR effect, which is related
to the formation of flux loops and ferromagnetic chains [18].

In all these studies, the maximum TMR amplitude achieved
was P2, corresponding to the noninteracting case with random
spin orientations. This is due to the fact that dipolar fields in
triangular/hexagonal arrays tend to align the moments ferro-
magnetically. This greatly reduces their zero-field resistivity
and hence the TMR response. For square lattices, however, a
perfect antiferromagnetic state can be obtained by aligning the
anisotropy axes perpendicular to the plane, and hence a perfect
TMR value of 2P2/(1 − P2) can be obtained [8] but, experi-
mentally, it is difficult to obtain such square arrays. In any
case, in experiments on self-assembled MNPs, nobody has
so far attempted to elaborate samples with aligned anisotropy
axes, and hence the typical TMR amplitude observed is quite
small [2,19–23].

In this paper, we perform comprehensive low-temperature
MC simulations on a triangular lattice to understand the twin
effects of dipole-dipole interactions and the anisotropy energy
on spin morphologies and their consequence on TMR. We
provide a pathway, using MNP arrays with perpendicular
anisotropy, to achieve maximal TMR amplitude in the ex-
perimentally relevant triangular lattices. We show that, for
MNPs with their anisotropy axes perpendicular to the array,
the TMR amplitude can reach a value as large as 2400%,
which represents an order of magnitude improvement over
previous studies. This paper is organized as follows. In Sec. II,
we present the model and the methods used to study the MNP
arrays. In Sec. III, we present our numerical results on the
morphologies and TMR, and provide suggestions for best
materials and parameter values for TMR-based applications.
Finally, we end the paper with a summary of our results in
Sec. IV.

II. MODEL AND METHODS

A. Model

Consider N functionalized MNPs on a Lx × Ly triangular
lattice, representative of typical assemblies obtained in depo-
sition experiment. Let the lattice constant be a and the particle
core diameter be d . The edge-to-edge separation s = a − d
and is equal to the thickness of the tunnel barrier (i.e., the
surfactant coating). Each MNP i has a moment �μi = μŝi,
where μ = MsV is its magnitude, ŝi is its direction (spin), Ms

is the saturation magnetization, and V is the MNP volume.
The total energy of this assembly in a uniform magnetic field
can be expressed as [24]

E = −D
∑

i, j

3(ŝi · r̂i j )(ŝ j · r̂i j ) − ŝi · ŝ j

r3
i j

− KV
∑

i

(ŝi · êi )
2 − Hμ

∑

i

ŝi · Ĥ , (3)

where D = μ0μ
2/4πa3 represents the dipolar strength, K is

the anisotropy constant, and êi is its easy axis. �ri j is the
distance separating particles i and j in units of a, H is the
strength of the applied magnetic field, and Ĥ is its direction.
The magnetic properties of the assembly are dictated by the

ratio � = D/KV rather than the precise values of parameters
such as d , a, Ms, or K .

B. Resistor network method

The resistance of the MNP array is evaluated by represent-
ing it as a resistor network (RN) and solving the resulting
system of current and voltage equations [7]. If φi is the
potential at site i, charge conservation at each node requires
that

∑N
j=1 σi j (φi − φ j ) = 0, where σi j is as given by Eq. (1).

Recall that the resistance decays exponentially with inter-
particle separation. For analytical tractability, it is therefore
customary to consider only tunneling events between the Q
nearest-neighbor (NN) spins and neglect the cotunneling be-
tween farther sites [7,16]. If the opposite ends of the assembly
are attached to electrodes, then the set of linear equations can
be solved to obtain the potentials {φi}, by using the boundary
conditions φi = V0 if i ∈ A and φi = 0 if i ∈ C, where A and C
represent the anode and the cathode. The conductance of the
assembly is then given by σ = ∑

i, j σi j (φi − φ j )2/2V 2
0 .

C. Statistical averages method

A more popular but less accurate method is where the
magnetoresistance is evaluated by a statistical average of the
cosine (SAC) [6,16]. In this case, the average conductance
is given by 〈σ 〉 ∝ (1 + P2〈cos θ〉), where 〈cos θ〉 represents
a statistical average of cos θi j over all NN spin pairs. Using
Eq. (2), it is easy to see that

MR(H ) = 〈cos θ〉HS − 〈cos θ〉H

P−2 + 〈cos θ〉H
. (4)

To maximize TMR amplitude, the extremal values of 〈cos θ〉
should be as far apart as possible. This happens when the
moments exhibit an antiparallel alignment at H and a par-
allel alignment at the saturating field value HS yielding the
maximum amplitude of 2P2/(1 − P2). The spin polarization
P therefore sets the scale of the maximum value of TMR.

D. Tunnel magnetoresistance ratio

Although Eq. (2) is conventionally used in the literature,
the resulting TMR value is not bounded, i.e., for P = 1 the
maximum amplitude is ∞. This makes it difficult to compare
the TMR across different system parameters. A convenient
definition is

MR(H ) = σ (Hs) − σ (H )

σ (Hs)
. (5)

This definition yields a maximum TMR amplitude of 1 for
P = 1 and we use it in the rest of our paper. However,
we shall also mention the TMR values obtained with the
definition of Eq. (2), where necessary, for comparison. It is
pertinent to point out here that although the resistance of
an array of nanoparticles has an exponential dependence on
the interparticle distance, the TMR amplitude in most cases
weakly depends on it [25,26].

E. Simulation details

To obtain the spin configuration {ŝi} of the MNPs,
we perform MC simulations using the standard Metropolis
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FIG. 1. Typical zero-field spin morphologies of square arrays
(16a × 16a) for weak coupling � � 0 (left) and strong coupling
� � 1 (right). The top and bottom rows correspond to samples with
random anisotropy (RA) and perpendicular anisotropy (PA), respec-
tively. The moments (cones) are colored based on the z component sz.

algorithm. Although the Metropolis MC method is an equilib-
rium sampling scheme, it is sufficient for our study as TMR
measurements are usually performed in the timescale of a few
minutes, where the system has enough time to equilibrate.
Furthermore, studies comparing Langevin dynamics simula-
tions with MC methods have shown that at timescales longer
than the spin precession time, both the methods are equivalent
[27,28]. For the simulations, we used triangular lattices of
size 16a × 16a and 32a × 32a with free boundary conditions.
Dipolar energy is evaluated explicitly without any cutoffs.
The reduced temperature t = kBT/KV was kept constant at
0.0064, corresponding to typical experiments on superparam-
agnetic particles at low temperature or ferromagnetic particles
at room temperature [20–22]. Unless otherwise stated, we
used P = 1 for TMR calculations. Two distinct orientations
of the anisotropy axes were considered: random anisotropy
(RA) where {êi} are oriented at random, and perpendicular
anisotropy (PA) where {êi} are oriented along the z direction.
The systems were allowed to equilibrate for 16 000 MC
sweeps and the thermal averages were calculated over the
subsequent 8000 MC sweeps. Each data set has been averaged
over 50 independent runs corresponding to different random
initial orientations of {ŝi}. We do not show error bars as they
are smaller than the symbols.

III. RESULTS AND DISCUSSION

A. Zero-field morphologies

Typical zero-field spin morphologies of square arrays
(16a × 16a) are depicted in Fig. 1. For the RA configurations
(top row), when the dipolar coupling is weak (� � 0), the
zero-field morphologies are comprised of randomly oriented
magnetic moments. For � = 1, there is in-plane alignment

FIG. 2. 〈cos θ〉 as a function of � for different sample sizes.
MNPs have (a) random anisotropy (RA) axes and (b) perpendicular
anisotropy (PA) axes.

accompanied by the formation of flux closure loops. The aver-
age magnetization of such states is �0. For the PA configura-
tion (bottom row), when � � 0.5, the zero-field morphologies
are composed of moments pointing perpendicular to the plane
of the array, with roughly half of them pointing in the +z and
−z directions. As � is increased, there is an abrupt reorien-
tation transition at � = �r � 0.5 above which the moments
lie in the xy plane (bottom right panel). This is similar to
the reorientation transition observed in thin films with per-
pendicular anisotropy and corresponds to the point where the
shape anisotropy of the MNP array overcomes perpendicular
anisotropy. In the case of RA on the other hand, the in-plane
alignment of spins with increasing � is continuous. In both
cases, samples with aspect ratio greater than 1 and strong
dipolar coupling (� � 1) exhibited increased alignment of
moments along the length of the sample. To understand the
local ordering of the moments better, we show in Fig. 2
the plots of 〈cos θ〉 as a function of � for different sample
sizes. For the RA configuration [Fig. 2(a)], with increasing
� there is a gradual increase in 〈cos θ〉 as local order sets
in. For the PA configuration [Fig. 2(b)] there is a decrease
in 〈cos θ〉, which becomes negative, up to the reorientation
point �r � 0.5. This corresponds to a progressive building
of an antiparallel state of magnetic moments. Beyond the
reorientation point, the moments become ferromagnetically
aligned in plane giving 〈cos θ〉 � 1.

B. Hysteresis and TMR with in-plane field

Next, we discuss magnetic hysteresis and TMR response
of these arrays. The magnetization of the array is defined
as �m = mxx̂ + myŷ + mzẑ, with mα = 1

N

∑
i〈(si)α〉, where α ∈

{x, y, z}. In Fig. 3, we show the plots of mx and TMR for
square arrays (32a × 32a), with an in-plane field �h = hxx̂,
and different values of �. Here, h = |�h| = Hμ/KV represents
the reduced field, and the TMR has been evaluated using the
RN model. Let us first discuss the case of samples with
RA [Figs. 3(a) and 3(c)]. For � = 0, the hysteresis is well
described by the Stoner-Wohlfarth model [29]. The remanent
magnetization mr = 0.5 and the coercive field hc = 1, as
expected. As � is increased, mr increases and hc decreases
in accordance with earlier studies [13,30]. However, for
large dipolar strength (� � 1), the formation of flux closure
loops decreases mr and increases the saturation field. This
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FIG. 3. Hysteresis and TMR behavior of square arrays (32a ×
32a) for a field applied along x̂. Panels (a) and (c) are for the RA
configuration and (b) and (d) are for the PA configuration. The TMR
was calculated using the RN method and with the definition given in
Eq. (5).

nonmonotonic behavior of mr with � was also observed in the
simulations performed by Tan et al. [16]. The TMR response
is maximized for � = 0, with the maximum value of �0.575
occurring near the coercive field hc. As � is increased, the
morphologies become more and more locally ordered (see
Fig. 1), and the TMR response decreases.

For the PA configuration [Figs. 3(b) and 3(d)], when
�<�r , the magnetization plots do not show any hysteresis,
as the reorientation of spins from out-of-plane to in-plane
alignment is favored by the dipolar field. Interestingly, a large
TMR response is observed with a maximum value �0.96.
This is close to the perfect TMR amplitude 1, and is due to
the large number of NN antiparallel spin pairs at the coercive
field. In terms of the conventional definition [Eq. (2)], this
would correspond to a TMR amplitude of 24 (or 2400%).
For � > �r , the spins are aligned in plane and form flux

FIG. 5. (a) TMR curves obtained using the RN method (solid
lines) and the SAC method (dashed lines) for 32a × 32a array in PA
configuration. The TMR is defined as given in Eq. (5). (b) MRmax as
a function of � evaluated using the RN method (filled symbols) and
the SAC method (open symbols). RN gives the correct behavior.

closure loops. The drop in magnetization at point A marks
the formation of flux loops which are the natural low-energy
configurations. These proliferate in the sample with reducing
field (point B). As the field becomes positive, they are pushed
toward the edges of the sample, perpendicular to the direction
of applied field (point C). The flux loops present a large energy
barrier to the system, and their removal is reflected by a jump
in the magnetization. Figure 4 shows snapshots of typical
spin configurations at the points A, B, and C. Further, there
is an increase in both mr and hc, and the TMR amplitude is
dramatically reduced due to increased local order.

We now provide more details on the PA configuration,
which displays the largest TMR amplitude. In Fig. 5(a) we
show MR as a function of the in-plane field �h = hxx̂, for a
32a × 32a array in the PA configuration, evaluated using the
RN method (solid lines) and the SAC method (dashed lines).
We find a large difference in the TMR values obtained from
the two methods. This is because the net resistance of the array
depends on the distribution of resistances across the network.
The SAC method does not account for this, whereas the
RN method explicitly solves Kirchoff’s current and voltage
equations for the network. Therefore, the RN method gives the
more realistic and accurate measure of the array conductivity.
An extreme example of this is when P = 1, where antiparallel
spin pairs have zero conductance. If there are no percolating
paths of conducting spin pairs across the array, it is possible to
have zero net conductance. In this case, the SAC method will

FIG. 4. Snapshots of spin configurations at points A, B, and C shown in the hysteresis loop of Fig. 3(b). The moments (cones) are colored
according to their z component. Solid red (blue) circles mark the positions about which spins in a closed loop undergo a +2π (−2π ) rotation,
as illustrated alongside.
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FIG. 6. Snapshots showing the typical spin morphologies at the
coercive field on triangular lattice with perpendicular anisotropy for
(a) a nearest-neighbor antiferromagnet and (b) spins with dipole-
dipole interactions. The strength of the exchange interaction Jex =
0.325KV and dipolar interaction D = 0.325KV . The magnetic field
was applied along the x axis. The green dots indicate particles with
Sz = 1 while the blue dots represent Sz = −1.

predict a nonzero value of the average cosine resulting in a
nonzero conductivity! In Fig. 5(b) we show the corresponding
peak value of the TMR ratio MRmax as a function of � for P =
0.4 and 1.0, evaluated using the RN method (filled symbols)
and the SAC method (open symbols). Note that the TMR
amplitude does not go through a maximum as it might have
been expected from Fig. 2(b). This is because during field
cycling, for � < �r , the 〈cos θ〉 value at the coercive field
is roughly independent of �, and is lower (−0.34) than the
corresponding zero-field value at �r (−0.27). Consequently,
the states at hc are more antiferromagnetic (AF) than at zero
field, leading to a higher than expected TMR response.

One could naively argue that with PA, the system is ex-
pected to have a disordered AF state at the coercive field,
so a large TMR response is not surprising. However, it is
not so trivial as AF interactions on a triangular lattice can
often result in the formation of stripe patterns [31,32]. This
is demonstrated in Fig. 6(a) which shows the equilibrium spin
morphology obtained from an MC simulation of a triangular
lattice with NN AF interactions and PA at the coercive field.
The green dots indicate particles with Sz = 1 while the blue
dots represent Sz = −1. Notice the formation of stripes or
correlated regions of +1 and −1, with many spanning the
lattice in the y direction. Consequently, the TMR along the
y axis is only 60% of the maximal value. Figure 6(b), on
the other hand, depicts the equilibrium morphology of the
same system, with long-range dipolar interactions. Correlated
regions are seen in this case as well, but they do no percolate
the lattice. As a result, there are a large number of AF pairs
∼O(N2) which yield a very large TMR amplitude along both
directions.

C. Hysteresis and TMR with out-of-plane field

Next, we study the magnetization and TMR when the ex-
ternal field is applied perpendicular to the plane of the sample.
For this case, we did not observe a significant dependence on
the sample size or the aspect ratio. Figure 7 shows prototypical
plots of mz and MR for a square array (16a × 16a) with a
perpendicular field �h = hzẑ, and different values of �. For
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FIG. 7. Hysteresis and TMR behavior of square arrays (16a ×
16a) with the applied field along ẑ. Panels (a) and (c) are for the RA
configuration and (b) and (d) are for the PA configuration. The TMR
was calculated using the RN method and with the definition given in
Eq. (5).

samples with RA [Figs. 7(a) and 7(c)], � = 0 shows the
expected Stoner-Wohlfarth behavior. As � increases, mr and
hc decrease to zero. The absence of hysteresis for mz with
increasing dipolar strength is because of the shape anisotropy
of the array which opposes any magnetization perpendicular
to the plane of the array, and is a standard result of the Stoner-
Wohlfarth model [33]. Similar to the case with in-plane field,
the maximum TMR observed is 0.575 for � = 0, and it
reduces with increasing � due to local ordering. For samples
with PA [Figs. 7(b) and 7(d)], when � = 0, the hysteresis
shows a sharp switching from an “all-down” to “all-up”
configuration (or vice versa) at h = hc = 2. As � increases,
local order sets in and mr and hc decrease. Magnetization
reversals are seen as “steps” in the hysteresis curve: at each
step a fraction of the spins flip, as also observed by Xu et al.
[34]. For 0 < � � �r , a large TMR response is observed with
a maximum value �0.96. This is similar to the case with
in-plane field, except that a hysteresis is observed here. The
steps in the hysteresis are reflected in the TMR response as
well. For � > 0.5, the TMR ratio is less than 0.1. For both RA
and PA, large fields are required to magnetize the system in
the perpendicular direction, as the dipolar field tends to align
moments in plane.

D. Effect of sample size and aspect ratio

In Fig. 8, we show the plots of m as a function of in-plane
field, for � = 1.3 and different sample sizes. The sample size
and the direction of the in-plane field are mentioned in the plot
legend. Figures 8(a) and 8(c) are for the RA configuration.
Figures 8(b) and 8(d) are for the PA configuration. We make
the following common observations: (i) For smaller arrays,
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FIG. 8. Effect of sample size and aspect ratio on the hysteresis
curves for � = 1.3, and an in-plane field. The sample size and the
field directions are mentioned in the plot legend.

there is a decrease in the remanent magnetization mr and
a slight increase in the coercive field hc. (ii) For elongated
samples, mr and hc are reduced when the field is applied
perpendicular to the long side of the array, whereas they
increase when the field is applied parallelly.

These features are reflected in the TMR curves as well,
i.e., the peak of the TMR curve shifts with the coercive
field, however, the amplitude is not affected significantly.
We do not depict the TMR curves here. For an out-of-plane
magnetic field, we did not observe any significant dependence
of hysteresis or TMR response on sample size and aspect
ratio.

E. Materials and parameters for maximizing TMR

Finally, we provide an analysis on how these large
TMR amplitudes could be observed experimentally at room

temperature. There are three requisites to achieve this goal:
(i) �<0.5, (ii) blocking temperature Tb>300 K, and (iii) P�1.
The latter is satisfied by half-metals such as XMnSb (X =
Pt, Ni, Co, Au, Cu), PtMnSn, Mn2RuxGa, Co2FeX (X = Al,
Si), and Fe3O4 [35–40]. We have estimated the possibility
of achieving criteria (i) and (ii) for four different materials
of interest (Fe, CoPt, Fe3O4, and NiMnSb). Table I provides
the results of calculations estimating the suitability of various
materials to obtain large TMR amplitudes and their required
shapes. The nano-objects have been assumed to be either
spheres or 60-nm-tall nanorods. The anisotropy value taken
for the spheres is the bulk magnetocrystalline anisotropy of
the material, and for nanorods, the shape anisotropy amplitude
of K � μ0M2

S/4 has been used [41]. The diameter d for which
� < 0.5 has been calculated using the equations provided
in Sec. II. The tunnel barrier thickness or the interparticle
spacing is given by s. The blocking temperature Tb of the
nano-objects has been calculated using the standard equation
Tb = KV/25kB [41]. The rightmost column gives the suitabil-
ity of a given material of a given shape to obtain Tb > 300 K
as well as � < 0.5 at the same time.

We find that for a large magnetocrystalline anisotropy
material such as CoPt, it is relatively easy to achieve � < 0.5
and Tb > 300 K even for spheres of a few nm. On the other
hand, for materials like Fe, Fe3O4, and NiMnSb, it is shown
that nanorods of a few nm in diameter would work. For a
low anisotropy and low magnetization material such as Fe3O4,
the tunnel barrier thickness (which modifies �) surrounding
the nanorods has to be increased to 5 nm to fulfill these
conditions, whereas for Fe and NiMnSb, tunnel barriers of 3
or 4 nm are sufficient. Regarding the possibility of fabricating
such heterostructures, several groups have developed oriented
growth techniques or deposition under magnetic field to grow
magnetic nanoparticles, nanorods, or nanowires with their
easy axis perpendicular to the substrate [42–46]. Thus, by a
careful choice of material parameters, large TMR amplitudes
could be achieved in triangular MNP arrays.

IV. SUMMARY

We conclude this paper with a summary of our results
and their implications for experiments. In this work, we have
studied the hysteresis and TMR behavior of a system of MNPs

TABLE I. Nanoparticle diameter d and interparticle spacing s required to achieve � < 0.5 for different magnetic materials and different
anisotropy types. Also listed are the corresponding blocking temperatures Tb and hence the suitability of these materials for achieving maximum
TMR at room temperature.

Material Nano-object Anisotropy s d for � < 0.5 Tb Suitable

Fe Sphere Magnetocrystalline 3 nm d < 3.5 nm 3 K for d = 3.5 nm No
Nanorod Shape 3 nm d < 2.1 nm 550 K for d = 2.1 nm Yes

Fe3O4 Sphere Magnetocrystalline 3 nm d < 14 nm 54 K for d = 14 nm No
Nanorod Shape 3 nm d < 2.1 nm 41 K for d = 2.1 nm No
Nanorod Shape 4 nm d < 4.6 nm 200 K for d = 4.6 nm No
Nanorod Shape 5 nm d < 8 nm 600 K for d = 8 nm Yes

CoPt Sphere Magnetocrystalline 3 nm any d 300 K for d = 3.5 nm Yes
NiMnSb Sphere Magnetocrystalline 3 nm d < 5.6 nm 3.5 K for d = 5.6 nm No

Nanorod Shape 3 nm d < 2.1 nm 85 K for d = 2.1 nm No
Nanorod Shape 4 nm d < 4.6 nm 410 K for d = 4.6 nm Yes
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on triangular lattice, interacting via dipole interactions. For
MNPs with random anisotropy orientations, the maximum
TMR achieved is P2 in the limit of zero interactions, and
decreases with increasing dipolar strength. In contrast, we find
that MNPs with perpendicular anisotropy display a near-ideal
TMR of ∼2P2/(1 − P2) [according to Eq. (2)] when �, the
ratio of dipole interaction strength to anisotropy strength, is
less than 0.5. With the right materials, the TMR amplitude
could be as large as 2400%. This is an order of magnitude
improvement over previous studies [7,16,17]. We have also

provided the conditions under which these maximal ampli-
tudes could be obtained experimentally at room temperature.
We hope that experimentalists will be inspired by our work
and will create such arrays and superlattices.
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