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Spin Seebeck effect in paramagnets and antiferromagnets at elevated temperatures
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We develop a theory of the spin Seebeck effect (SSE) in paramagnets as well as in antiferromagnets at elevated
temperatures where the classical limit of the fluctuation-dissipation theorem is applicable. Employing dissipative
stochastic models that are valid at these temperatures, we calculate the SSE signal, and we find that both the
paramagnetic SSE and the antiferromagnetic SSE are expressed by a single equation that is proportional to the
external magnetic field times the spin susceptibility of the magnet. The present result suggests the appearance of
a cusp structure at the Néel temperature in the antiferromagnetic SSE signal.
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I. INTRODUCTION

The spin Seebeck effect (SSE) [1–3] refers to the spin
injection from a magnet into the adjacent spin-Hall electrode
that is driven by a temperature gradient, where no charge
transfer across the interface between the spin-injecting
magnet/spin-Hall electrode is involved [4]. While examples
of the spin-Hall electrode range from nonmagnetic metals
[5–9], to oxides [10,11], to magnetic metals and alloys
[12–17], a typical choice of the spin-injecting magnet has
been one of ferrimagnetic insulators such as garnet ferrites or
spinel ferrites [18]. In these ferrimagnets, the magnetization
is the order parameter characterizing the magnetic state, and
it is customary to consider [19–21] that the main actor for
the SSE is the spin wave or the magnon that causes a thermal
version of spin pumping.

Recently, the SSE was measured by choosing a differ-
ent class of materials other than ferrimagnets as the spin-
injecting magnet. In Ref. [22], the SSE in paramagnetic insu-
lators Gd3Ga5O12 and DyScO3 was reported. More recently,
Refs. [23–25] reported the SSE in antiferromagnetic insula-
tors Cr2O3, MnF2, and NiO. The crucial difference between
these paramagnets and antiferromagnets and the ferrimagnets
lies in the following fact. In paramagnets and antiferromag-
nets, the magnetization is not the order parameter. In ferrimag-
nets, by contrast, the magnetization is the broken-symmetry
variable, and thus it plays the role of the order parameter.
Therefore, from a theoretical point of view, the paramagnetic
and antiferromagnetic SSEs have a common feature in that the
spin current is injected from a material that does not possess
spontaneous magnetization [26].

In the literature, the antiferromagnetic SSE has been dis-
cussed theoretically in several publications [27–29]. However,
these works are justified at low enough temperature well
below the Néel temperature TN (T � TN). This is because
the Holstein-Primakoff boson is used in Refs. [27,28], or the
amplitude of the order parameter (staggered magnetization) in
the ground state is assumed to be temperature-independent in
Ref. [29]. In this connection, it is worth mentioning that there
is a theory dealing with spin transport in paramagnets and

antiferromagnets via a Schwinger auxiliary boson/fermion
representation [30], but the theory does not consider the SSE.
Therefore, it is of vital importance to develop a theory that is
applicable at temperatures both near and above TN.

In this paper, we develop a theory of the paramagnetic SSE
and antiferromagnetic SSE at elevated temperatures where
the classical limit of the fluctuation-dissipation theorem is
applicable. For this purpose, we use dissipative stochastic
models that have been well established in the field of dynamic
critical phenomena [31], and were successfully applied to the
ferromagnetic SSE near the Curie temperature [32]. First, we
apply this method to the paramagnetic SSE, where the corre-
sponding dynamic equation is the stochastic Bloch equation
[21]. In this case, calculation of the paramagnetic SSE can
be done in a manner similar to that of the ferromagnetic
SSE. Next, we extend the calculation to the antiferromagnetic
SSE, where the corresponding dynamic equation is the time-
dependent Ginzburg-Landau equation [31]. Note that calcula-
tion of the antiferromagnetic SSE is much more involved than
that of the ferromagnetic and paramagnetic SSEs, since in this
case the two degrees of freedom (magnetization and staggered
magnetization) are tightly coupled by exchange interaction
[33] such that we need to deal with a complex matrix algebra.
Indeed, as one can see in Appendix, a lengthy and tedious
calculation is required in order to obtain the result satisfying
the second law of thermodynamics, i.e., a signal proportional
to the temperature bias.

Starting from these two different models, the paramagnetic
SSE and antiferromagnetic SSE are calculated. We find that,
despite a marked difference in the model equations, both SSEs
are expressed by the same equation, which is proportional to
the spin susceptibility of the spin-injecting magnet multiplied
by the external magnetic field. From this result, as well as
recalling that the spin susceptibility in antiferromagnets has
a kink at TN, we conclude that a cusp structure appears at TN

in the antiferromagnetic SSE signal.
This paper is organized as follows. In Sec. II, we develop

a theory of the paramagnetic SSE. In Sec. III, we extend the
calculation to the antiferromagnetic SSE near and above TN.
Finally in Sec. IV, we discuss and summarize our results.
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II. PARAMAGNETIC SPIN SEEBECK EFFECT

In this section, we develop a theory of the paramagnetic
SSE by extending the calculation of the ferromagnetic SSE
near the Curie temperature [32]. Starting from the stochastic
Bloch equation, we calculate the paramagnetic SSE, and we
show that the signal is proportional to the spin susceptibility of
the spin-injecting magnet multiplied by the external magnetic
field.

A. Model

We consider a bilayer composed of a paramagnetic insula-
tor (PI) with its temperature TPI, and a metal (M) acting as
a spin-Hall electrode with its temperature TM, as shown in
Fig. 1. Our starting point is the stochastic Bloch equation for
localized spin S in PI:

∂

∂t
S = γ H0 × S − �PI(S − Seq ) + Jsd

h̄
σ × S + ξ, (1)

where γ is the gyromagnetic ratio, H0 = H0ẑ is the uniform
external magnetic field, �PI is the spin relaxation rate of PI,
and Jsd is the s-d exchange interaction at the PI/M interface.
The equilibrium value of S is given by

Seq = χPIgμBH0ẑ, (2)

where g is the g-factor, μB is the Bohr magneton, and χPI is
the spin susceptibility of PI. The last term, ξ, on the right-hand
side of Eq. (1) is the thermal noise field in PI, represented by
a Gaussian random variable with zero mean and variance,

〈ξ i(t )ξ j (t ′)〉 = 2kBTPIχPI�PIδi, jδ(t − t ′), (3)

where kB is the Boltzmann constant, and 〈· · · 〉 means averag-
ing over the thermal noise.

Similarly, we consider the Bloch equation for the spin
density σ in M:

∂

∂t
σ = − 1

τM
(σ − χMJsdS) + Jsd

h̄
S × σ + ζ, (4)

FIG. 1. Schematic illustration of the system considered in Sec. II
for the paramagnetic SSE. Here, PI and M refer to a paramagnetic
insulator and a metal, respectively.

where τM is the spin relaxation time of M. The equilibrium
spin density is given by

σeq = χMJsdSeq (5)

with χM being the spin susceptibility of M. The last term on
the right-hand side of Eq. (4) is the thermal noise field in M,
which is represented by a Gaussian random variable with zero
mean and variance,

〈ζ i(t )ζ j (t ′)〉 = 2kBTMχM

τM
δi, jδ(t − t ′). (6)

Here are a few comments on our model. First, the spin
dephasing of M is assumed to be very strong, so that a
precession term of the form γ H0 × σ is disregarded in Eq. (4).
Second, consistent with this assumption, the spin relaxation
rate of PI is assumed to be much weaker than that of M,
i.e., �PI � τ−1

M . Third, although there could be a term S′
eq =

JsdχPIσeq in the equilibrium value of S, such a term does not
affect the following perturbative calculation with respect to
Jsd. Finally, Eqs. (3) and (6) are required by the fluctuation-
dissipation theorem, which is derived from the postulate that
the equilibrium probability of finding the spin variable equals
the Boltzmann distribution [31].

B. Spin injection signal

We calculate the spin current injected into the metal M
by the paramagnetic SSE. Following [32], we define the spin
current Is as the rate of change of the spin density in M,
i.e., Is = ∂

∂t 〈σ z〉. Because the SSE is driven by the dynamic
fluctuations of S and σ [21], it is convenient to introduce
their fluctuation components δS = S − Seq and δσ = σ − σeq.
Then, using the z-component of the Bloch equation (4) and
assuming negligibly small spin memory loss at the PI/M
interface [34–36], Is is calculated to be

Is(t ) = Jsd

h̄
Im〈δS−(t )δσ+(t )〉, (7)

where the quantity O± of a variable O is defined by

O± = Ox ± iOy. (8)

We now assume that the system is in the steady state where
both sides of Eq. (7) are independent of t . Then Is can be
represented spectrally as

Is = Jsd

h̄

∫
ω

Im〈〈δS−
ω δσ+

−ω〉〉, (9)

where the Fourier transform of a function f (t ) is given by
f (t ) = ∫

ω
fωe−iωt with the shorthand notation

∫
ω

= ∫ ∞
−∞

dω
2π

.
In the above equation, the quantity 〈〈δS−

ω δσ+
−ω〉〉 is defined by

〈δS−
ω δσ+

ω′ 〉 = 2πδ(ω + ω′)〈〈δS−
ω δσ+

−ω〉〉.
To evaluate the right-hand side of Eq. (9), we use the

perturbative approach with respect to Jsd, and we expand δS±
ω

and δσ±
ω as

δS± = δS±(0) + δS±(1) (10)

and

δσ± = δσ±(0) + δσ±(1), (11)
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where δS±(0) and δσ±(0) are independent of Jsd, whereas
δS±(1) and δσ±(1) are the first-order corrections. Substituting
Eqs. (10) and (11) into Eq. (9) and summarizing the result up
to linear order with respect to Jsd, the injected spin current is
written as

Is = Jsd

h̄

∫
ω

Im
[〈〈

δS−(0)
ω δσ

+(1)
−ω

〉〉 + 〈〈
δS−(1)

ω δσ
+(0)
−ω

〉〉]
. (12)

Therefore, the remaining task is to calculate δS−(0)
ω , δS−(1)

ω ,
δσ

+(0)
−ω , and δσ

+(1)
−ω in order to evaluate Eq. (12).

We write the Bloch equation (1) for δS±
ω :

(ω ± γ H0 + i�PI )δS±
ω = ±JsdSeq

h̄
δσ±

ω + iξ±
ω , (13)

and the Bloch equation (4) for δσ±
ω :(

ω + iτ−1
M

)
δσ±

ω = i
χMJsd

τM
δS±

ω + iζ±
ω . (14)

From Eqs. (13) and (14), the unperturbed solutions are ob-
tained as

δS−(0)
ω = G(ω)iξ−

ω (15)

and

δσ
+(0)
−ω = −g∗(ω)iζ+

−ω, (16)

where G(ω) = (ω − γ H0 + i�PI)−1 and g(ω) = (ω +
iτ−1

M )−1. In a similar way, the first-order corrections δS−(1)

and δσ+(1) are given by

δS−(1)
ω = −Jsd

h̄
SeqG(ω)g(ω)iζ+

ω (17)

and

δσ
+(1)
−ω = i

JsdχM

τM
g∗(ω)G∗(ω)iξ+

−ω. (18)

Substituting Eqs. (15)–(18) into Eq. (12), the injected spin
current is calculated to be

Is = Ipump
s − Iback

s , (19)

where

Ipump
s = −J2

sd

h̄

∫
ω

|G(ω)|2|g(ω)|2ωχM

τM
〈〈ξ−

ω ξ+
−ω〉〉 (20)

and

Iback
s = −J2

sd

h̄

∫
ω

|G(ω)|2|g(ω)|2 Seq�PI

h̄
〈〈ζ−

ω ζ+
−ω〉〉. (21)

To proceed further, we first use the spectral represen-
tations of Eqs. (3) and (6), which reduce to 〈〈ξ−

ω ξ+
−ω〉〉 =

4kBTPIχPI�PI and 〈〈ζ−
ω ζ+

−ω〉〉 = 4kBTMχM/τM in the present
case. Next, we evaluate the integral over ω by picking up
the magnon pole ω = γ H0 + i�PI, which is justified by the
assumption �PI � τ−1

M mentioned below Eq. (6). After evalu-
ating the residue at the magnon pole, we finally obtain

Is = −2J2
sdτMχM

h̄2 SeqkB(TPI − TM). (22)

Using the relation Seq/h̄ = χPIγ H0, the above result can be
rewritten as

Is = −2J2
sdτMχM

h̄
χPIγ H0kB
T, (23)

where we introduced the notation 
T = TPI − TM.

Equation (23) shows that the paramagnetic SSE is propor-
tional to the spin susceptibility χPI of PI, multiplied by the
external magnetic field H0. This means that the calculated
paramagnetic SSE signal is proportional to the field-induced
magnetization in PI. Note that this result is consistent with
the experimental result reported in Ref. [22]. Later, Eq. (23)
is used to argue that the paramagnetic SSE and the antiferro-
magnetic SSE are expressed by a single equation.

III. ANTIFERROMAGNETIC SPIN SEEBECK EFFECT

In this section, we develop a theory of the antiferro-
magnetic SSE near and above TN. Starting from the time-
dependent Ginzburg-Landau equation for a uniaxial antifer-
romagnet, we calculate the antiferromagnetic SSE and show
that the signal is proportional to the spin susceptibility of the
antiferromagnet, multiplied by the external magnetic field.
As noted in the Introduction, the calculation is much more
involved than that of the previous section, since in this case
the two degrees of freedom (magnetization and staggered
magnetization) are tightly coupled by exchange interaction
[33], such that a complex matrix algebra is required.

A. Model

We consider a bilayer composed of an antiferromagnetic
insulator (AFI) with its temperature TAFI and a metal (M) with
its temperature TM, as shown in Fig. 2. For AFI, we use the
Ginzburg-Landau free energy of the following form [37]:

FGL = ε0

∫
d3r

{
u

2
n2 + v

4

(
n2

)2 + K

2
(n × ẑ)2 + r0

2
m2

+ w

2
m2n2 − H0

h0
· m

}
− Jsdσ · m, (24)

where m and n are, respectively, the total and staggered spins
which are coarse-grained within an effective cell volume v0,
and ε0 = h2

0 is the magnetic energy density with h0 = γ h̄/v0.

FIG. 2. Schematic illustration of the system considered in
Sec. III for the antiferromagnetic SSE. Here, AFI and M refer to an
antiferromagnetic insulator and a metal, respectively.
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In the above equation, the first three terms on the right-hand
side describe the physics of staggered spin n, where u =
(T − TN)/TN measures the distance from the Néel temper-
ature, v is the quartic term coefficient, K is the uniaxial
anisotropy constant, and the gradient term is disregarded
because the spatial fluctuation does not change the main
result as in the case of the ferromagnetic SSE near the Curie
temperature [32]. The fourth term concerns the total spin m,
where r−1

0 = A/(T + �), with two parameters A and �, is
the paramagnetic spin susceptibility of AFI at T > TN in the
dimensionless form. The fifth term comes from the interaction
between m and n [37], and the sixth term is the coupling
between m and a static external magnetic field H0 = H0ẑ
applied parallel to the easy axis. The last term represents the
coupling of m to the spin density σ through the s-d interaction
Jsd at the AFI/M interface. Note that the strength of the
external magnetic field is assumed to be much smaller than
the spin-flop critical field, so that the spin-flop transition is
not considered here.

Following [38,39], we consider the time-dependent
Ginzburg-Landau dynamics for AFI:

∂

∂t
m = γ Hm × m + γ Hn × n + �mHm + ξ, (25)

∂

∂t
n = γ Hn × m + γ Hm × n + �nHn + η, (26)

where �m and �n are dissipation coefficients. The effective
fields Hm and Hn are defined by

Hm = − 1

h0

δFGL

δm
(27)

and

Hn = − 1

h0

δFGL

δn
. (28)

In Eqs. (25) and (26), the two fields ξ and η represent thermal
noises for m and n, taking the form of Gaussian white noises
with zero means and variances:

〈ξ i(t )ξ j (t ′)〉 = 2kBTAFI�m

ε0v0
δi, jδ(t − t ′) (29)

and

〈ηi(t )η j (t ′)〉 = 2kBTAFI�n

ε0v0
δi, jδ(t − t ′). (30)

Note that the two noises ξ and η are assumed to be statistically
independent, such that they satisfy

〈ξ i(t )η j (t ′)〉 = 0. (31)

First, we consider thermal equilibrium of AFI in the ab-
sence of Jsd. The equilibrium value of n is determined by the
condition Hn = 0, which yields neq = neqẑ with

neq =
⎧⎨
⎩

√
|u|
v

=
√

TN−T
TN

1
v

(T < TN),

0 (T > TN)
(32)

due to the uniaxial anisotropy. In deriving the above result, we
assumed that the equilibrium value of m is much smaller than
that of n, i.e., meq � neq, such that a small correction to neq,
which is proportional to wm2

eq, can be neglected [37]. In line

with this assumption, the equilibrium value of the total spin
meq = meqẑ, which is determined by the condition Hm = 0, is
given by

meq = 1

r
H̃0, (33)

where we introduced the normalized magnetic field H̃0 =
H0/h0, and

r = r0 + wn2
eq. (34)

Note that Eq. (33) can be rewritten in the same form as Eq. (2):

meq = χAFI gμBH0, (35)

where we defined the spin susceptibility of AFI by

χAFI = 1

rε0v0
. (36)

In Fig. 3, we plot the calculated χAFI as a function of temper-
ature T near TN, where the development of the staggered spin
reduces the susceptibility [37].

As for M, the physics is described by the spin density σ,
which obeys the Bloch equation of the same form as (4):

∂

∂t
σ = − 1

τM
(σ − χMJsdm) + Jsd

h̄
m × σ + ζ, (37)

where the thermal noise field ζ obeys the same Gaussian
ensemble as Eq. (6). Besides, the equilibrium spin density is
given by

σeq = χMJsdmeq, (38)

which is essentially the same as Eq. (5).
Next, we consider nonequilibrium fluctuations of m, n, and

σ by introducing the following decompositions:

m = meq + δm, (39)

n = neq + δn, (40)

σ = σeq + δσ. (41)

Then, going into the frequency space as well as using the rep-
resentation of Eq. (8), the time-dependent Ginzburg-Landau

FIG. 3. Static spin susceptibility [Eq. (36)] calculated for AFI as
a function of temperature T . Here, A/TN = 0.143, �/TN = 1.14, v =
1.0, and w = 10.0 are used. The dashed line is an extrapolation to
lower temperatures assuming no antiferromagnetic order.
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equation of δm and δn for the minus branch is summarized as

(ω − Â)

(
δm−

ω

δn−
ω

)
= −Jsdmeq

h̄

(
δσ−

ω

0

)
+

(
iξ−

ω

iη−
ω

)
, (42)

where each component of the matrix

Â =
(

a, b
c, d

)
(43)

is given by

a = γ H0 − i�mr, (44)

b = γ h0Kneq, (45)

c = γ h0r neq, (46)

d = γ h0Kmeq − i�nK. (47)

Similarly, the time-dependent Ginzburg-Landau equation of
δm and δn for the plus branch is written as

(ω + Â∗)

(
δm+

ω

δn+
ω

)
= Jsdmeq

h̄

(
δσ+

ω

0

)
+

(
iξ+

ω

iη+
ω

)
. (48)

Finally, the Bloch equation for δσ is written as(
ω + iτ−1

M

)
δσ±

ω = i
χMJsd

τM
δm±

ω + iζ±
ω . (49)

Let us first discuss the spectrum of spin waves in the
present model. For this purpose, we consider Eq. (42) and set
Jsd = 0. Then, the dynamics of δm− and δn− is described by
the propagator

Ĝ = (ω − Â)−1 (50)

= 1

(ω − λ+)(ω − λ−)

(
ω − d, b

c, ω − a

)
, (51)

where

λ± = a + d ±
√

(a − d )2 + 4bc

2
(52)

are the eigenvalues of the two spin wave modes. Now we
define

ω± = ±Reλ±. (53)

FIG. 4. Antiferromagnetic resonance frequency ω± [Eq. (53)]
calculated for AFI as a function of the external magnetic field H̃0 =
H0/h0, where the frequency is renormalized by ωafr = γ h0neq

√
Kr.

Here, A/TN = 0.143, �/TN = 1.14, T/TN = 0.928, v = 1.0, w =
10.0, and K = 0.5 are used.

Then, in the limit of H0 = 0, ω± are given by

ω±(H0 = 0) = ωafr, (54)

where we defined ωafr = γ h0neq

√
Kr. Equation (54) co-

incides with the well-known antiferromagnetic resonance
frequency [40,41] represented within the Ginzburg-Landau
framework [see Eq. (74.12) in [42]]. In Fig. 4, we plot ω±
as a function of the external magnetic field H0.

B. Spin injection signal

The spin current Is = 〈 ∂
∂t σ

z(t )〉 injected into the metal M
can be obtained by the z-component of the Bloch equation
(37):

Is = Jsd

h̄

∫
ω

Im〈〈δm−
ω δσ+

−ω〉〉, (55)

where the steady-state solution is assumed. As in the previous
section, we expand δm±, δn±, and δσ± in powers of Jsd as

δm± = δm±(0) + δm±(1), (56)

δn± = δn±(0) + δn±(1), (57)

δσ± = δσ±(0) + δσ±(1), (58)

where δm±(0), δn±(0), and δσ±(0) are independent of Jsd,
whereas δm±(1), δn±(1), and δσ±(1) are the first-order correc-
tions with respect to Jsd. Then, up to the linear order with
respect to Jsd, Eq. (55) becomes

Is = Jsd

h̄

∫
ω

Im
[〈〈

δm−(0)
ω δσ

+(1)
−ω

〉〉 + 〈〈
δm−(1)

ω δσ
+(0)
−ω

〉〉]
.

(59)

To proceed further, we need to calculate δm−(0)
ω , δm−(1)

ω ,
δσ

+(0)
−ω , and δσ

−(1)
−ω .

The fluctuation δm− of the total spin can be obtained by
operating the propagator Ĝ to Eq. (42) from the left. Then, the
unperturbed solution is given by

δm−(0)
ω = Gm(ω)iξ−

ω + Gn(ω)iη−
ω , (60)

where

Gm(ω) = ω − d

(ω − λ+)(ω − λ−)
, (61)

Gn(ω) = b

(ω − λ+)(ω − λ−)
. (62)

The unperturbed solution for δσ± is exactly the same as in the
previous section, which is given by

δσ±(0)
ω = g(ω)iζ±

ω , (63)

where g(ω) is defined below Eq. (16). Similarly, the first-order
corrections can be calculated to be

δm−(1)
ω = −Jsdmeq

h̄
g(ω)Gm(ω)iζ−

ω , (64)

δσ
+(1)
−ω = i

χMJsd

τM
g∗(ω)[G∗

m(ω)iξ+
−ω + G∗

n(ω)iη+
−ω]. (65)

Substituting Eqs. (60), (63), (64), and (65) into Eq. (59),
the spin current Is injected into M is calculated to be

Is = Ipump
s − Iback

s , (66)
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where the pumping current is given by

Ipump
s = −J2

sdχM

h̄τM

∫
ω

|g(ω)|2ω{|Gm(ω)|2〈〈ξ−
ω ξ+

−ω〉〉

+ |Gn(ω)|2〈〈η−
ω η+

−ω〉〉}, (67)

whereas the backflow current is

Iback
s = J2

sdmeq

h̄2

∫
ω

|g(ω)|2ImGm(ω)〈〈ζ−
ω ζ+

−ω〉〉. (68)

Note that the pumping current in Eq. (67) consists of two
terms proportional to |Gm(ω)|2 and |Gn(ω)|2. This appears
consistent with the result of Ref. [43], where it is argued
that the spin pumping in antiferromagnets contains two terms
proportional to m × ṁ and n × ṅ.

The remaining integral over ω requires a quite long algebra
with the details summarized in Appendix, but the final result
is very simple. Following each step explained in Appendix
and after a lengthy calculation, the pumped and the backflow
currents are, respectively, calculated to be

Ipump
s = −2J2

sdχMτM

h̄2 meqkBTAFI, (69)

Iback
s = −2J2

sdχMτM

h̄2 meqkBTM. (70)

Using the relation in Eq. (35) and introducing the notation

T = TAFI − TM, the above result can be summarized as

Is = −2J2
sdχMτM

h̄
χAFIγ H0kB
T, (71)

where the relation γ h̄ = gμB is used.
Equation (71) means that the antiferromagnetic SSE is

proportional to the external magnetic field H0 times the spin
susceptibility χAFI of AFI, the form of which is exactly the
same as that of the paramagnetic SSE [Eq. (23)].

IV. DISCUSSION AND CONCLUSION

The main result of the present paper is that the expres-
sions of the spin injection signal for the paramagnetic SSE
[Eq. (23)] and the antiferromagnetic SSE [Eq. (71)] are the
same, and both are proportional to the external magnetic
field multiplied by the spin susceptibility of the magnets. The
former result, i.e., the signal being proportional to the external
magnetic field in both SSEs at low fields, is consistent with
two experiments reported by Wu et al. [22,24]. Obviously, the
signal vanishes in the absence of the external magnetic field.
Turning to the latter result that the signal is proportional to the
spin susceptibility of the magnet, the temperature dependence
of the spin susceptibility of paramagnets [χPI(T )] is rather
featureless, whereas that of antiferromagnets χAFI(T ) shows
a kink at TN as the staggered spin reduces the susceptibility
below TN (see Fig. 3). Therefore, the present result indicates
that a cusp structure appears at TN in the antiferromagnetic
SSE signal.

The importance of the above theoretical result and its
impact on future experiments can be summarized as fol-
lows. First, the present work enabled a detailed comparison
between the theory and experiments for the paramagnetic/
antiferromagnetic SSE at elevated temperatures. Second, the

calculation revealed that the spin susceptibility is intimately
related to the paramagnetic/antiferromagnetic SSE. This
means that we can measure the spin susceptibility of a thin
film paramagnet/antiferromagnet through the SSE. Thus, we
predict that the larger the spin susceptibility of the magnet, the
larger is the paramagnetic/antiferromagnetic SSE.

Let us comment on the low-temperature enhancement of
the antiferromagnetic SSE observed in [24]. First, although
the present theory can properly describe the antiferromagnetic
SSE near and above TN, calculation of Is(T ) over a wide
range of temperatures especially at low temperatures is be-
yond our scope. This is because the theory is based on the
Ginzburg-Landau approach, which is valid only near TN, and
it uses a high-temperature (classical) limit of the fluctuation-
dissipation theorem, which is justified at temperatures above
the energy gap of the antiferromagnetic magnons (approxi-
mately a few tens kelvin in MnF2). Second, the possible origin
of the low-temperature peak has been discussed in Ref. [28]
in terms of the cancellation of two high-energy magnons with
different helicities, or in Ref. [44] in terms of phonon drag. A
precise measurement of the antiferromagnetic SSE using the
technique reported in Ref. [45] would be able to distinguish
the true origin of the low-temperature enhancement.

Let us also remark on the sign of the SSE signal. The
present theory concludes the same sign for both the param-
agnetic and antiferromagnetic SSEs. This sign is also equal to
the SSE in a simple ferromagnet [32].

Before ending, we briefly discuss the antiferromagnetic
SSE with an “uncompensated” interface. So far, we assumed
that the AFI/M interface is atomically rough and the mag-
netic moment is compensated there, such that there is no
net magnetization at the interface. In this situation, Eq. (71)
applies to both the a-type antiferromagnet and the g-type
antiferromagnet [46]. On the other hand, idealistically, we can
think of an atomically sharp uncompensated AFI/M interface
where a nonzero net magnetization remains at the interface,
which may be realized in the a-type antiferromagnet. In such
a situation, there appears a coupling between σ and n at the
interface, and we would expect the appearance of a nonzero
antiferromagnetic SSE signal even in the absence of the
external magnetic field.

To summarize, on the basis of the dissipative stochastic
models, we have developed a theory of the SSE in para-
magnets and antiferromagnets at elevated temperatures. For
the paramagnetic SSE, we use the stochastic Bloch equation.
For the antiferromagnetic SSE, by contrast, we use the time-
dependent Ginzburg-Landau equation. Starting from these
two different models, we have found that, despite a marked
difference in the model equations, both the paramagnetic
SSE and the antiferromagnetic SSE are expressed by a single
equation, which is proportional to the external magnetic field
times the spin susceptibility of the spin-injecting magnet.
Moreover, we have clarified that a cusp structure appears at
TN in the antiferromagnetic SSE because of the fact that the
antiferromagnetic spin susceptibility has a kink at this point.
We hope that our theoretical result is tested experimentally by
a careful measurement for the antiferromagnetic SSE.

After completing this work, we became aware of a recent
paper in which the antiferromagnetic SSE in epitaxial FeF2

films is measured [47]. The experimental data support our
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theoretical result, since a clear cusp structure at TN is observed
in the SSE signal.
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APPENDIX: DERIVATION OF EQS. (69) AND (70)

In this Appendix, we present the derivation of Eq. (69) for
Ipump
s and Eq. (70) for Iback

s . Because the calculation of the
latter is easier, we first deal with Eq. (70).

We begin with Iback
s in Eq. (68), and recall the noise

correlator in Eq. (6) with its spectral representation given by
〈〈ζ−

ω ζ+
−ω〉〉 = 4kBTMχM/τM. Then, Iback

s can be written as

Iback
s = 4J2

sdχM

h̄2τM
meqkBTMI1, (A1)

where the integral I1 is defined by

I1 =
∫

ω

|g(ω)|2ImGm(ω). (A2)

We use the expression

ImGm(ω) = − γm(ω − d )(ω − d∗) + γnbc

(ω − λ+)(ω − λ∗+)(ω − λ−)(ω − λ∗−)
,

(A3)

where we introduced γm = −Im a = �m/χ̃AFI and γn =
−Im d = �nK . To proceed further, it is convenient to intro-
duce the following notation:√

(a − d )2 + 4bc =
√

Z = X + iY, (A4)

a + d = � − i�+, (A5)

where X , Y , and � are pure real numbers, and

�± = γm ± γn. (A6)

We evaluate the integral over ω by picking up the magnon
poles ω = λ∗

±, where we assume τ−1
M 	 γm, γn, which means

that the antiferromagnetic magnons are well-defined exci-
tations. Then, after calculating the residues at ω = λ∗

±, the
integral is calculated to be

I1 = −τ 2
M√

Z∗

[
pλ∗

+ + q

(�+ − Y )(X + iY )
− pλ∗

− + q

(�+ + Y )(X − i�+)

]

= −τ 2
M
N
D , (A7)

where we defined

N = pXY + p�+(a∗ + d∗) + 2q�+, (A8)

D = (�2
+ − Y 2)(X 2 + �2

+), (A9)

and we introduced p = γm(a∗ − d ) and q = −γm(a∗ −
d )d∗ + bc�+. Note that in the above equations, we used the
relations λ+ + λ− = a + d and λ+ − λ− = √

Z . The remain-
ing task is to expand both N and D up to the second order

with respect to γm and γn. Using the relations X 2 − Y 2 ≈
(a − d )2 + 4bc and XY ≈ −(a − d )�−, the numerator and
the denominator are calculated to be

N ≈ 1
2 {(�2

+ − �2
−)(a − d )2 + 4bc�2

+}, (A10)

D ≈ (�2
+ − �2

−)(a − d )2 + 4bc�2
+, (A11)

where the higher-order corrections with respect to γm, γn are
disregarded. Substituting this result into Eq. (A1), we obtain
Eq. (70).

Next, we come back to Ipump
s in Eq. (67). It is convenient to

divide this quantity as

Ipump
s = Ipump

s,m + Ipump
s,n , (A12)

where

Ipump
s,m = −J2

sdχM

h̄τM

∫
ω

|g(ω)|2ω|Gm(ω)|2〈〈ξ−
ω ξ+

−ω〉〉, (A13)

Ipump
s,n = −J2

sdχM

h̄τM

∫
ω

|g(ω)|2ω|Gn(ω)|2〈〈η−
ω η+

−ω〉〉. (A14)

We first calculate Ipump
s,n because it is easier to evaluate.

Recalling the noise correlator in Eq. (30) with its spectral
representation given by 〈〈η−

ω η+
−ω〉〉 = 4kBTAFI�n/ε0v0, Ipump

s,n

can be written as

Ipump
s,n = −4J2

sdχM�n

h̄ε0v0
kBTAFII2, (A15)

where the integral I2 is defined by

I2 =
∫

ω

|g(ω)|2ω|Gn(ω)|2, (A16)

with the last term of the integrand given by

|Gn(ω)|2 = b2

(ω − λ+)(ω − λ∗+)(ω − λ−)(ω − λ∗−)
. (A17)

The integral over ω can be evaluated as before by picking up
the magnon poles ω = λ∗

±. After calculating the residues at
ω = λ∗

±, the integral is calculated to be

I2 = b2τ 2
M√

Z∗

[
λ∗

+
(�+ − Y )(X + iY )

+ λ∗
−

(�+ + Y )(X − i�+)

]

= b2τ 2
M[�+(a∗ + d∗) + XY ]

(�2+ − Y 2)(X 2 + �2+)
. (A18)

Calculation of Ipump
s,m can be done in a similar way. We recall

the noise correlator in Eq. (3) with its spectral representation
given by 〈〈ξ−

ω ξ+
−ω〉〉 = 4kBTAFI�m/ε0v0. Then, Ipump

s,n can be
written as

Ipump
s,m = −4J2

sdχM�m

h̄ε0v0
kBTAFII3, (A19)
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where the integral I3 is defined by

I3 =
∫

ω

|g(ω)|2ω|Gm(ω)|2, (A20)

with the last term of the integrand given by

|Gm(ω)|2 = (ω − d )(ω − d∗)

(ω − λ+)(ω − λ∗+)(ω − λ−)(ω − λ∗−)
.

(A21)

The integral over ω can be evaluated as before by picking up
the magnon poles ω = λ∗

±, yielding

I3 = τ 2
M√
Z∗

[
kλ∗

+ + k

(�+ − Y )(X + iY )
+ kλ∗

− + l

(�+ + Y )(X − i�+)

]

= τ 2
M[kXY + k�+(a∗ + d∗) + 2l�+]

(�2+ − Y 2)(X 2 + �2+)
, (A22)

where we defined k = a∗(a∗ − d ) + bc and l = (a∗ −
d )(−ad∗ + bc).

Summing up Ipump
s,m and Ipump

s,n , we obtain

Ipump
s = − 4J2

sdχM

h̄τMε0v0
kBTAFI(�nI2 + �mI3). (A23)

To proceed further, we first substitute �m = γm/r and �n =
γn/K , and we rewrite �nI2 + �mI3 as

�nI2 + �mI3 = τ 2
M
M
D , (A24)

M = γm

r
{kXY + �+[k(a∗ + d∗) + 2l]}

+ γnb2

K
[�+(a∗ + d∗) + XY ], (A25)

where D is defined in Eq. (A9). Then, we expand both M and
D up to the second order with respect to γm and γn. Using
the relation a ± d ≈ γ H0(1 ± K/r) and b2/K = bc/r, we
obtain

M ≈ γ H0

2r
{(�2

+ − �2
−)(a − d )2 + 4bc�2

+}, (A26)

where D is given in Eq. (A11). Substituting the above result
into Eq. (A23), we finally obtain Eq. (69), where Eqs. (35) and
(36) are used.

[1] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K.
Ando, S. Maekawa, and E. Saitoh, Nature (London) 455, 778
(2008).

[2] C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P.
Heremans, and R. C. Myers, Nat. Mater. 9, 898 (2010).

[3] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T.
Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S.
Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).

[4] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11,
391 (2012).

[5] K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, and
E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010).

[6] D. Qu, S. Y. Huang, J. Hu, R. Wu, and C. L. Chien, Phys. Rev.
Lett. 110, 067206 (2013).

[7] D. Qu, S. Y. Huang, B. F. Miao, S. X. Huang, and C. L. Chien,
Phys. Rev. B 89, 140407(R) (2014).

[8] N. Vlietstra, J. Shan, B. J. van Wees, M. Isasa, F. Casanova, and
J. Ben Youssef, Phys. Rev. B 90, 174436 (2014).

[9] E.-J. Guo, J. Cramer, A. Kehlberger, C. A. Ferguson, D. A.
MacLaren, G. Jakob, and M. Kläui, Phys. Rev. X 6, 031012
(2016).

[10] Z. Qiu, D. Hou, T. Kikkawa, K. Uchida, and E. Saitoh, Appl.
Phys. Exp. 8, 083001 (2015).

[11] Y. Shiomi, Y. Handa, T. Kikkawa, and E. Saitoh, Appl. Phys.
Lett. 106, 232403 (2015).

[12] B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, Phys. Rev.
Lett. 111, 066602 (2013).

[13] T. Kikkawa, K. Uchida, S. Daimon, Y. Shiomi, H. Adachi, Z.
Qiu, D. Hou, X.-F. Jin, S. Maekawa, and E. Saitoh, Phys. Rev.
B 88, 214403 (2013).

[14] J. B. S. Mendes, R. O. Cunha, O. Alves Santos, P. R. T. Ribeiro,
F. L. A. Machado, R. L. Rodríguez-Suárez, A. Azevedo, and
S. M. Rezende, Phys. Rev. B 89, 140406(R) (2014).

[15] T. Seki, K. Uchida, T. Kikkawa, Z. Qiu, E. Saitoh, and K.
Takanashi, Appl. Phys. Lett. 107, 092401 (2015).

[16] D. Qu, S. Y. Huang, and C. L. Chien, Phys. Rev. B 92,
020418(R) (2015).

[17] L. K. Zou, S. H. Wang, Y. Zhang, J. R. Sun, J. W. Cai, and S. S.
Kang, Phys. Rev. B 93, 014422 (2016).

[18] K. Uchida, H. Adachi, T. Kikkawa, A. Kirihara, M. Ishida,
S. Yorozu, S. Maekawa, and E. Saitoh, Proc. IEEE 104, 1946
(2016).

[19] J. Xiao, G. E. W. Bauer, K. C. Uchida, E. Saitoh, and S.
Maekawa, Phys. Rev. B 81, 214418 (2010).

[20] H. Adachi, J. I. Ohe, S. Takahashi, and S. Maekawa, Phys. Rev.
B 83, 094410 (2011).

[21] H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Rep. Prog.
Phys. 76, 036501 (2013).

[22] S. M. Wu, J. E. Pearson, and A. Bhattacharya, Phys. Rev. Lett.
114, 186602 (2015).

[23] S. Seki, T. Ideue, M. Kubota, Y. Kozuka, R. Takagi, M.
Nakamura, Y. Kaneko, M. Kawasaki, and Y. Tokura, Phys. Rev.
Lett. 115, 266601 (2015).

[24] S. M. Wu, W. Zhang, K. C. Amit, P. Borisov, J. E. Pearson, J. S.
Jiang, D. Lederman, A. Hoffmann, and A. Bhattacharya, Phys.
Rev. Lett. 116, 097204 (2016).

[25] J. Holanda, D. S. Maior, O. Alves Santos, L. H. Vilela-
Leao, J. B. S. Mendes, A. Azevedo, R. L. Rodríguez-
Suárez, and S. M. Rezende, Appl. Phys. Lett. 111, 172405
(2017).

[26] C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley,
New York, 1986).

[27] Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa, Phys. Rev.
B 87, 014423 (2013).

[28] S. M. Rezende, R. L. Rodríguez-Suárez, and A. Azevedo, Phys.
Rev. B 93, 014425 (2016).

064419-8

https://doi.org/10.1038/nature07321
https://doi.org/10.1038/nature07321
https://doi.org/10.1038/nature07321
https://doi.org/10.1038/nature07321
https://doi.org/10.1038/nmat2860
https://doi.org/10.1038/nmat2860
https://doi.org/10.1038/nmat2860
https://doi.org/10.1038/nmat2860
https://doi.org/10.1038/nmat2856
https://doi.org/10.1038/nmat2856
https://doi.org/10.1038/nmat2856
https://doi.org/10.1038/nmat2856
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1063/1.3507386
https://doi.org/10.1063/1.3507386
https://doi.org/10.1063/1.3507386
https://doi.org/10.1063/1.3507386
https://doi.org/10.1103/PhysRevLett.110.067206
https://doi.org/10.1103/PhysRevLett.110.067206
https://doi.org/10.1103/PhysRevLett.110.067206
https://doi.org/10.1103/PhysRevLett.110.067206
https://doi.org/10.1103/PhysRevB.89.140407
https://doi.org/10.1103/PhysRevB.89.140407
https://doi.org/10.1103/PhysRevB.89.140407
https://doi.org/10.1103/PhysRevB.89.140407
https://doi.org/10.1103/PhysRevB.90.174436
https://doi.org/10.1103/PhysRevB.90.174436
https://doi.org/10.1103/PhysRevB.90.174436
https://doi.org/10.1103/PhysRevB.90.174436
https://doi.org/10.1103/PhysRevX.6.031012
https://doi.org/10.1103/PhysRevX.6.031012
https://doi.org/10.1103/PhysRevX.6.031012
https://doi.org/10.1103/PhysRevX.6.031012
https://doi.org/10.7567/APEX.8.083001
https://doi.org/10.7567/APEX.8.083001
https://doi.org/10.7567/APEX.8.083001
https://doi.org/10.7567/APEX.8.083001
https://doi.org/10.1063/1.4922294
https://doi.org/10.1063/1.4922294
https://doi.org/10.1063/1.4922294
https://doi.org/10.1063/1.4922294
https://doi.org/10.1103/PhysRevLett.111.066602
https://doi.org/10.1103/PhysRevLett.111.066602
https://doi.org/10.1103/PhysRevLett.111.066602
https://doi.org/10.1103/PhysRevLett.111.066602
https://doi.org/10.1103/PhysRevB.88.214403
https://doi.org/10.1103/PhysRevB.88.214403
https://doi.org/10.1103/PhysRevB.88.214403
https://doi.org/10.1103/PhysRevB.88.214403
https://doi.org/10.1103/PhysRevB.89.140406
https://doi.org/10.1103/PhysRevB.89.140406
https://doi.org/10.1103/PhysRevB.89.140406
https://doi.org/10.1103/PhysRevB.89.140406
https://doi.org/10.1063/1.4929691
https://doi.org/10.1063/1.4929691
https://doi.org/10.1063/1.4929691
https://doi.org/10.1063/1.4929691
https://doi.org/10.1103/PhysRevB.92.020418
https://doi.org/10.1103/PhysRevB.92.020418
https://doi.org/10.1103/PhysRevB.92.020418
https://doi.org/10.1103/PhysRevB.92.020418
https://doi.org/10.1103/PhysRevB.93.014422
https://doi.org/10.1103/PhysRevB.93.014422
https://doi.org/10.1103/PhysRevB.93.014422
https://doi.org/10.1103/PhysRevB.93.014422
https://doi.org/10.1109/JPROC.2016.2535167
https://doi.org/10.1109/JPROC.2016.2535167
https://doi.org/10.1109/JPROC.2016.2535167
https://doi.org/10.1109/JPROC.2016.2535167
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.83.094410
https://doi.org/10.1103/PhysRevB.83.094410
https://doi.org/10.1103/PhysRevB.83.094410
https://doi.org/10.1103/PhysRevB.83.094410
https://doi.org/10.1088/0034-4885/76/3/036501
https://doi.org/10.1088/0034-4885/76/3/036501
https://doi.org/10.1088/0034-4885/76/3/036501
https://doi.org/10.1088/0034-4885/76/3/036501
https://doi.org/10.1103/PhysRevLett.114.186602
https://doi.org/10.1103/PhysRevLett.114.186602
https://doi.org/10.1103/PhysRevLett.114.186602
https://doi.org/10.1103/PhysRevLett.114.186602
https://doi.org/10.1103/PhysRevLett.115.266601
https://doi.org/10.1103/PhysRevLett.115.266601
https://doi.org/10.1103/PhysRevLett.115.266601
https://doi.org/10.1103/PhysRevLett.115.266601
https://doi.org/10.1103/PhysRevLett.116.097204
https://doi.org/10.1103/PhysRevLett.116.097204
https://doi.org/10.1103/PhysRevLett.116.097204
https://doi.org/10.1103/PhysRevLett.116.097204
https://doi.org/10.1063/1.5001694
https://doi.org/10.1063/1.5001694
https://doi.org/10.1063/1.5001694
https://doi.org/10.1063/1.5001694
https://doi.org/10.1103/PhysRevB.87.014423
https://doi.org/10.1103/PhysRevB.87.014423
https://doi.org/10.1103/PhysRevB.87.014423
https://doi.org/10.1103/PhysRevB.87.014423
https://doi.org/10.1103/PhysRevB.93.014425
https://doi.org/10.1103/PhysRevB.93.014425
https://doi.org/10.1103/PhysRevB.93.014425
https://doi.org/10.1103/PhysRevB.93.014425


SPIN SEEBECK EFFECT IN PARAMAGNETS AND … PHYSICAL REVIEW B 100, 064419 (2019)

[29] S. A. Bender, H. Skarsvåg, A. Brataas, and R. A. Duine, Phys.
Rev. Lett. 119, 056804 (2017).

[30] S. Okamoto, Phys. Rev. B 93, 064421 (2016).
[31] P. M. Chaikin and T. C. Lubensky, Principles of

Condensed Matter Physics (Cambridge University Press,
Cambridge, 1995).

[32] H. Adachi, Y. Yamamoto, and M. Ichioka, J. Phys. D 51, 144001
(2018).

[33] A. Kamra, R. E. Troncoso, W. Belzig, and A. Brataas, Phys.
Rev. B 98, 184402 (2018).

[34] P. M. Haney, H. W. Lee, K. J. Lee, A. Manchon, and M. D.
Stiles, Phys. Rev. B 88, 214417 (2013).

[35] K. Chen and S. Zhang, Phys. Rev. Lett. 114, 126602 (2015).
[36] L. Zhu, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 122,

077201 (2019).
[37] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrody-

namics of Continuous Media (Butterworth-Heinemann, Oxford,
1984).

[38] R. Freedman and G. F. Mazenko, Phys. Rev. B 13, 4967
(1976).

[39] B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. B
13, 1299 (1976).

[40] T. Nagamiya, Prog. Theor. Phys. 6, 350 (1951).
[41] C. Kittel, Phys. Rev. 82, 565 (1951).
[42] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2

(Butterworth-Heinemann, Oxford, 1980).
[43] R. Cheng, J. Xiao, Q. Niu, and A. Brataas, Phys. Rev. Lett. 113,

057601 (2014).
[44] H. Adachi, K. Uchida, E. Saitoh, J. Ohe, S. Takahashi, and S.

Maekawa, Appl. Phys. Lett. 97, 252506 (2010).
[45] R. Iguchi, K. I. Uchida, S. Daimon, and E. Saitoh, Phys. Rev. B

95, 174401 (2017).
[46] M. W. Daniels, W. Guo, G. M. Stocks, D. Xiao, and J. Xiao,

New J. Phys. 17, 103039 (2015).
[47] J. Li, Z. Shi, V. H. Ortiz, M. Aldosary, C. Chen, V. Aji, P. Wei,

and J. Shi, Phys. Rev. Lett. 122, 217204 (2019).

064419-9

https://doi.org/10.1103/PhysRevLett.119.056804
https://doi.org/10.1103/PhysRevLett.119.056804
https://doi.org/10.1103/PhysRevLett.119.056804
https://doi.org/10.1103/PhysRevLett.119.056804
https://doi.org/10.1103/PhysRevB.93.064421
https://doi.org/10.1103/PhysRevB.93.064421
https://doi.org/10.1103/PhysRevB.93.064421
https://doi.org/10.1103/PhysRevB.93.064421
https://doi.org/10.1088/1361-6463/aab1d1
https://doi.org/10.1088/1361-6463/aab1d1
https://doi.org/10.1088/1361-6463/aab1d1
https://doi.org/10.1088/1361-6463/aab1d1
https://doi.org/10.1103/PhysRevB.98.184402
https://doi.org/10.1103/PhysRevB.98.184402
https://doi.org/10.1103/PhysRevB.98.184402
https://doi.org/10.1103/PhysRevB.98.184402
https://doi.org/10.1103/PhysRevB.88.214417
https://doi.org/10.1103/PhysRevB.88.214417
https://doi.org/10.1103/PhysRevB.88.214417
https://doi.org/10.1103/PhysRevB.88.214417
https://doi.org/10.1103/PhysRevLett.114.126602
https://doi.org/10.1103/PhysRevLett.114.126602
https://doi.org/10.1103/PhysRevLett.114.126602
https://doi.org/10.1103/PhysRevLett.114.126602
https://doi.org/10.1103/PhysRevLett.122.077201
https://doi.org/10.1103/PhysRevLett.122.077201
https://doi.org/10.1103/PhysRevLett.122.077201
https://doi.org/10.1103/PhysRevLett.122.077201
https://doi.org/10.1103/PhysRevB.13.4967
https://doi.org/10.1103/PhysRevB.13.4967
https://doi.org/10.1103/PhysRevB.13.4967
https://doi.org/10.1103/PhysRevB.13.4967
https://doi.org/10.1103/PhysRevB.13.1299
https://doi.org/10.1103/PhysRevB.13.1299
https://doi.org/10.1103/PhysRevB.13.1299
https://doi.org/10.1103/PhysRevB.13.1299
https://doi.org/10.1143/ptp/6.3.350
https://doi.org/10.1143/ptp/6.3.350
https://doi.org/10.1143/ptp/6.3.350
https://doi.org/10.1143/ptp/6.3.350
https://doi.org/10.1103/PhysRev.82.565
https://doi.org/10.1103/PhysRev.82.565
https://doi.org/10.1103/PhysRev.82.565
https://doi.org/10.1103/PhysRev.82.565
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1063/1.3529944
https://doi.org/10.1063/1.3529944
https://doi.org/10.1063/1.3529944
https://doi.org/10.1063/1.3529944
https://doi.org/10.1103/PhysRevB.95.174401
https://doi.org/10.1103/PhysRevB.95.174401
https://doi.org/10.1103/PhysRevB.95.174401
https://doi.org/10.1103/PhysRevB.95.174401
https://doi.org/10.1088/1367-2630/17/10/103039
https://doi.org/10.1088/1367-2630/17/10/103039
https://doi.org/10.1088/1367-2630/17/10/103039
https://doi.org/10.1088/1367-2630/17/10/103039
https://doi.org/10.1103/PhysRevLett.122.217204
https://doi.org/10.1103/PhysRevLett.122.217204
https://doi.org/10.1103/PhysRevLett.122.217204
https://doi.org/10.1103/PhysRevLett.122.217204

