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Anomalous hysteresis loops of ferrimagnetic amorphous alloys in high magnetic field in the vicinity of
the compensation temperature have so far been explained by sample inhomogeneities. We obtain the H -T
magnetic phase diagram for the ferrimagnetic GdFeCo alloy using a two-sublattice model in the paramagnetic
rare-earth ion approximation and taking into account rare-earth (Gd) magnetic anisotropy. It is shown that if
the magnetic anisotropy of the f sublattice is larger than that of the d sublattice, the tricritical point can be at
higher temperature than the compensation point. The obtained phase diagram explains the observed anomalous
hysteresis loops as a result of high-field magnetic phase transition, the order of which changes with temperature.
It also implies that in the vicinity of the magnetic compensation point the shape of magnetic hysteresis loop
strongly depends on temperature.
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I. INTRODUCTION

Rare-earth amorphous alloys and intermetallics are a large
class of magnetic materials allowing us to change their mag-
netic properties in a wide range through a subtle change
in the composition, temperature, or application of magnetic
field [1–5]. The materials have already found applications as
hard magnets and recording media, and they still offer a rich
playground in the areas of spintronics [6], magnonics [7], and
ultrafast magnetism [8–17].

GdFeCo is a particular example of such an amorphous
alloy. It is a 3d-4 f ferrimagnet with compensation tempera-
ture [18], at which the magnetizations of the two sublattices
become equal. At temperatures lower than the compensation
temperature, the magnetization of the rare-earth (Gd) sublat-
tice M f is larger than that of the transition metal (Fe) Md

(M f − Md > 0), whereas at higher temperatures M f − Md <

0. Many studies of GdFeCo, GdFe, and GdCo compounds as
well as magnets with different rare-earth ions in high magnetic
field revealed triple hysteresis loops in the vicinity of the mag-
netization compensation point [19–23]. The observed triple
loops are clearly different from the hysteresis loop normally
expected for a single thin film, where one would not expect a
sudden decrease in magnetization in the strong applied mag-
netic field. However, hysteresis loops of this form are typical
for multilayered structures. To emphasize the difference, we
will refer to the loops in single-layer structures as anomalous.
These loops are strongly dependent on temperature. Earlier
similar behavior was explained by sample inhomogeneities
[23] or strong exchange bias between surface and bulk layers
that have different stoichiometric compositions of the alloy;
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in particular, this has led to the estimation of the strongest
reported exchange bias field of several teslas [24]. However, to
date no theoretical model has been proposed that would allow
us to calculate magnetization curves that would explain exper-
imental data. In this paper, we use a model for a homogeneous
two-sublattice ferrimagnet film and suggest an alternative
explanation for the observed anomalous hysteresis loops.

Figure 1 shows the results of high-magnetic-field measure-
ments of the magneto-optical Kerr effect in GdFeCo [22]. The
composition of the alloy with 24% Gd, 66.5% Fe, and 9.5%
Co resulted in the compensation temperature Tcomp = 283 K.
The field was applied at the normal to the sample, which
is also the easy magnetization axis. The measurements were
done at the probe wavelength of 630 nm in the polar Kerr
geometry. In this case the probe is predominantly sensitive to
the magnetization of the Fe sublattice. Therefore, the obtained
hysteresis loops reveal the field dependence of the orientation
of the Fe magnetization.

It is seen that upon an increase of the field, first, a minor
hysteresis loop shows up, which corresponds to the magneti-
zation reversal. A further increase of the field does not change
the orientation of the magnetization until a critical field is
reached. This field launches a spin-flop transition, which is
seen as a decrease of the magneto-optical signal. At this field
the magnetizations of the sublattices turn from the normal of
the sample, get canted, and form a noncollinear state. The
character of the spin-flop transition changes with temperature.
Below the magnetic compensation temperature the spin-flop
transition occurs gradually (see loops for 260 and 277 K in
Fig. 1). Just above the compensation point at the spin-flop
field one observes an abrupt change in the magnetic structure
(see loops for 289 and 291 K in Fig. 1). Upon a further
increase of the sample temperature the transition is seen as
gradual again (see loop at 321 K in Fig. 1). Abrupt and gradual
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FIG. 1. Static magneto-optic Kerr effect in a GdFeCo sample
measured at 630-nm probe wavelength at different temperatures from
260 to 321 K. A paramagnetic background was subtracted from
the measurements. The compensation temperature is 283 K [22].
Black and red arrows indicate second- and first-order transitions,
respectively.

changes in magnetization induced by external magnetic field
are characteristic features of first- and second-order phase
transitions, respectively. Hence, these measurements imply
that the order of the phase transition changes from second to
first and back to second upon a temperature increase across
the compensation point. Such a temperature-dependent order
of the spin-flop transition has not been described for GdFeCo
in the literature before.

Note that, although phase diagrams for 3d-4 f ferrimag-
nets were first obtained theoretically almost 50 years ago
[25,26] and supported by numerous experiments (see [27]
and references therein), in the studies performed so far the
anisotropy of the transition-metal sublattice was taken to be
larger than that of the rare-earth sublattice. The existing results
for the magnetic phase diagrams fail to explain the anomalous
hysteresis loops observed experimentally [22–24]. Unusual
behavior of the critical fields in rare-earth intermetallics in
the case of prevailing anisotropy of the rare-earth sublattice
was recently investigated by some of the authors theoretically
for HoFexAl12−x [28,29]. Here we show that if the rare-earth
anisotropy is larger than that of the transition metal, the tri-
critical point on the phase diagram lies at higher temperatures
with respect to the compensation point. As a result, the ob-
served hysteresis loops can be explained in terms of intrinsic
first- and second-order phase transitions in the intermetallic
samples.

II. MAGNETIC PHASE DIAGRAM

To obtain the H-T phase diagram, we derive the ther-
modynamic potential for a two-sublattice ferrimagnet in the
paramagnetic rare-earth ion approximation [25–27]. We start
with the Hamiltonian for a system of f and d ions in an

external magnetic field in the form [30]

H = H f + H f −d + Hd , (1)

where

Hd = Hd
cr −

∑
i1,i2∈d

J d
i1i2 Si1 Si2 + ∣∣gd

J

∣∣μBH
∑
i∈d

Ji,

H f −d = −
∑

i1∈ f ,i2∈d

J f −d
i1i2

Si1 Si2 ,

H f = H f
cr + ∣∣gf

J

∣∣μBH
∑
i∈ f

Ji. (2)

In the one-sublattice Hamiltonian Hd for the d sublat-
tice the first term represents the crystal field Hamiltonian
(see the Appendix), the second term is the intrasublattice ex-
change interaction, and the last term is the Zeeman energy in
the external magnetic field H . The second component, Hf −d ,
of the total Hamiltonian is the intrasublattice exchange inter-
action. The f -sublattice Hamiltonian Hd consists of crystal
field and Zeeman energy. We neglect the exchange within the
f sublattice because its magnitude is several orders smaller
than f -d exchange [30]. The summation is performed over
the ions belonging to f and d sublattices, Ji = Li + Si is the
total angular momentum of an operator for the ith ion, and
J d and J f −d are the matrices of the exchange interaction
within one sublattice and between sublattices, respectively.
In the following, we assume the g factors for rare-earth and
transition metal s ions are g ≡ |gf

J | ≈ |gd
J | ≈ 2.

Using the procedure described in the Appendix, we derive
the thermodynamic potential of the nonequilibrium state (ef-
fective free energy) where the parameter is the orientation of
the d-sublattice magnetization vector Md . The value of this
magnetization is assumed to be saturated due to the large d-d
exchange with a corresponding exchange field of the order
of 106–107 Oe. We also assume that the magnetization of
the f sublattice is defined by the effective magnetic field
acting on it, Heff = H − λMd , where λ is the f –d exchange
coupling constant (see the Appendix). Finally, we arrive at the
thermodynamic potential in the form given by Eq. (3). Finally,
we obtain

� = −Md · H −
∫ Heff

0
gJBJ

(
gJμBh

kT

)
dh + Kf sin2 θ f

+ Kd sin2 θd , (3)

where BJ (x) is the Brillouin function, J = 7/2 is the ground
state total angular momentum of the Gd ion, and Kf and Kd

denote the uniaxial magnetic anisotropy constants for the two
sublattices, which are assumed to have different values. In our
spherical coordinate system, the polar axis lies in the direction
of the easy magnetization axis, and the angles θ f and θd are the
polar angles for magnetizations of rare-earth and transition-
metal sublattices, respectively.

When the magnetic field H is applied along the easy axis,
the effective free energy may be represented as a function of
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FIG. 2. (a) The H -T phase diagram near the compensation point
Tcomp for GdFeCo in magnetic field directed along the easy mag-
netization axis. The dashed lines are the stability loss lines for the
corresponding phases; solid lines correspond to the lines of phase
transitions. (b) The magnified area of the H -T phase diagram near
the tricritical point P. The line PQ corresponds to the stability loss
of the noncollinear phase. (c) The qualitative zoomed-out H -T phase
diagram up to magnetic fields of the order of 200 T.

just one order parameter θd :

� = −Md H cos θd −
∫ Heff (θd )

0
gJBJ

(
gJμBh

kT

)
dh

+ Kf

(
λMd sin θd

Heff (θd )

)2

+ Kd sin2 θd , (4)

where Heff (θd ) =
√

H2 + λ2M2
d − 2HλMd cos θd .

Using the expression for the thermodynamic potential (4)
and the method described in Ref. [27], we numerically cal-
culate the magnetic phase diagram in the coordinates “H-T ”
(Fig. 2) and calculate the magnetization curves shown in
Fig. 3. The ground states of the system are found by minimiza-
tion of the thermodynamic potential (4) with regard to the or-
der parameter θd . At the minima one finds ∂�

∂θd
= 0 and ∂2�

∂θ2
d

>

0. The lines of stability loss, where ∂2�

∂θ2
d

= 0, are found for

each phase. In terms of Landau theory of the phase transitions,
if the thermodynamic potential is written in terms of Taylor
series with respect to the order parameter � = a(H, T )θ2

d +
1
2 b(H, T )θ4

d + c(H, T )θ6
d + · · · , the second-order phase tran-

sition is observed when a(H, T ) = 0 and b(H, T ) is positive.
If a(H, T ) > 0, c(H, T ) > 0, but b(H, T ) < 0, the system
undergoes the first-order phase transition.

Near the first-order phase transition two possible stationary
states coexist, corresponding to one local (metastable) and one
global (stable) minimum of the thermodynamic potential.

FIG. 3. Dependence of the component of the d-sublattice mag-
netization along the easy-axis direction on the magnetic field at
different temperatures. Black and red arrows indicate second- and
first-order transition points, respectively.

For the numerical calculations, we used the following
set of parameters: Tcomp = 283 K, TC = 500 K, M f (0) =
7 μB/f.u., Md (0) = 6.5 μB/f.u., and the exchange constant
λ = 22 T/μB. To the best of our knowledge, no experimental
data for the strength of the magnetic anisotropy of the rare-
earth sublattice are available for the GdFeCo alloy. Nev-
ertheless, until now it has been believed that the magnetic
anisotropy of the Gd sublattice is smaller than that of the iron
sublattice. Here we show that by taking Kf ≈ 0.6 K/f.u. and
neglecting the d-sublattice anisotropy one obtains a qualita-
tive agreement of the calculated magnetic phase diagram with
the experimental data from the recent study [22].

For analytical investigation of the phase diagram, we de-
scribe the two-sublattice ferrimagnet in terms of the antifer-
romagnetic vector L = M f − Md and the net magnetization
M = M f + Md . Note that in the vicinity of the compensation
point the difference between the sublattice magnetizations
|M f − Md | � L is small but not zero. These two vectors are
parametrized using sets of angles θ, ε, ϕ, and β. The angles
are defined so that

θ f = θ − ε, θd = π − θ − ε,

ϕ f = ϕ − β, ϕd = π + ϕ + β,
(5)

where ϕ f and ϕd are the azimuthal angles for magnetiza-
tions of rare-earth and transition-metal sublattices, respec-
tively. In the chosen coordinate system the azimuthal axis
lies in plane perpendicular to the easy axis. In this case
the antiferromagnetic vector may be naturally defined as
L = (L sin θ cos ϕ, L sin θ sin ϕ, L cos θ ). In the vicinity of the
second-order phase transition the expansion of the thermody-
namic potential (3) may be performed in the series of angles θ ,
ε, ϕ, and β, which can be seen as the order parameters. Using
the expansion, we obtain analytical expressions that describe
the behavior of the order parameters in different phases in the
vicinity of the compensation temperature.

064409-3



M. D. DAVYDOVA et al. PHYSICAL REVIEW B 100, 064409 (2019)

In the collinear phase to the left of the compensation point
[green area in Fig. 2(a)] the parameter θ is equal to zero. To
the right of the compensation temperature a collinear phase

with θ = π is the stable phase [blue area in Fig. 2(a)]. The
noncollinear phase, which is shown in Fig. 2(a) by a yellow
area, can be described by analytical expression

cos θ ≈ −χ
(
H2 − H2

1

)
6χH�HA

±
√

χ2
(
H2 − H2

1

)2 + 12χH2�HA[(M f − Md ) + χ�HA]

6χH�HA
, (6)

where χ = (M f + Md )2/(2Md M f λ), H2
1 = 2 Kd +Kf

χ
, and

�HA = 2 Kf −Kd

M f +Md
. If the condition �HA > 0 is satisfied,

the first-order transition between the noncollinear and the
collinear phases θ = π will occur at temperatures higher than
the compensation point, which follows from expression (6).

III. RESULTS AND DISCUSSION

Three different phases are present in the magnetic phase
diagram. For convenience, we label the phases by the ori-
entation of antiferromagnetic vector L = M f − Md in these
phases and also schematically show the magnetization ori-
entations in each phase in Figs. 2(a) and 2(c). The phases
are the low-temperature collinear phase θ = 0 (green area),
the high-temperature collinear phase θ = π (blue area), and
the noncollinear (angular) phase θ = θ (H, T ) (yellow area),
which is described by Eq. (6). The collinear phase θ = 0 exists
below line AA′, whereas the collinear phase θ = π exists
below line BB′. These lines are the stability loss lines for
the corresponding phases. The area of the angular phase is
limited from below by the curve AQPB. The zoomed-in area
of the phase diagram around point P is shown in Fig. 2(b),
and the zoomed-out phase diagram is shown in Fig. 2(c)
along with schematically drawn directions of the sublattice
magnetizations in each phase. At the dashed gray line in
Fig. 2(c) the condition Heff (T ) = 0 is fulfilled.

There are several first- and second-order phase transitions
in the vicinity of the magnetization compensation temperature
Tcomp. The second-order phase transitions are denoted by the
solid lines AR and PB and are characterized by a continuous
change of the order parameter across the line. The dashed
lines in Fig. 2 are the lines of the stability loss and denote
the theoretical temperature-dependent boundaries for the field
hysteresis around the first-order phase transition at H = 0.
The solid line between Tcomp and point P corresponds to
another and less trivial first-order phase transition. The magni-
fied area of the magnetic phase diagram in the vicinity of point
P is shown in Fig. 2(b). The line TcompR corresponds to the
line at which the two collinear phases (θ = 0 and θ = π ) have
equal thermodynamic potentials �(0) = �(π ) and represents
the first-order magnetic phase transition. Both phases coexist
to the left and to the right of TcompR. Above AR there is no
minimum of the thermodynamic potential for the collinear
phase θ = 0 anymore, and the spins turn continuously into the
noncollinear phase. At line RP the first-order phase transition
continues, but now it is the transition between the angular
phase and the collinear θ = π phase. At point P the order
of the transition changes from first to second. According to
the conventional classification, this is a tricritical point [31],

in the vicinity of which many physical quantities, such as heat
capacity and magnetic susceptibility, experience anomalous
behavior.

The first-order phase transition across line TcompP and the
tricritical point in rare-earth ferrimagnets with similar prop-
erties were reported earlier [25,26]. However, in the previous
studies it was claimed that the temperature corresponding to
the tricritical point is smaller than the magnetization compen-
sation temperature, TP < Tcomp. The anomalous temperature-
dependent hysteresis loops in the vicinity of the compensation
point of ferrimagnets observed earlier, and it was believed
that the observed hysteresis loops are due to inhomogeneities.
The relation between this previously overlooked first-order
phase transition and the observed hysteresis behavior is as
follows. Applying an external magnetic field and measuring
the magnetization behavior, one expects to observe a minor
hysteresis loop corresponding to the first-order phase tran-
sition between two collinear phases, θ = 0 and θ = π . The
coercive field of this minor hysteresis loop increases upon
approaching the compensation temperature. In the tempera-
ture range between the compensation and tricritical points
(Tcomp < T < TP) upon an increase of the external magnetic
field the compound undergoes not one but two first-order
phase transitions. The first one results in a hysteresis loop
around H = 0, as explained above. The second is the spin-flop
transition to the noncollinear phase, which will also result in
hysteresis at higher magnetic fields. The size of the second
jump of magnetization and its hysteresis will then decrease
and, subsequently, vanish at the tricritical point.

Figure 3 shows the calculated magnetic field dependencies
of the normal component of the d-sublattice magnetization at
various temperatures in the vicinity of the compensation point.
One can see a remarkable qualitative agreement of the cal-
culations with anomalous temperature-dependent hysteresis
loops previously observed in rare-earth transition-metal alloys
experimentally. Hence, here we have suggested an alternative
explanation of the anomalous hysteresis loops without relying
on inhomogeneities and large exchange-bias field. The ob-
served hysteresis loops can be seen as an intrinsic property and
explained in terms of first- and second-order phase transitions
in the compound.

In the past decade the spin dynamics of rare-earth
transition-metal alloys has attracted intense research interest
due to the unique capability of these materials to reverse
their magnetization at record-breaking speed under the action
of subpicosecond laser pulses [8]. In the research aiming
to understand the mechanisms of the ultrafast laser-induced
magnetization reversal computational methods have been
playing a decisive role [9,11,13,32–34]. It is clear that the
value of the magnetic anisotropy of the rare-earth sublattice in
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ferrimagnets is an important input parameter which may
greatly influence the outcome of such simulations. In
GdFeCo, the rare-earth anisotropy constant may be expected
to be larger than that of iron because the strength of the spin-
orbit coupling depends on the nucleus charge Z very close to
the Z4 law (for more accurate evaluations, see Refs. [35,36]).
Taking into account excited multiplets with nonzero orbital
angular momentum L, the large single-ion anisotropy can
be explained as a result of the spin-orbit coupling and the
crystal field. More specifically, the large rare-earth anisotropic
contribution can be calculated from microscopic theory by
taking into account the local crystal field of a single rare-earth
ion environment and spin-orbit coupling simultaneously: V̂ =∑

i λSO l̂ i ŝi + ∑
i

∑
k,q Bq

kĈk
q (l i ), where λSO is the spin-orbit

coupling constant, index i spans f electrons of the Gd3+

ion, Bq
k are the crystal field parameters, and Ĉk

q (l i ) are the
irreducible tensor operators. In perturbation theory of the third
order and by taking into account states from both ground 8S
and excited 6P terms, one obtains the spin Hamiltonian with
a contribution of the form D[S2

z − 1
3 S(S + 1)] [37–39]. The

existing estimations of D from both theory and experiment
[40] are of the order of 10−2–10−1 cm−1 per ion. Such a value
corresponds to the large gadolinium anisotropy constant Kf

used in our calculations.
Moreover, it is expected that in compounds with rare-earth

ions with nonzero orbital momentum in the ground state (Tb,
Dy, Sm), the effect of the rare-earth magnetic anisotropy
will be even more pronounced than in the case of Gd. For
instance, in the simulations of TbCo [33] in order to mimic the
experimentally observed dependence of magnetic anisotropy
on the concentration of Tb, it was necessary to set a 10
times larger anisotropy for the Tb sublattice compared to the
one of Co. Our work provides an approach for experimental
verification of element-specific magnetic anisotropies in rare-
earth transition-metal ferrimagnets.

IV. CONCLUSION

In conclusion, we investigated the H-T phase diagram
for a rare-earth transition-metal ferrimagnet in the case of
magnetic field directed along the easy magnetization axis. We
showed that if the rare-earth anisotropy is larger than that of
the d sublattice, the spin-flop transition from the collinear to
noncollinear phase is either the first- or second-order phase
transition. Just above the compensation temperature the phase
transition is of the first order. Starting from the tricritical
point P, at higher temperatures the spin flop becomes a phase
transition of the second order. Such a temperature-dependent
order of the transition from collinear to noncollinear spin
phase allows us to explain anomalous hysteresis loops in rare-
earth transition-metal alloys without involving the exchange
bias between the surface and the bulk. Hence, we suggest that
such hysteresis loops are an intrinsic property of alloys of the
GdFeCo type, which have become model materials in spin-
tronics [41], magnonics [15,42], and ultrafast magnetism [14,
43–45]. Note that at the tricritical point many response func-
tions (heat capacity, magnetic susceptibility, etc.) experience
anomalous behavior, which opens totally new opportunities
for fundamental and applied research of the alloys.
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APPENDIX: DERIVATION OF THE THERMODYNAMIC
POTENTIAL

We start from a more general form of the Hamiltonian
introduced in Eq. (1) that includes exchange interaction within
the f sublattice. This term can often be neglected due to
its smallness [30]. First, we restrict ourselves to a ground-
state term and use the Wigner-Eckart theorem to express the
spin operators Si through total mechanical momentum Ji. We
obtain the components of the total Hamiltonian:

H f ,d = H f ,d
cr − 1

2

(
gf ,d

J

)2
μ2

B

∑
i1,i2∈ f ,d

Ji1 T f ,d
i1i2

Ji2

+ ∣∣gf ,d
J

∣∣μBH
∑
i∈ f ,d

Ji,

H f −d = −gd
Jgf

Jμ
2
B

∑
i1∈ f ,i2∈d

Ji1 T f −d
i1i2

Ji2 , (A1)

where the exchange matrices Td, f and Tf −d are linearly
proportional to those of J d, f and J f −d . We introduce the
effective free energy (the thermodynamic potential of the
nonequilibrium state; see Ref. [30]) that is a function of both
magnetic field and magnetizations M f ,d :

� = F + h f M f + hd Md , (A2)

where

F = −T ln Tr{exp −(β[H − h f M̂ f − hd M̂d ])} (A3)

is the thermodynamic free energy, β = 1/(kT ), and the total
sublattice magnetization operators are M̂ f ,d = gμB

∑
i∈ f ,d Ji.

The equations for the sublattice magnetizations M f ,d =
− ∂F

∂h f ,d
are viewed as the conditions defining the values of

Lagrange multipliers h f and hd . In the derivation, we take
the trace over the ground-state terms, whereas tracing for
the excited states may account for a large rare-earth ion
anisotropy. This question was discussed above in [30].

Using the fact that the intersublattice exchange energy is
two to three orders of magnitude smaller than the exchange
within the d subsystem, we assume the f -d homogeneous
Heisenberg exchange is equal to

H f −d = H̃ f −d = − 1

Nd
gμB

∑
i1∈ f ,i2∈d

Ji1 T f −d
i1i2

Md (A4)

and substitute the total magnetic moment operator d subsys-
tem with its average value Md , which might be found from a
more refined theory or experiment [30]. From this equation,
the f -d exchange coupling constant λ can be determined.

In our approximation, the absolute value of the magnetiza-
tion Md is saturated by the d exchange, and only its direction
varies. The matrix elements of the crystal field Hamiltonian
are small in comparison to both exchanges; thus, we can treat
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it perturbatively. We also neglect the f - f exchange. We obtain

� = −Md · (H − hd ) + 〈
Hd

cr

〉
− T ln Tr f {exp(β[H f + H̃ f −d − h f M̂ f ])} + h f M f ,

(A5)

where Tr f denotes the trace over the f -subsystem ground-
state term states. This is a quite general result that allows
for a high-accuracy treatment of f -d magnets. For subse-
quent consideration we simplify this expression further. For
a GdFeCo-like alloy the single-ion crystal field for both
sublattices may be represented by its first term of expansion
(H f ,d

cr )i = (A2
0)i

∑
j C0

2 (l j ), where Cn
m are the Steven’s opera-

tors [46] and l j is the angular momentum of the jth electron
belonging to the ith ion. According to Wigner-Eckart theorem,
if we restrain our consideration to the ground-state term with
given J , the result can be represented as a function of the

total angular momentum of the ion: (H f ,d
cr )i = (B2

0)iY
0

2 (Ji ).
When viewing the crystal field as a perturbation, we introduce
the quantization axis along the external field and find the
d-sublattice 〈Hd

cr〉 = −4/3
√

π/5KdY 0
2 (Md/Md ) [46], where

Y 0
2 are the spherical harmonics and we have introduced the

uniaxial magnetocrystalline anisotropy Kd .
Treating the crystal field acting on f ions as a perturbation

(similar to d-crystal field), we also assume the magnetization
M f is aligned with the effective magnetic field acting on it and
release the Lagrangian multiplier h f , obtaining the Brillouin
function after tracing the third term in expression (A5): M f ≈
gJf μBNf BJ ( gJf μBHeff

kT ), where Heff = H − λMd and the f -d
exchange coupling constant is denoted as λ. The total angular
momentum eigenvalue Jf for the ground-state term 8S of Gd
ions is equal to 7/2. Finally, we arrive at the thermodynamic
potential in the form given by Eq. (3).
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[2] J. Franse and R. Radwański, Handb. Magn. Mater. 7, 307

(1993).
[3] K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Levitin,

Sov. Phys. Usp. 19, 574 (1976).
[4] N. Duc, D. K. Anh, and P. Brommer, Physica B (Amsterdam,

Neth.) 319, 1 (2002).
[5] V. Sechovský, L. Havela, K. Prokeš, H. Nakotte, F. De Boer,

and E. Brück, J. Appl. Phys. 76, 6913 (1994).
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