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Ultrahigh differential mobility and velocity of Néel domain walls in spin valves with
planar-transverse polarizers and perpendicularly injected small currents

Mei Li,1 Zhong An,2 and Jie Lu 2,*

1Physics Department, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
2College of Physics and Information Engineering, Hebei Advanced Thin Films Laboratory,

Hebei Normal University, Shijiazhuang 050024, China

(Received 28 January 2019; revised manuscript received 11 July 2019; published 13 August 2019)

Transverse domain wall (TDW) dynamics in long and narrow spin valves with perpendicular current injection
is theoretically investigated. We demonstrate that stable traveling-wave motion of TDWs with finite velocity
survives for strong enough planar-transverse polarizers. For typical ferromagnetic materials (for example, Co)
and achievable spin polarization (P = 0.6), TDWs acquire a velocity of 103 m/s under a current density below
107 A/cm2. This efficiency is comparable with that of perpendicular polarizers. More importantly, in this case the
wall has ultrahigh “differential mobility” around the onset of stable wall excitations. Our results open possibilities
for developing magnetic nanodevices based on TDW propagation with low energy consumption. Also, analytics
for parallel and perpendicular polarizers perfectly explains existing simulation findings. Finally, further boosting
of TDWs by external uniform transverse magnetic fields is investigated and turns out to be efficient.
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I. INTRODUCTION

Tremendous progress in fabrication technology of non-
volatile magnetic nanodevices has led to a great revolution
in modern information industry [1–3]. In these nanodevices,
magnetic domains with different orientations build zeros and
ones in binary world. Intermediate regions separating these
domains are the domain walls (DWs) and their motion leads
to the data transformation [4–9]. Generally, DW motion can
be induced by magnetic fields, spin-polarized currents, or
temperature gradients, etc. Among them, the current-induced
case is the easiest to implement in real experiments.

Historically, the earliest current-induced driving mecha-
nism of DWs is the spin-transfer torque (STT). It was first cal-
culated in a magnetic multilayer, in which two ferromagnetic
(FM) layers are single domained with “current perpendicular
to the plane (CPP)” configuration [10]. The resultant STT is
the so-called Slonczewski torque (SLT) and proportional to
m × (m × mp) in which m and mp are normalized magnetiza-
tion vectors in the thin (free) and thick (pinned) layers. Mean-
while, another torque (∝ m × mp) also exists and is usually
referred to as the fieldlike torque (FLT) since now mp acts like
an effective field. Later, in magnetic nanostrips with currents
flowing in strip plane (CIP), adiabatic and nonadiabatic STTs
are proposed and can be viewed as the continuous limits of
SLT and FLT, respectively [11,12]. The adiabatic STT induces
the initial DW movement but the final steady wall velocity
is determined by the nonadiabatic STT. However, since the
exchange interaction avoids abrupt variation of magnetization,
CIP current densities of several 108 A/cm2 only induce DW
velocity around 100 m/s.
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To increase current efficiency, long and narrow spin valves
(LNSVs) or magnetic tunneling junctions (MTJs) with CPP
configuration are proposed to be host systems [13–15]. In
these multilayers, DWs in free layers are driven to move
along the long axis by spin-polarized current filtered by
pinned layers (polarizers). Early simulations on parallel and
perpendicular polarizers only considered SLTs and asserted
that the current efficiency can not be increased too much
[16,17]. In 2009, a significant breakthrough [18] was made
by Khvalkovskiy et al. in which numerical simulations with
both SLT and FLT revealed that to achieve a DW velocity
of 100 m/s, the CPP current density for parallel polarizers
is lowered to 107 A/cm2, while for perpendicular polarizers,
the CPP current density is further decreased to 106 A/cm2.

Later, two series of experimental works were carried out.
First, in LNSVs [19] and half-ring MTJs [20–22] with CPP
configuration, transport measurements confirm that DWs can
propagate with velocities as high as 500–800 m/s at cur-
rent density below 107 A/cm2. Second, in zigzag LNSVs
with CIP configuration high DW velocities (150–600 m/s)
are obtained for current densities of (2 ∼ 5) × 107 A/cm2

by using photoemission electron microscopy combined with
x-ray magnetic circular dichroism [23–26]. Vertical spin
current coming with spin flux transformation from pinned
layers to free layers via spacers (thus similar to CPP) is
suggested to provide a potential explanation for this velocity
boosting.

Except for these concentrated explorations on parallel and
perpendicular polarizers, LNSVs with planar-transverse po-
larizers have not received enough attention in existing liter-
atures. Within a mature Lagrangian framework [27], in this
paper we show that stable traveling-wave motion of DWs
with finite velocity exists for strong enough planar-transverse
polarizers. The resulting current efficiency is comparable
with that of perpendicular polarizers. Furthermore, ultrahigh
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FIG. 1. Sketch of a LNSV with CPP configuration, which is a
three-layer structure: a pinned FM layer (mp, polarizer), a NM metal-
lic spacer and a free FM layer (m). A DW in the free layer is driven
to move along the long axis of LNSV by perpendicularly injected
currents. (ex, ey, ez) is the global Cartesian coordinate system, and
(em, eθ , eφ) forms the local spherical coordinate system associated
with m.

“differential mobility” emerges around the onset of stable
wall excitation. Also, we provide analytics for parallel and
perpendicular polarizers, which perfectly explains existing
simulations. Finally, further boosting of DWs by uniform
transverse magnetic fields (UTMFs) are studied with the help
of one-dimensional asymptotic expansion method (1D-AEM)
[28–32].

II. MODEL AND METHOD

We consider a LNSV with CPP configuration (see Fig. 1),
which is composed of three layers: a free FM layer with
tunable magnetization texture, a nonmagnetic (NM) metallic
spacer, and a pinned FM layer with a fixed magnetization
orientation (polarizer). The global Cartesian coordinate sys-
tem is as follows: ez is along the long axis of LNSV, ey

follows the electron flow direction (from pinned to free layer),
and ex = ey × ez. The polarizer is usually made of hard FM
materials. Its magnetization (mp) has three typical choices:
(a) mp = ez (parallel), (b) mp = ey (perpendicular), and (c)
mp = ex (planar-transverse). Electrons flow from the polarizer
to the free layer via the metallic spacer with density Je(> 0).
Thus the charge current is Jcharge = −Jeey.

The normalized magnetization m of the free layer can be
fully described by its polar angle θ and azimuthal angle φ.
The associated local spherical coordinate system is denoted
as (em, eθ , eφ). Then mp is decomposed into

mp = pmem + pθeθ + pφeφ, (1)

with

pm = sin θp cos(φ − φp) sin θ + cos θp cos θ,

pθ = sin θp cos(φ − φp) cos θ − cos θp sin θ,

pφ = − sin θp sin(φ − φp),

(2)

where θp (φp) is the polar (azimuthal) angle of mp.
The magnetic energy of the free layer includes the

exchange, crystalline anisotropy, magnetostatic, and FLT-
induced effective potential. Following He’s work [27], we
have

E [m] = E0[m] − μ0M2
s ξCPP

Je

Jp

bp

cp
ln(1 + cp pm), (3)

with

E0[m] = J

(
∂m
∂z

)2

+ μ0M2
s

(
−1

2
kEm2

z + 1

2
kHm2

y

)
, (4)

in which the magnetostatic energy has been described by
local quadratic terms of Mx,y,z by means of three average
demagnetization factors [30]. J is the exchange stiffness,
μ0 is the vacuum permeability, ξCPP describes the relative
strength of FLT over SLT, kE(kH) is the total anisotropy
coefficient along the easy (hard) axis of the free layer, and Ms

is the saturation magnetization. In addition, Jp ≡ 2μ0edM2
s /h̄

where d is the thickness of free layer, e(> 0) is the absolute
charge of electron and P is the spin polarization of the current.
Finally, the two dimensionless parameters bp = 4P3/2/[3(1 +
P)3 − 16P3/2] and cp = (1 + P)3/[3(1 + P)3 − 16P3/2] re-
produce Slonczewski’s original spin polarization factor g ≡
[−4 + (1 + P)3(3 + m · mp)/(4P3/2)]−1 [10] by g = bp/(1 +
cp pm).

The magnetization dynamics in the free layer is described
by the Lagrangian L = ∫

L d3r with density

L = μ0Ms

γ0
φ̇(1 − cos θ ) − E , (5)

in which γ0 = μ0γ with γ being the gyromagnetic ratio
and a dot means ∂/∂t . To include the Gilbert damping and
the SLT-induced antidamping processes, an extra dissipation
functional F = ∫

Fd3r is introduced with density

F

μ0M2
s

= α

2

θ̇2 + φ̇2 sin2 θ

γ0Ms
− g

Je

Jp
(pθ sin θφ̇ − pφθ̇ ). (6)

The corresponding generalized Eular-Lagrangian equation

d

dt

(
δL

δẊ

)
− δL

δX
+ δF

δẊ
= 0, (7)

provides dynamical descriptions of TDWs, where X repre-
sents related collective coordinates.

Early simulations confirmed that in FM nanostrips with
small enough cross section, transverse DWs (TDWs) have
the lowest energy among all metastable states [33,34]. In
2012, further simulations revealed that the stability range of
TDW in free layers of LNSVs can be shifted toward larger
cross sections compared with monolayer strips, due to a
magnetostatic screening effect between the free and pinned
layers [35]. Therefore, the configuration space of DWs in this
paper is the TDW with generalized Walker profile [36],

ln tan
ϑ (z, t )

2
= η

z − q(t )

�(t )
, φ(z, t ) ≡ ϕ(t ), (8)

in which η = +1 or −1 represents head-to-head (HH) or tail-
to-tail TDWs, respectively. Note that in many 1D collective-
coordinate analysis, the tilting angle ϕ(t ) and wall center
position q(t ) [or wall velocity q̇(t )] are the two collective co-
ordinates, meanwhile assuming fixed wall width �(t ) [37,38].
However, the wall width does change considerably as the
wall tilting angle varies if the material is magnetically biaxial.
Even for uniaxial materials, the strip geometry will induce an
effective hard axis in the normal direction perpendicular to
strip plane. Based on these facts, we therefore view the wall
width as the third collective coordinate.
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In Eq. (7), by letting X take q(t ), ϕ(t ), �(t ), successively,
and integrating over the long axis (i.e.,

∫ +∞
−∞ dz), we obtain the

following dynamic equations:

ϕ̇ + αηq̇/�

γ0Ms
= bp

Je

Jp

[
pϕU (ϕ) − ξCPP

2cp
ln

1 − cp cos θp

1 + cp cos θp

]
,

(9a)

αϕ̇ − ηq̇/�

γ0Ms
= bp

Je

Jp

[
ξCPP pϕU (ϕ) + 1

2cp
ln

1 − cp cos θp

1 + cp cos θp

]
− kH sin ϕ cos ϕ, (9b)

π2α

6γ0Ms

�̇

�
= bp

Je

Jp

[
ξCPPW (ϕ) − pϕU (ϕ) ln

1 − cp cos θp

1 + cp cos θp

]
+

(
l2
0

�2
− kE − kH sin2 ϕ

)
, (9c)

with

U (ϕ) ≡ χ/

√
1 − c2

p[sin2 θp cos2(ϕ − φp) + cos2 θp],

W (ϕ) ≡ 1

2cp

[
π2

4
+ 1

4
ln2 1 − cp cos θp

1 + cp cos θp
− χ2

]
,

χ ≡ arccos
cp sin θp cos(ϕ − φp)√

1 − c2
p cos2 θp

,

(10)

and l0 ≡ √
2J/(μ0M2

s ) being the exchange length of the free
layer. Note that in the definition of function W (ϕ) in Eqs. (10),
our calculation supports an additional “1/2” factor compared
with He’s original work.

III. DW DYNAMICS UNDER PLANAR-TRANSVERSE
POLARIZERS

For planar-transverse polarizers, θp = π/2 and φp = 0.
The dynamical equations evolve to

1 + α2

γ0Ms sin ϕ

ηq̇

�
=

[
kH cos ϕ − (α − ξCPP)bp

Je

Jp
Ũ (ϕ)

]
, (11a)

1 + α2

γ0Ms sin ϕ
ϕ̇ = −

[
(1 + αξCPP)bp

Je

Jp
Ũ (ϕ) + αkH cos ϕ

]
,

(11b)

π2α

6γ0Ms

�̇

�
=

(
l2
0

�2
− kE − kH sin2 ϕ

)
+ ξCPPbp

Je

Jp
W̃ (ϕ),

(11c)

in which

Ũ (ϕ) = χ̃√
1 − c2

p cos2 ϕ
, W̃ (ϕ) = 1

2cp

(
π2

4
− χ̃2

)
,

χ̃ = arccos(cp cos ϕ). (12)

For steady traveling-wave mode, ϕ̇ = 0 and �̇ = 0. This
leads to two branches of solution:

ϕ0 = nπ, v0 = 0,

�(ϕ0) = l0

[
kE − ξCPPbp

Je

Jp
W̃ (ϕ0)

]−1/2

, (13)

and

cos ϕ′
0 = −1 + αξCPP

αkH
bp

Je

Jp
Ũ (ϕ′

0),

v′
0 = η�(ϕ′

0)γ0kHMs

1 + αξCPP
sin ϕ′

0 cos ϕ′
0,

�(ϕ′
0) = l0

[
kE + kH sin2 ϕ′

0 − ξCPPbp
Je

Jp
W̃ (ϕ′

0)

]− 1
2

. (14)

For the first branch in Eqs. (13), for the variation ϕ = ϕ0 +
δϕ, Eq. (11b) provides

∂ (ln δϕ)

∂t
= − γ0Ms

1 + α2

{
(−1)n(1 + αξCPP)bp

Je

Jp

× (
1 − c2

p

)−1/2
arccos[(−1)ncp] + αkH

}
. (15)

The stability of ϕ0—solution requires the terms in curly braces
to be positive. This leads to Je/Jp > jd (n is even) or Je/Jp <

ju (n is odd), where

ju ≡ αkH

1 + αξCPP

√
1 − c2

p

bp arccos(−cp)
,

jd ≡ − αkH

1 + αξCPP

√
1 − c2

p

bp arccos(cp)
. (16)

For the wall width of this branch, first its existence demands
that when n is even (odd), Je/Jp < j�u (Je/Jp > j�d) with

j�u ≡ kE

ξCPP

2cp

bp

(
π2

4
− arccos2 cp

)−1

,

j�d ≡ − kE

ξCPP

2cp

bp

[
arccos2(−cp) − π2

4

]−1

. (17)

Since α � 1 and ξCPP � 1, | j�u(d)| � | ju(d)| and is usually
out of experimental accessibility. Thus, only ju(d) is con-
sidered when dealing with stability issue. For the variation
� = �(ϕ0) + δ�, Eq. (11c) provides

π2α

6γ0Ms

∂ (ln δ�)

∂t
= − 2l2

0

�2(ϕ0)
, (18)

implying a stable wall width of this solution branch (see violet
solid lines in Fig. 2).

Next we turn to the branch in Eqs. (14). By
rewriting the first equation as Je/Jp = −αkH cos ϕ′

0(1 −
c2

p cos2 ϕ′
0)1/2/[(1 + αξCPP)bp arccos(cp cos ϕ′

0)] and
analyzing its monotonicity, the permitted current
density range of this branch can be obtained. Note that
Je(ϕ′

0) = Je(2π − ϕ′
0), we then focus on ϕ′

0 ∈ [0, π ] thus
sin ϕ′

0 � 0. After standard calculus, one has

d

dϕ′
0

(
Je

Jp

)
= αkH sin ϕ′

0

(1 + αξCPP)bp

f (ζ )√
1 − ζ 2 · arccos2 ζ

, (19)
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FIG. 2. Illustration of the solution branch in Eqs. (14): (a) cp <

ζ0, (b) cp > ζ0. In both cases, violet solid lines represent the stable
solution branch in Eqs. (13) with zero velocity, and green dash-dot
curves represent the unstable part of solution branch in Eqs. (14). In
addition, red solid curves in (b) indicate the stable part of solution
branch in Eqs. (14). The shaded area in (b) will be calculated in
details in Fig. 3.

with

f (ζ ) = (1 − 2ζ 2) arccos ζ + ζ
√

1 − ζ 2, ζ ≡ cp cos ϕ′
0.

(20)

On the other hand, the counterpart of Eq. (15) for this solution
branch is

∂ (ln δϕ′)
∂t

= αγ0MskH sin2 ϕ′
0

(1 + α2)(1 − ζ 2) arccos ζ
f (ζ ), (21)

The monotonicity analysis on f (ζ ) provides us a critical value
ζ0 = −0.6256 (⇔ P0 = 0.3704) [27]. When cp < ζ0 (⇔ P <

P0), f (ζ ) > 0. This fact has two consequences: from Eq. (19),
Je/Jp is an increasing function on ϕ′

0 ∈ [0, π ] thus acquires its
minimum ( jd) at ϕ′

0 = 0 and maximum ( ju) at ϕ′
0 = π [see

Fig. 2(a)]. However, Eq. (21) tells us that now this whole
branch remains unstable and thus is not physically preferred.
When cp > ζ0 (⇔ P > P0), f (ζ ) first increases when ϕ′

0 runs
from 0 to arccos(ζ0/cp) and then decreases when ϕ′

0 exceeds
arccos(ζ0/cp) to π . Correspondingly, Je/Jp increases from jd
to jM = 0.2172αkH/[(1 + αξCPP)bpcp] and then decreases to
ju, as illustrated in Fig. 2(b). Meanwhile, from Eq. (21) only
when arccos(ζ0/cp) < ϕ′

0 < 2π − arccos(ζ0/cp) the solution
branch in Eqs. (14) is stable, which has been marked by red
curves in Fig. 2(b).

Now we explain what happens physically when the CPP
current density Je increases from 0 to large positive value. If
the wall initially lies in easy xz plane with ϕ|t=0 = 0, i.e., the
magnetization at wall center is parallel to the polarizer, then
it always stays in this state with zero velocity no matter how
large Je is. While if the wall initially lies with ϕ|t=0 = π , i.e.,
the magnetization at wall center is antiparallel to the polarizer,
it keeps staying in this state until Je/Jp increases to ju.
When Je is further enhanced a little bit, something interesting
happens. When the polarizer is not strong enough (P < P0),
the wall “jumps” to ϕ = 0 state (through π → 0 or π → 2π

route depending on the nature of external disturbances) and
then keeps still. On the contrary, if the polarizer is strong
enough (P0 < P � 1), the wall will evolve into one of the two

stable parts of the solution branch in Eqs. (14). Likely, which
one it runs into is determined by the nature of external distur-
bances. As Je/Jp increases from ju to jM, the wall acquires a
finite velocity as shown by the second equation of Eqs. (14).
When Je/Jp exceeds jM, the wall jumps to its nearest static
branch under external disturbance and then stays in this
state.

Next we do some numerical estimations. The following
magnetic parameters for Co are adopted (same as those
in Ref. [18]): Ms = 1400 kA/m, J = 30 × 10−12 J/m, α =
0.007 and ξCPP = 0.1. Thus the exchange length l0 = 4.94
nm. The geometry of free layer is 3 × 50 × 8000 nm3,
resulting in three average demagnetization factors: Dy =
0.917251, Dx = 0.082269 and Dz = 0.000480. The crys-
talline anisotropy and edge roughness are both neglected, thus
kE = Dx − Dz = 0.081789 and kH = Dy − Dx = 0.834982.
Then �0 = l0/

√
kE = 17.3 nm. As indicated, to obtain stable

propagating walls the spin polarization P should satisfy P >

P0 = 0.3704. Here we take P = 0.6 as an example. Then bp =
0.3832 and bp = 0.8442, thus the extremal point is ϕM

0 =
arccos(ζ0/cp) = 0.7657π . The upper limit of the current den-
sity for the stable static branch in Eqs. (13) is Ju

e = ju · Jp =
7.13 × 106 A/cm2. Meanwhile, the upper limit of the current
density for the stable finite-velocity branch in Eqs. (14) is
JM

e = jM · Jp = 8.82 × 106 A/cm2. These two values are both
not high for real applications. Then the tilting angle, width,
and velocity of a TT (η = −1) TDW corresponding to the
shaded area in Fig. 2(b) are calculated and plotted in Fig. 3.
We focus on the red curves, which are the stable part of
the finite-velocity branch in Eqs. (14). Interestingly, at Je ≈
8.40 × 106 A/cm2 the wall can propagate along the LNSV at
a velocity as high as 1025 m/s. Therefore planar-transverse
polarizers have comparable current efficiency as perpendic-
ular polarizers [18]. To our knowledge, this has never been
reported before in existing studies.

Another attracting quantity is the high “differential mo-
bility” (dv/dJe) around Je = Ju

e (ϕ′
0 = π ), as shown by the

red curve in Fig. 3(c). From Eq. (19), this infinity comes
from the divergent behavior of |dϕ′

0/dJe| ∝ 1/| sin ϕ′
0| →

+∞ at Je = Ju
e (ϕ′

0 = π ). Consequently, combining with
Eqs. (14), we have |dv′

0/dJe| = |(dv′
0/dϕ′

0) · (dϕ′
0/dJe)| ∝

| cos 2ϕ′
0/ sin ϕ′

0| → +∞. This means that a slight increase of
Je above Ju

e will lead to considerable increase of wall velocity.
To make sure this high differential mobility around Je =

Ju
e is a real effect rather than theoretical illusion, we per-

form numerical simulations using the OOMMF package [39]
with the “Xf_STT” class embedded which enables simulation
on injection of multiple spin currents into a ferromagnet
in OOMMF. The resulting velocities are depicted by solid
squares in Fig. 3(c). The magnetic and geometric parameters
are exactly the same with theoretical deductions. In particular,
the crystalline anisotropy and edge roughness are both ne-
glected and the demagnetization is turned on. As preparation,
a static TDW with η = −1 and φ′

0 = π is generated at the
wire center. Perpendicularly injected current density −Jeey

manipulates the TDW dynamics. First, a current density pulse
with strength 3.0 × 107 A/cm2 and duration 2.5 ns is applied
to slightly push the wall away from its potential valley (ϕ′

0 =
π ). Then typical current densities (� 8.5 × 106 A/cm2) are
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FIG. 3. Dependence of the tilting angle (a), width (b) and veloc-
ity (c) of a TDW with η = −1 on current density in a LNSV with
CPP configuration and planar-transverse polarizer (mp = ex). The
subfigure (a) corresponds to the shaded area in Fig. 2(b). The free
FM layer has the geometry of 50 × 3 × 8000 nm3, with Ms = 1400
kA/m, J = 30 × 10−12 J/m and α = 0.007. In addition, P = 0.6
and ξCPP = 0.1 for spin-transfer process. The violet solid lines are
the stable static branch in Eqs. (13). The red solid (green dash-dot)
curves comes from the stable (unstable) part of the finite-velocity
branch in Eqs. (14). Solid squares comes from OOMMF simulations.

applied and the wall velocities in stable traveling-wave mode
are recorded. Numerical data show that when Je < 7.0 ×
106 A/cm2, the wall creeps forward for a distance and then
stops. When Je � 7.0 × 106 A/cm2, the wall acquires high
velocity very quickly as Je increases. This critical current
density is very close to the theoretical prediction Ju

e = 7.13 ×
106 A/cm2. At Je = 8.5 × 106 A/cm2, the wall velocity is
around 900 m/s, which is comparable with the theoretical
maximum (1025 m/s at 8.4 × 106 A/cm2). The difference
between theoretical curve and simulation data partially comes
from the fact that around Ju

e the half wire with limited length
(4 μm) is not enough for the wall to converge to its stable
solution Eqs. (14). Another source of deviation comes from
the limitation of 1D collective coordinate model in describing
real three-dimensional ferromagnets. However, as shown in
Fig. 3(c), our 1D analytics does grasp the main results of
this issue, that is, high differential mobility around Je = Ju

e
and high wall velocity under low current density (Je < 1.0 ×
107 A/cm2).

In fact, this large differential mobility can be understood
physically. By putting Eqs. (5) and (6) into the generalized

xe

m

x
y

z

(a) 
FLTH

xe

m

(b) 

0
u

e eJ J

SLTH

xe

m

(c) 

0
u

e eJ J

0 0
 arbitraryeJeJ

SLTH

FIG. 4. Illustration of the physical mechanism responsible for the
high differential mobility around Ju

e . (a) φ0 = 0 and Je is arbitrary.
(b) φ0 = π and Je < Ju

e . (c) φ0 = π and Je > Ju
e . In all sketches, η =

−1. Green (blue) arrows represent HFLT (HSLT).

Eular-Lagrangian Eq. (7) with X = θ (φ), we obtain the fa-
miliar Landau-Lifshitz-Gilbert (LLG) equation,

∂m
∂t

= −γ0m × H0
eff + αm × ∂m

∂t
− γ0aJm × (m × mp) − γ0bJm × mp, (22)

where aJ = h̄Jeg/(2μ0deMs), bJ = ξCPPaJ , and H0
eff =

−(μ0Ms)−1δE0/δm. We denote the two effective fields related
to SLT and FLT as HSLT = aJ (m × mp) and HFLT = bJmp,
respectively. Note that Eq. (22) describes a gyrational
magnetization dynamics accompanied by a damping-induced
motion toward the effective field. For planar-transverse
polarizers (mp = ex), HFLT is always a uniform transverse
field directed along +ex and thus cannot induce TDW motion
along ez. However, it breaks the twofold symmetry in the
x direction: TDWs lying in ϕ0 = 0 plane are always stable
while at some critical current density (Ju

e ) TDWs initially
lying in ϕ0 = π plane will climb out of this potential valley
formed by finite hard anisotropy in y direction.

When Je < Ju
e , TDWs are still lying in ϕ0 = nπ valleys.

Thus, HSLT is perpendicularly to ϕ0 = nπ planes and directed
oppositely about the wall center [see Figs. 4(a) and 4(b)]. The
gyration around HSLT leads to temporary wall displacement.
At the same time, the damping process results in the tilting
of magnetization towards HSLT. Correspondingly, magnetic
charges appear at the opposite sides of the free layer and thus
generate a magnetostatic field that balances HSLT. As a result,
the wall stops and becomes static.

For TDWs initially lying in ϕ0 = π valley and Je slightly
exceeds Ju

e , due to the symmetry about ϕ0 = π plane, the
magnetization at wall center departs from it randomly. By
denoting the new stable azimuthal angle as ϕ′

0 and from the
famous Stoner-Wohlfarth asteroid theorem [40], at critical
point one has HFLT ∝ cos ϕ′3

0 , which leads to |dϕ′
0/dJe| ∝

|dϕ′
0/dHFLT| ∝ 1/| sin ϕ′

0| � 1. This explains the high

064406-5



MEI LI, ZHONG AN, AND JIE LU PHYSICAL REVIEW B 100, 064406 (2019)

differential mobility around Ju
e . Now we take 0 < ϕ′

0 < π

as an example [see Fig. 4(c)], in wall region HSLT has −ez

component. For η = −1, this leads to a finite velocity along
+ez which explains the stable branch in Eqs. (14). When
current density is too large (> JM

e ), the generalized Walker
profile will collapse due to the antidirected HSLT on the two
sides of TDW and vortex/antivortex may emerge, which is
out of the scope of this paper.

In summary, dynamical behaviors of TDWs under planar-
transverse polarizers in LNSVs with CPP configuration are
quite different from known results in two aspects. First, in
all well-investigated current-driven stack setups, including
FM monolayers (CIP), FM/heavy-metal bilayers (CIP), and
LNSVs with parallel and perpendicular polarizers (CPP),
TDWs have a finite mobility in the entire range of current
density when dealing with a sufficiently smooth and even
sample (absence of intrinsic pinning due to imperfectness).
This means TDWs will acquire a steady motion with finite
velocity under finite charge current density, no matter how
small the latter is. However, in LNSVs with strong enough
planar-transverse polarizers, steady wall motion with finite
velocity can only occur when driving current exceeds a finite
threshold of density. Second, at the onset of wall excitation,
the differential mobility is very high due to the sudden change
in steady tilting angle of TDWs as current density exceeds
its lower limit a little bit. This allows TDWs to acquire
high velocities under small current densities. The resulting
current efficiency is comparable with that of perpendicular
polarizers. When the current density exceeds its upper limit,
TDWs jump to their nearest static branch. These two exotic
behaviors should open possibilities for developing magnetic
nanodevices based on TDW propagation with low energy
consumption: (a) When polarizers of LNSVs are made of
magnetic materials with in-plane rather than perpendicular
magnetic anisotropy, high current efficiency is still achievable
as long as they are made planar-transverse. (b) The high dif-
ferential mobility around Ju

e makes these LNSVs candidates
for high-sensitivity switches, etc.

IV. DW DYNAMICS UNDER PARALLEL AND
PERPENDICULAR POLARIZERS

The simulation work by Khvalkovskiy et al. proposed the
high current efficiency in LNSVs under parallel and per-
pendicular polarizers with “m · mp-independent” STT coef-
ficients [18]. Except for numerics, they also provided a 1D
analysis for parallel polarizers in which the wall velocity
and tilting angle are two collective coordinates. However,
for perpendicular polarizers, the corresponding 1D analysis
is absent. Meanwhile, their simulations revealed that under
perpendicular (parallel) polarizers, pure SLT (FLT) induces
persistent wall displacement while pure FLT (SLT) does not.
Therefore, they conjectured that at low currents the large
difference for the wall velocities between perpendicular and
planar polarizers is related to the factor ξCPP between the
torques. However, the exact ratio of mobilities for these two
cases under low currents is not provided. In this section, we
perform systematic Lagrangian analysis and provide answers
to these issues.

A. Modified Lagrangian and dynamical equations

For m · mp-independent STT coefficients, the energy den-
sity functional turns to

Ẽ [m] = E0[m] − μ0Msb̃J pm, (23)

and the dissipation functional becomes

F̃

μ0M2
s

= α

2

θ̇2 + φ̇2 sin2 θ

γ0Ms
− ãJ

Ms
(pθ sin θφ̇ − pφθ̇ ), (24)

where ãJ = h̄JeP/(2μ0deMs) and b̃J = ξCPPãJ . Still, the gen-
eralized Walker profile is taken as the configuration space of
walls. After putting the wall center position q(t ), tilting angle
ϕ(t ), and width �(t ) into Eq. (7) successively, and integrating
over z ∈ (−∞,+∞), a new set of dynamical equations are
obtained:

αη
q̇

�
+ ϕ̇ = γ0

(
π

2
ãJ pϕ + b̃J cos θp

)
, (25a)

η
q̇

�
− αϕ̇ = γ0MskH sin ϕ cos ϕ

+ γ0

(
ãJ cos θp − π

2
b̃J pϕ

)
, (25b)

π2α

6

�̇

�
= γ0Ms

(
l2
0

�2
− kE − kH sin2 ϕ

)
+ γ0π b̃J sin θp cos(ϕ − φp). (25c)

B. Parallel polarizers

For systematicness, we first briefly revisit TDW dynamics
under parallel polarizers. In this case, mp = ez, thus θp = 0
and then pϕ = 0. The dynamical equations turn to

1 + α2

γ0

ηq̇

�
= kHMs

2
sin 2ϕ + (ãJ + αb̃J ), (26a)

1 + α2

γ0
ϕ̇ = −αkHMs

2
sin 2ϕ + (b̃J − αãJ ), (26b)

π2α

6γ0Ms

�̇

�
= l2

0

�2
− kE − kH sin2 ϕ. (26c)

The first two equations reproduce Eq. (4) in
Khvalkovskiy’s work (see Ref. [18]) and the third one
provides the TDW width. For the traveling-wave mode of
TDW, ϕ̇ = 0 and �̇ = 0. This leads to a FLT-determined
steady wall velocity:

v0 = η�(ϕ0)γ0ξCPPãJ

α
,

sin 2ϕ0 = 2(ξCPP − α)ãJ

αMskH
,

�1(ϕ0) = l0(kE + kH sin2 ϕ0)−1/2. (27)

For variation of ϕ0, we have

∂ (ln δϕ0)

∂t
= −αγ0MskH cos 2ϕ0

2(1 + α2)
. (28)
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FIG. 5. Dependence of the tilting angle (a), width (b), and
velocity (c) of a TDW on current density in a LNSV with CPP
configuration and parallel polarizer (mp = ez). The geometry and
magnetic parameters of the free layer are the same as those in Fig. 3,
except the spin polarization is changed to P = 0.32. The solid curves
are from Eqs. (27) and the solid squares in (c) are from Fig. 1(b) in
Ref. [18] with exactly the same geometric and magnetic parameters.

When cos 2ϕ0 > 0, i.e., |ϕ0 − nπ | < π/4, the ϕ0—solution is
stable. On the other hand, for variation of �1, one has

π2α

6γ0Ms

∂ (δ�)

∂t
= − 2l2

0

�2
1(ϕ0)

δ� − �1(ϕ0)kH sin 2ϕ0δϕ0.

(29)

Thus, the wall width should be stable as long as ϕ0 is stable.
Next we compare our analytics with existing simulation

data. The geometry and magnetic parameters of the free
layer are the same as those in the end of Sec. II, except
the spin polarization is changed to P = 0.32 (same as in
Khvalkovskiy’s work). By requiring | sin 2ϕ0| � 1, the Walker
limit (under which traveling-wave mode survives) is JW =
αMskH/(2κ|ξCPP − α|) = 2.20 × 108 A/cm2. However this is
just a theoretical prediction based on the generalized Walker
profile. Real simulations (see Fig. 1(b) of Ref. [18]) revealed
that TDWs disappear due to global-spin-transfer-induced do-
main excitation when Je > 2.4 × 107 A/cm2, which is an or-
der of magnitude smaller JW. Thus, in traveling-wave mode, at
most sin2 ϕ0 ∼ 10−2 and �1(ϕ0) ∼ �0 = 17.3 nm. This leads
to a constant wall mobility ∼1.09 × 10−5 (m/s)/(A/cm2),
which perfectly explains the linear dependence of wall veloc-
ity on current density in Fig. 1(b) of Ref. [18]. In Fig. 5 of our
work, analytical results from Eqs. (27) are plotted by solid

curves. Meanwhile, numerical data from Fig. 1(b) in Ref. [18]
are indicated by solid squares. Obviously, as long as TDWs
exist (Je < 2.4 × 107 A/cm2), our theoretical results are in
good agreement with numerical simulations.

C. Perpendicular polarizers

Now mp = ey, thus θp = π/2 and φp = π/2. Then pϕ =
cos ϕ and Eqs. (25) is simplified to

1 + α2

γ0

ηq̇

�
=

[
kHMs sin ϕ + π

2
(αãJ − b̃J )

]
cos ϕ, (30a)

1 + α2

γ0
ϕ̇ =

[
π

2
(ãJ + αb̃J ) − αkHMs sin ϕ

]
cos ϕ, (30b)

π2α

6γ0Ms

�̇

�
=

(
l2
0

�2
− kE − kH sin2 ϕ

)
+ π b̃J

Ms
sin ϕ. (30c)

For steady traveling-wave mode, we need ϕ̇ = 0 and �̇ =
0. This leads to two branches of solution,

ϕ0 =
(

n + 1

2

)
π, v0 = 0,

�2(ϕ0) = l0

[
kE + kH − (−1)n π b̃J

Ms

]−1/2

, (31)

and

sin ϕ′
0 = π

2

1 + αξCPP

α

ãJ

kHMs
,

v′
0 = π

2

η�2(ϕ′
0)γ0ãJ

α
cos ϕ′

0,

�2(ϕ′
0) = l0

(
kE + kH sin2 ϕ′

0 − π b̃J

Ms
sin ϕ′

0

)−1/2

. (32)

Then we perform stability analysis to these two branches.
For the one in Eqs. (31), after taking variation of ϕ0 and
substituting it into Eq. (30b), one has

∂ (ln δϕ0)

∂t
= −αγ0MskH

1 + α2

[
π

2

(
1

α
+ ξCPP

)
(−1)nãJ

kHMs
− 1

]
.

(33)

Then we define J1 ≡ 4|ξCPP − α|π−1(1 + αξCPP)−1JW. When
Je > J1 (n is even) or Je < −J1 (n is odd), (−1)n(α−1 +
ξCPP)ãJπ/(2kHMs) − 1 > 0 always holds, thus the ϕ0 = (n +
1/2)π solution in the first branch is stable. For the wall
width of this branch, similar variational analysis provides the
same result as in Eq. (18), implying that the static solution at
ϕ0 = (n + 1/2)π always has a stable wall width.

Then we move to the other branch in Eqs. (32). The
solution ϕ′

0 requires | sin ϕ′
0| � 1, which is equivalent to |Je| �

J1. After varying ϕ′
0 by δϕ′ and putting into Eq. (30b), we have

∂ (ln δϕ′)
∂t

= −αγ0MskH cos2 ϕ′
0

1 + α2
, (34)

implying that ϕ′
0—solution is always stable. The correspond-

ing TDW velocity can be explicitly written out as

v′
0 = π

2

η�2(ϕ′
0)γ0ãJ

α
(−1)m

√
1 −

(
π

2

1 + αξCPP

αkHMs
ãJ

)2

,

(35)
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FIG. 6. Dependence of the tilting angle (a), width (b), and
velocity (c) of a TDW on current density in a LNSV with CPP
configuration and perpendicular polarizer (mp = ey). The geometry
and magnetic parameters of the free layer are the same as those
in Fig. 5. The solid curves in the white-background area are the
solution branch in Eqs. (32) and the solid lines in the shaded area are
those from Eqs. (31). The solid squares in (c) are from Fig. 2(b) in
Ref. [18].

in which “(−1)m” comes from the initial condition (ϕ′
0|t=0 =

mπ at t = 0). For |Je| � J1, one has

v′
0 ≈ π

2

η�0γ0ãJ

α
(−1)m. (36)

Clearly, it has a mobility larger than that of “parallel-
polarizer” case [see Eqs. (27)] by a factor of π/(2ξCPP) ≈
15.7, thus well explains the higher current efficiency of
perpendicular polarizers. When |Je| → J1, the ϕ′

0—solution
converges to ϕ0—branch with zero wall velocity.

For the same magnetic parameters as in parallel polarizers,
J1 = 0.1183JW = 2.61 × 107 A/cm2. For HH TDWs (η =
+1) and standard initial condition (ϕ0|t=0 = ϕ′

0|t=0 = 0), the
solution branch in Eqs. (31) [Eqs. (32)] is plotted in Fig. 6 by
solid line (curve) in shaded (white-background) area. In addi-
tion, simulation data from Fig. 2(b) in Ref. [18] are depicted
in our Fig. 6(c) by solid squares. Clearly, when Je � 0.3 ×
107 A/cm2, our analytics coincides with simulation data very
well. For larger current density, the wall configuration in
simulations will be distorted from the standard Walker profile
due to global spin transfers, and thus leads to the inconsistency
between analytics and simulations.

D. Comparison with experimental data

As mentioned in Sec. I, to our knowledge there are two
groups of experimental work. In the first group, currents
with definite density inject perpendicularly into LNSVs or
half-ring MTJs (genuine CPP configurations). While in the
second group, in-plane current flows through zigzag LNSVs
and the “vertical spin current” is suggested to be the source
of DW velocity boosting; however, the corresponding spin
current density is hard to estimate. Therefore, we focus on
the first group in which genuine CPP configuration with
definite current density is under investigation. Furthermore,
our analytics is obtained in a strip geometry (resulting in three
averaged demagnetization factors, and hence kE and kH), and
thus cannot directly apply to half-ring geometry. In summary,
the best case to make the comparison is the first case in the
first group, which is the experimental work by Boone et al. in
2010 [19] on LNSVs with parallel polarizers.

In their work, the free layer is made of the nickel-rich
nickel-iron alloy (NRNIA) with Ms = 430 kA/m and the
crystalline anisotropy is neglected. Its geometry (3 × 90 ×
5000 nm3) provides three average demagnetization factors:
Dy = 0.9473, Dx = 0.05182 and Dz = 0.00088. Thus we
have kE = Dx − Dz = 0.0509 and kH = Dy − Dx = 0.8955.
The resulting coercive force is kEMs = 275 Oe, which is
consistent with experimental measurements (NRNIA reversal
at +200 and −300 Oe) in Fig. 2(b) of Ref. [19]. The ex-
change stiffness (J) has not been explicitly provided. How-
ever from the fixed wall width (λ = 53 nm) they adopted in
simulations, we have J = μ0kEM2

s λ2/2 = 16.6 × 10−12 J/m.
Furthermore, the conversion coefficient from current den-
sity to SLT strength is κ = ãJ/Je = h̄P/(2μ0deMs) = 1.32 ×
10−3 (A/m)/(A/cm2) for P = 0.65. Now we estimate the
wall mobility under small driving currents where the wall
width can be viewed as constant (λ = 53 nm). Note that they
obtained a damping coefficient from a fitting to the rectified
voltage with zero-FLT assumption. However, as indicated by
Khvalkovskiy et al., FLT is crucial for TDW dynamics in
LNSVs with parallel polarizers. Therefore, we adopt the typi-
cal NRNIA value α = 0.01 rather than their fitting parameter.
Moreover, we assume ξCPP = 0.1, which is the maximum
permissible in Ref. [19]. From Eqs. (27), the wall mobil-
ity is |v0/Je| = λγ0ξCPPκ/α = 1.55 × 10−4 (m/s)/(A/cm2).
This agrees well with their experimental data for Je < 2 ×
106 A/cm2 in their Fig. 4(b). On the other hand, the fit-
ting result α = 0.09 leads to a wall mobility of 1.72 ×
10−5 (m/s)/(A/cm2). This is an order of magnitude smaller
than the experimental observations and thus should be aban-
doned.

V. FURTHER BOOSTING BY UTMFS

In real magnetic nondevices composed of LNSVs, to fur-
ther boost TDW propagation, a UTMF

HTMF = H⊥(cos �⊥, sin �⊥, 0) (37)

can be applied, with H⊥ and �⊥ being its strength and
orientation, respectively. Meanwhile, the pinned layer is as-
sumed to be unaffected, which is a harmless simplification and
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will not affect our main conclusion. Nevertheless, rigorous
profile and velocity of TDWs under an arbitrary UTMF are
hard to obtain due to the mismatch between symmetries in
different energy terms in transverse direction. Since we focus
on the traveling mode at low current density, the 1D-AEM
[28–32] on the LLG equation shall provide useful informa-
tion. Recalling the results in Sec. III for TDWs moving under
planar-transverse polarizers, 1D-AEM is not applicable since
stable wall motion with finite velocity can only be excited
for current density exceeding a finite threshold. Hence, in this
section, we present the results for parallel and perpendicular
polarizers.

A. Parallel polarizers

The 1D-AEM needs static profiles of TDWs as the basis to
calculate the response of the system under external stimuli.
Depending on UTMF strength, static TDWs take different
profiles. Therefore, we discuss the “small UTMF” and “finite
UTMF” cases separately.

For small UTMFs, the CCP current density, UTMF, and
inverse of time are rescaled simultaneously; that is, ãJ =
εã0

J , b̃J = εb̃0
J , H⊥ = εh⊥ and 1/t = ε(1/τ ), where ε is the

rescaling infinitesimal. The real solution of the LLG equation
is expanded as �(z, t ) = �0(z, τ ) + ε�1(z, τ ) + O(ε2) with
� = θ, φ. Putting them back into the original LLG Eq. (22),
the solution to the zeroth-order equation is the Walker ansatz.
At the first order of ε, with the help of zeroth-order solutions,
the differential equation about θ1 reads

Fs = L θ1, L ≡ 2J

μ0Ms

(
− d2

dz2
+ θ ′′′

0

θ ′
0

)
,

Fs ≡
[
ηα(z0)τ
γ0�0

− b̃0
J

]
sin θ0 + (−1)nh⊥ cos θ0 cos �⊥,

(38)

where (z0)τ ≡ dz0/dτ and a prime means d/dz. The sub-
script s indicates the “small UTMF” case. Note that L is
the same 1D self-adjoint Schrödinger operator as given in
Refs. [28–32]. Following the Fredholm alternative, by de-
manding θ ′

0 (kernel of L ) to be orthogonal to the function
Fs defined in Eqs. (38), TDW velocity in traveling-wave mode
under small UTMFs is

Vs = ε(z0)τ = ηγ0�0b̃J/α, (39)

which reproduces the rigorous result in Eqs. (27).
For finite UTMFs, we rescale the current density and the

TDW velocity (Vf ) simultaneously, i.e., ãJ = εã0
J , b̃J = εb̃0

J
and Vf = εv in which the subscript f denotes the “finite
UTMF” case. By introducing the traveling coordinate z̃ ≡ z −
Vft = z − εvt , θ (z, t ) and φ(z, t ) are expanded as �(z, t ) =
�0(z̃) + ε�1(z̃) + O(ε2) with � = θ, φ. Substituting them
into the LLG equation, an approximate polar angle profile θ0

(solution to the zeroth-order equations) of the wall is obtained,

ln
sin θ0 − sin θ∞

1 + cos(θ0 + θ∞)
= ηz̃

�(φ∞)/ cos θ∞
, (40)

with

φ∞ = tan−1 [kE tan �⊥/(kE + kH)],

θ∞ = sin−1 H⊥

Ms

√
k2

E cos2 φ∞ + (kE + kH)2 sin2 φ∞
,

�(φ∞) = l0(kE + kH sin2 φ∞)−1/2, (41)

in which θ∞ (φ∞) is the polar (azimuthal) angle of magnetiza-
tion in domains. At the first order of ε, after a similar process
as in the field-driven case [30], the equation about θ1 is

L (θ1) = Ff ≡ vγ −1
0 (αθ ′

0 − sin θ0φ
′
0) − b̃0

J sin θ0, (42)

where a “prime” means d/dz̃. Again, θ ′
0 (kernel of L ) should

be orthogonal to the function Ff . After similar calculation,
TDW velocity in traveling-wave mode under finite UTMF is

Vf = u(θ∞)
ηγ0�(φ∞)b̃J

α
,

u(θ∞) = 2 cos θ∞
2 cos θ∞ − (π − 2θ∞) sin θ∞

. (43)

This clearly shows that UTMFs can boost TDW propagation
by a factor u(θ∞), which has been well studied in Ref. [30].

B. Perpendicular polarizers

For small UTMFs, after similar rescaling, expansion, and
substitution operations, the differential equation about θ1 is

L θ1 = ηα(z0)τ sin θ0

γ0�0
+ (−1)n

(
h⊥ cos θ0 cos �⊥ − ã0

J

)
.

(44)

The corresponding wall velocity is

Vs = ε(z0)τ = (−1)nηπγ0�0ãJ/(2α), (45)

which is the ϕ′
0 → nπ limit of Eqs. (32).

For finite UTMFs, the equation about θ1 is

L θ1 = v

γ0
(αθ ′

0 − sin θ0φ
′
0) − ã0

J cos φ0 + b̃0
J cos θ0 sin φ0.

(46)

The existence condition of θ1—solution provides

Vf ≈ ω(θ∞)
ηγ0�(φ∞)ãJ

α
cos φ∞,

ω(θ∞) = π − 2θ∞
2 cos θ∞ − (π − 2θ∞) sin θ∞

. (47)

Simple calculus shows that ω(θ∞) has a similar divergent
behavior as u(θ∞) when H⊥ → Hmax

⊥ , thus considerably boost
TDW motion. Interestingly, in LNSVs with perpendicular po-
larizers, TDW motion can be manipulated not only by UTMF
strength [via ω(θ∞)] but also its orientation (via cos φ∞).
This comes from the fact that polarized electrons always act
as an extra time-dependent effective field in hard axis. For
TDWs with φ∞ �= nπ , magnetization in the wall region ro-
tates around the effective field hence results in a translational
wall displacement along ηez direction. Meanwhile, projection
of SLT to the hard axis ey contributes to cos φ∞. These lead to
the final η cos φ∞ factor in Eqs. (47).
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VI. SUMMARY

In this paper, TDW dynamics in LNSVs with CPP con-
figurations are systematically investigated within Lagrangian
framework. When STT coefficients take Slonczewski’s origi-
nal form, our results show that stable traveling-wave motion
of TDWs with finite velocity can survive for strong enough
planar-transverse polarizers, with the current efficiency com-
parable with that of perpendicular ones. More importantly,
TDWs have ultrahigh differential mobility around the onset of
stable wall excitation. These results should provide insights
for developing magnetic nanodevices with low energy con-
sumption. For m · mp-independent STT coefficients, analytics
for parallel and perpendicular polarizers perfectly explains ex-

isting simulations and experiments. Finally, further boosting
of TDWs by external UTMFs are investigated with help of
1D-AEM and turns out to be efficient.
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