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Unitary circuits of finite depth and infinite width from quantum channels
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We introduce an approach to compute the spectra of reduced density matrices for local quantum unitary
circuits of finite depth and infinite width. Suppose the time-evolved state under the circuit is a matrix-product
state with bond dimension D; then the reduced density matrix of a half-infinite system has the same spectrum
as an appropriate D × D matrix acting on an ancilla space. We show that reduced density matrices at different
spatial cuts are related by quantum channels acting on the ancilla space. This quantum channel approach allows
for efficient numerical evaluation of the entanglement spectrum and Rényi entropies and their spatial fluctuations
at finite times in an infinite system. We benchmark our numerical method on random unitary circuits, where many
analytic results are available, and also show how our approach analytically recovers the behavior of the kicked
Ising model at the self-dual point. We study various properties of the spectra of the reduced density matrices and
their spatial fluctuations in both the random and translation-invariant cases.
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I. INTRODUCTION

The dynamics of isolated quantum systems under generic
unitary dynamics is one of the basic problems in many-body
physics [1]; despite considerable recent work, many aspects
of this problem are not fully understood. An isolated system,
evolving under chaotic dynamics from an initial product state,
becomes increasingly entangled over time. At sufficiently late
times, any finite-size subsystem of an infinite system is well
described by a thermal reduced density matrix, provided the
system obeys the eigenstate thermalization hypothesis (ETH)
[2–4]; this approach to a thermal local-density matrix is called
“thermalization.” There is considerable numerical evidence
that generic many-body systems obey ETH [5].

We are concerned with the dynamics of the reduced density
matrix before the system has fully thermalized. To quantify
the thermalization time scale more precisely, recall that the
Rényi entropies of a subsystem A are defined in terms of the
reduced density matrix ρA of A as

S(n)
A (t ) = 1

1 − n
ln tr[ρA(t )n], (1)

where n is called the Rényi index. The Rényi entropies fully
characterize the spectrum of ρA.

The general consensus [6–10] is that—unless a system
experiences many-body localization [11]—the entropies ini-
tially obey S(n)

A (t ) ∼ vnt , increasing linearly with time with a
growth rate vn that depends on the Rényi index n. (However,
recent results suggest that for n > 1 the growth is sublinear
for generic initial states in the presence of conservation laws
[12,13].) The implication for the spectrum of the reduced
density matrix is as follows. Parametrizing the eigenvalues of
ρA in terms of an “entanglement energy” as λi = e−εi [14,15],

and introducing the “density of states” �(ε), we have

S(n)
A = 1

1 − n
ln

[∫
dε �(ε)e−nε

]
. (2)

The behavior S(n)
A (t ) ∼ vnt is then consistent with a density

�(ε) having the large deviation form

�(ε) ∼ exp[tπ (ε/t )], (3)

for some function π (η). In the saddle-point approximation we
find

vn = S(n)
A

t
= π (ηn) − ηn

1 − n
, (4)

where ηn is determined by n = π ′(ηn). The growth rates vn

are seen to be related to the function p(η) describing the
density of states of the entanglement spectrum by Legendre
transformation. Note that the numerator in Eq. (4) vanishes at
n = 1 due to the normalization of the density matrix, yielding
a finite growth rate v1 for the von Neumann entropy S(1)

A .
Rényi entropies with smaller n grow faster; the reduced den-
sity matrix for a subsystem becomes thermal when the slowest
Rényi entropy, the so-called “min-entropy” S∞ ≡ mini(εi )
(i.e., the largest entanglement eigenvalue) has saturated.

As well as the rates vn, the time evolution is characterized
by the butterfly velocity vB at which local perturbations spread
[8–10,16–18]. Although the various velocities are generically
separate, they coincide in exactly solvable models (such as
random circuits in the limit of large local Hilbert space dimen-
sion or Clifford gates [8–10] and the self-dual kicked Ising
model [19,20]), so the entanglement spectrum evolves in a
trivial way. Away from these nongeneric limits, little is known
analytically about the entanglement spectrum. A few Rényi
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FIG. 1. A depth d = 4 unitary circuit of the type considered in
this work.

entropies can be explicitly computed by mapping the circuit
dynamics to random classical partition functions [9,10,18] but
these mappings do not yield the full entanglement spectrum.
The picture that emerges from numerical studies is, however,
that the entanglement spectrum has nontrivial structure in
generic systems, such as a bandwidth that widens linearly in
time; this feature is absent in the exactly solvable limits [21].
However, this structure is not fully understood at present.

In the present work we develop and apply a numerical
transfer-matrix approach to compute the structure of the en-
tanglement spectrum for spatially infinite systems at early
times. This approach allows us to access some aspects of
entanglement for larger subsystems than were studied in
previous work: for instance, we are able to compute the
spatial fluctuations of entanglement in systems of 10 000
sites. Our approach works formally with infinite systems; we
assume that the system of interest has been initialized in a
product state and then subjected to a finite-depth quantum
circuit (i.e., evolution for a finite time) consisting of on-site
or nearest-neighbor quantum gates (see Fig. 1). We compute
the spectrum of the reduced density matrix of a bipartition
into two semi-infinite regions at an arbitrary point. After
applying a quantum circuit of finite depth t , the reduced
density matrix has rank qt−1. We will see that the spectrum
of the reduced density matrix can be interpreted as that of a
qt−1 × qt−1 matrix R acting on an ancilla space. In addition,
reduced density matrices across adjacent cuts are related by
quantum channels that are straightforward to construct given
the circuit. These quantum channels act as transfer matrices
for the entanglement spectrum [22].

The quantum-channel perspective is helpful for a number
of reasons. First, using this method one can compute the
largest few eigenvalues of the entanglement spectrum for
circuits that are too deep to permit direct simulation. Second,
as the transfer matrix acts on formally infinite systems, spatial
fluctuations of entanglement can be directly studied. Third,
standard methods from quantum optics such as the stochastic
unraveling of quantum channels [23] can be applied to simu-
late the dynamics of entanglement on larger scales than direct
simulation permits. Finally, for translation-invariant initial
states evolving under translation-invariant circuits, one can
iterate the quantum channel until it converges, and thus extract
the entanglement spectrum, free of finite-size effects, without
incurring the computational overhead of time-evolving a large
system.

These are the issues we explore in the present work. Our
main results are as follows. First, we provide algorithms
based on quantum channels for computing the entanglement
spectrum and its low-energy tail, as well as for computing
some Rényi entropies, by propagating the quantum channel in
an ancilla space. For the exactly solvable model of Ref. [20]
we analytically demonstrate that the entanglement spectrum
is trivial, using the properties of the associated quantum
channel. We compute the behavior of the “low-energy” (large
Schmidt rank) tail of the entanglement spectrum for random
unitary circuits, random circuits with a conservation law,
and translation-invariant integrable circuits, acting on various
initial states. We compute the distributions of the purity and
of the min-entropy; for random circuits we find that both
the second Rényi entropy and the min-entropy follow Gaus-
sian distributions at the accessible circuit depths (the purity,
therefore, follows a log-normal distribution). For circuits with
conservation laws or translation-invariant circuits, the nature
of this low-entanglement-energy tail is sensitive to the fluctu-
ations in the initial state. We compute the spatial correlations
of entanglement, and find that their correlation length grows
sublinearly in time. However, the correlation lengths are short
at the accessible times and we are not able to identify a definite
exponent.

This paper is organized as follows. In Sec. II we briefly re-
view concepts such as unitary circuits, matrix-product states,
and quantum channels, as they apply to the algorithms intro-
duced here. In Sec. III we describe how to construct quantum
channels for unitary circuits, and estimate the complexity of
various exact and approximate methods for extracting the
entanglement spectrum (or some of its moments). In Sec. IV
we explicitly compute the transfer matrix for the self-dual
kicked Ising model, and confirm that all the Rényi entropies
coincide in this model, as they are known to [19,20]. In Sec. V
we present results for the entanglement spectrum, the distri-
butions of purity and min-entropy, and the growth of spatial
correlations in the entanglement, in random unitary circuits,
and some variants of these. Finally Sec. VI summarizes our
results and discusses future directions.

II. BACKGROUND

A. Quantum circuits

In this work we consider systems that evolve under the
application of discrete local unitary gates tiled in the pattern
shown in Fig. 1. Our approach applies both to Floquet systems
in which the gates are applied periodically in time, and
to random circuits where each gate is drawn independently
and randomly. As with the TEBD algorithm [24], it can be
extended to continuous time evolution under strictly local
Hamiltonians by discretizing the time evolution, e.g., through
a Suzuki-Trotter decomposition.

B. Matrix product states

In this section we introduce some background material on
matrix product states (MPS’s), which will form an essential
part of the following development. More detailed expositions
may be found in Refs. [25–27].
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We consider a quantum system described by N identical
subsystems with finite Hilbert space dimension q. The (pure)
quantum states of the system are therefore defined by vectors
in the Hilbert space,

HN ≡
N times︷ ︸︸ ︷

Cq ⊗ · · · ⊗ Cq . (5)

A basis of orthonormal product states has the form

|s1:N 〉 = |s1〉q ⊗ |s2〉q · · · ⊗ |sN 〉q , (6)

where |s〉q s = 1, . . . q is an orthonormal basis for Cq, and we
have introduced the sequence notation s1:N ≡ s1, s2, . . . sN . By
taking components of a vector |�〉 ∈ H,

�s1:N = 〈s1:N |�〉 , (7)

|�〉 can be regarded as a rank-N tensor with components �s1:N .
An MPS is a tensor of the form

�s1:N = A(1)
s1

A(2)
s2

· · · A(N )
sN

, (8)

where A(1)
s , . . . A(N )

s ∈ CDj×Dj+1 are matrices, and the numbers
Dj j = 1, . . . N + 1 are known as the bond dimensions, with
D1 = DN+1 = 1. Thus the product Eq. (8) has the form “row
vector, product of matrices, column vector,” and yields a
complex number for each sequence s1 : sN .

An arbitrary vector |�〉 may be approximated by an MPS
with an error that decreases as D ≡ max j D j increases. We
will see that the state arising from applying a unitary circuit
to a product state is exactly given by an MPS with D = qd−1,
where d is the depth of the circuit.

A graphical notation for MPS proves to be extremely
convenient, and is discussed extensively in Ref. [26]. In this
notation tensors—such as the matrices or vectors A( j)—are
represented as boxes, with the number of lines or edges
entering a box indicating the number of indices the object
bears. An edge joining two vertices indicates the (pairwise)
contraction of an index. Thus the MPS in Eq. (8) is denoted

Ψs1:N = A(1)

s1

A(2)

s2

. . . A(N)

sN

Here, A(2) has three lines attached because the collection of
matrices A(2)

s ∈ CD×D may be regarded as rank-3 tensor A(2) ∈
CD×D×q. The vertical leg represents the indices s j that live
in the “physical space” while the horizontal lines represent
indices in the “bond space” (which we shall also refer to as
the “ancilla space”).

The squared norm of a vector |�〉 may be calculated by
contracting all physical indices between �s1:N and �̄s1:N . This
has the graphical representation:

Ψ|Ψ =
s1:N

Ψ̄s1:N Ψs1:N =
A(1)

Ā(1)

A(2)

Ā(2)

. . .
A(N)

Ā(N)

(9)
More generally, the reduced density matrix for the leftmost

n subsystems that arises from a pure state by tracing over the
remaining subsystems is denoted

, (10)

where for simplicity we denote A( j) by j and Ā( j) by j̄. The
above expressions may also be written

ρs1:n,s1:n
=

1

1̄

s1

s1

. . .

n

n̄

sn

sn
R(n) , (11)

where the Hermitian matrices R( j) ∈ CDj+1×Dj+1 are defined
by

R( j−1) =
∑

s

A( j)
s R( j)A( j)†

s , j = n + 1, . . . N, (12)

and R(N ) = 1.

Canonical forms

The MPS representation of |�〉 has a redundancy some-
times referred to as “gauge freedom.” For a set Xj j =
1, . . . N − 1 of invertible matrices, the transformation

A(1)
s → A(1)

s X −1
1 ,

A( j)
s → Xj−1A( j)

s X −1
j , j = 2, . . . N − 1,

A(N )
s → XN−1A(N )

s (13)

leaves �s1:N unchanged. Further conditions may be imposed
to reduce this redundancy [25]. We will be concerned with
matrices in the left canonical form, satisfying the condition

∑
s

A( j)†
s A( j)

s = 1Dj+1 (14)
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A(j)

Ā(j)

= . (15)

Note that D2 = q is necessary for A(1) to be placed in the left
canonical form, but this places no restriction on the state.

Analogously, matrices in the right canonical form satisfy∑
s

A( j)
s A( j)†

s = 1Dj (16)

A(j)

Ā(j)

= . (17)

(requiring DN = q).
One benefit of the canonical forms is that they may be

contracted “automatically.” For example, in terms of an MPS
in the right canonical form the reduced density matrix ρs1:n,s′

1:n

in Eq. (10) takes the form

ρs1:n,s1:n
=

1

1̄

s1

s1

. . .

n

n̄

sn

sn

. (18)

A second benefit—which is more relevant for us—is that the
spectrum of the reduced density matrix ρs1:n,s′

1:n
coincides with

the spectrum of R(n) for an MPS in the left canonical form.
This may be seen by introducing the spectral representation

R(n) =
∑

α

λαrαr†
α, (19)

in terms of the eigenvalues λα and eigenvectors rα of R(n).
Upon substitution into Eq. (11) this yields a spectral represen-
tation for ρs1:n,s′

1:n
,

ρs1:n,s1:n
=

α

λα

1

1̄

s1

s1

. . .

n

n̄

sn

sn

rα

r̄α

, (20)

in terms of vectors in Hn that are orthonormal by the left
canonical condition [25].

A more direct way of seeing that the spectra of R(n) and
ρA coincide, for MPS’s in the left canonical form, is shown in
Fig. 2. The moments of the spectrum are given by traces over
matrix products of the form ρk

A; one can use the left canonical
property (14) to eliminate the “boxes” pairwise and arrive at
the result tr ρk

A = tr[(R(n) )k]. Since all moments coincide, ρA

and R(n) must have the same spectrum.

=ρA

ρA

ρA

R

R

R

R

R

R

R

FIG. 2. Left: the reduced density matrix ρA can be expressed as
a matrix product operator involving matrices in left canonical form
(squares), and a matrix R that comes from the complement, Ā. Rényi
entropies are proportional to tr ρn

A; when the MPS is in left canonical
form, tr ρn

A = tr Rn. Right: application of this idea to a unitary circuit.
The matrix-product state |ψ (t )〉 is constructed by cutting diagonally
through the circuit (solid lines); the leftover gates in the shaded
region form the matrix R.

C. Quantum channels

The above formalism has a natural interpretation in terms
of quantum channels, or completely positive trace preserving
(CPTP) maps [25]. In this interpretation the matrices R( j)

are regarded as a sequence of density matrices that represent
mixed states in the bond space. The definition of R( j) given
in Eq. (12) guarantees that the maps from one R( j) to the
next are completely positive (Choi’s theorem), while the left
canonical condition, Eq. (14), ensures that they are trace
preserving. Therefore, contracting a physical leg (i.e., moving
the entanglement cut in real space) amounts to applying a
CPTP map to the ancilla. In this context the A( j)

s are known
as Kraus operators.

From now on we assume without loss of generality that
all Dj = D, which may be achieved by padding the matrices
with zeros. Square matrices A( j)

s ∈ CD×D satisfying the left
canonical condition may be parametrized in terms of unitary
matrices Uj ∈ U (qD) as

A( j)
s,ab = 〈s|q 〈a|D Uj |0〉q |b〉D . (21)

Physically, this corresponds to the amplitude for the following
process: prepare the physical subsystem j in a fixed state |0〉q,
and then act on the state |0〉q |b〉D of the subsystem j and
ancilla with a unitary, arriving in state |s〉q |a〉D. While any
CPTP map may be presented in this form [28], we will see
that this is precisely how quantum channels arise in the case
of unitary circuits.

III. QUANTUM CHANNELS FROM UNITARY CIRCUITS

This section is organized as follows. We first discuss how
to slice up a unitary circuit into an MPS where all matrices
are in left canonical form. This immediately gives us a quan-
tum channel that propagates the ancilla-space density matrix
R in the spatial direction. We then discuss two controlled
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but approximate ways of implementing the quantum channel
for larger subsystems: first, an approach for computing the
entanglement spectrum based on approximating the ancilla-
space density matrix R as a lower-rank object, and second, an
approach for computing the purity, specifically, by a stochastic
unraveling of the quantum channel (i.e., by sampling “quan-
tum trajectories” in ancilla space [23]).

A. From unitary circuits to canonical-form MPS’s

We now introduce the main idea behind our approach.
A planar unitary circuit that starts from a product state may
be presented as an MPS by slicing it into strips in an arbitrary
way. Each slice j is associated with q2 matrices A( j)

s1,s2 indexed
by two physical indices. The dimension of the ancilla is D =
qd−1. For a general decomposition of a circuit, the resulting
matrices A( j)

s1,s2 will not be in the appropriate canonical form,
so the spectra of R( j) and ρA will not coincide. An MPS in left
canonical form is obtained for slices along the southwest to
northeast diagonal,

A
(j)
s1,s2;a1:3,b1:3

=

U1

U2

U3

U4

s1 s2

a3

a2

a1

b3

b2

b1

. (22)

A graphical proof is straightforward, since

s1,s2

A(j)†
s1,s2

A(j)
s1,s2

b1:3,b1:3
=

U1

U2

U3

U4

U†
1

U†
2

U†
3

U†
4

b3

b2

b1

b3

b2

b1

. (23)

The unitarity of the constituent blocks

U1

U†
1

b1 b2

b1 b2

=

b1 b2

b1 b2

= δb1,b1
δb2,b2

(24)

guarantees that the left canonical condition

∑
s1,s2

A( j)†
s1,s2

A( j)
s1,s2

= 1D (25)

is satisfied. Choosing the southeast to northwest diagonal
gives an MPS in the right canonical form.

B. Applying the quantum channel

We have shown that a unitary circuit may be represented as
an MPS in the left canonical form. This observation may be
used to efficiently compute the ancilla density matrices R( j),
whose spectrum coincides with that of the reduced density
matrix ρs1: j ,s′

1: j
. We start with an arbitrary ancilla density ma-

trix R0, and apply the channel until convergence. In practice
we find that convergence is fast, and the ensemble converges
to its stationary form after ∼t iterations, where t is the depth
of the circuit. This rate does not seem to depend appreciably
on the initial conditions. The convergence of the channel is
related to edge effects of the entanglement spectrum as one
approaches a boundary. At time t , regions in the interior of the
system, for which L > t , will not see the edges by causality,
so their entanglement spectra should not have edge effects.
Beyond this point, we do not have a detailed understanding
of the convergence properties of these quantum channels;
developing this is an interesting topic for future work.

Recall that the R( j) are defined by

R( j−1) =
∑
s1,s2

A( j)
s1,s2

R( j)A( j)†
s1,s2

, j = n + 1, . . . N. (26)
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After cutting along the SW-NE diagonal, R( j−1)
a1:d−1,a′

1:d−1
has the

graphical representation

R
(j−1)
a1:d−1,a1:d−1

=

U1

U2

U3

U4

U†
1

U†
2

U†
3

U†
4

a3

a2

a1

a1

a2

a3

R(j) . (27)

This expression may be simplified somewhat by noting that
the topmost unitary (U4 in the above example) may be elimi-
nated to give

R
(j−1)
a1:d−1,a1:d−1

=

U1

U2

U3

U†
1

U†
2

U†
3

a3

a2

a1

a1

a2

a3

R(j) . (28)

The algorithm for applying the quantum channel is therefore
as follows:

(1) Trace over the first index of R( j),

R( j)
a1:D,a′

1:D
→

∑
a

R( j)
aa1:D−1,aa′

1:D−1
. (29)

This reduces the number of indices of R( j) to 2(t − 2), or
q2(t−2) components.

(2) Apply the unitaries Ut−1 and U †
t−1. This increases the

rank of the resulting tensor back to 2(d − 1).
(3) Continue applying unitaries from the “middle out” for

j = t − 2, . . . 2.
(4) Apply U1 and U †

1 , with the outer indices fixed.
This process involves O(t ) steps of matrix multiplication,

where the matrices are of size O(qt ). Thus if one directly
applies the channel to a density matrix, the overall complexity
is O(tq2(t−1)). This is better than the naive O(tq3(t−1)) because
each of the unitaries that make up the channel is a sparse

matrix. A Python implementation of the algorithm is available
[29].

Since our quantum channel is constructed from a diagonal
cut through the unitary circuit, there will be edge effects in a
rectangular circuit of finite width. Our approach is well suited
to infinite width circuits: the channel is applied repeatedly to
a random initial density matrix until a steady-state density
matrix is approached (for translationally invariant circuits) or
a stationary distribution (for random circuits). This typically
occurs on the scale of a number of steps roughly equal to the
depth of the circuit.

C. Low-rank approximation of R(n)

Away from fine-tuned points (see Sec. IV), finite-depth
local unitary circuits give rise to entanglement spectra that
are very broad; thus, the vast majority of the eigenstates of
ρA are close to zero and do not contribute to Rényi entropies
with n � 1 [21]. This observation is implicit in the fact that
different Sn have different growth rates [18]. This fact allows
us to propagate R(n) with negligible error using far fewer than
qt−1 basis states. We proceed as follows. We approximate

R(n) ≈
K∑

k=1

λk|k〉〈k|, (30)

where λk are the K largest eigenvalues of R and |k〉 are the
associated eigenvectors. We renormalize all the eigenvalues to
preserve the trace. We now evolve each |k〉 under each “leg”
of the quantum channel. This evolution is efficient because
each of the unitaries is a very sparse matrix. At the end of this
process we have the expression

R(n+1) ≈
K∑

k=1

q2∑
i=1

λk|φik〉〈φik|, (31)

where |φik〉 are not mutually orthogonal or normalized, but
nevertheless span a Kq2-dimensional space. Equation (31) is
the ancilla density matrix that would result from one step
of the quantum channel applied to the approximate density
matrix (30). It is a legitimate density matrix, since Eq. (30)
was. Now we can repeat this process by approximating R(n+1)

with its top K eigenvectors, renormalizing, propagating, and
so on.

When K is sufficiently small, the complexity of evolving
the K top eigenvectors scales as O(Ktqt−1), since the unitary
gates are individually sparse matrices. The diagonalization
step scales as O(K3), meanwhile. Benchmarking our results
against exact diagonalization at small sizes (and against exact
results for random unitary circuits at arbitrary sizes) we
find that keeping �100 eigenvectors suffices to capture the
quantities that are of interest here—mainly, the purity and
min-entropy, and their fluctuations.

D. Trajectory approach for computing the purity

In this section we describe an approach based on mapping
vectors in the ancilla space rather than density matrices.
Formally, this method is equivalent to the trajectory approach
developed to analyze master equations in quantum optics [23].
Applying unitaries to a vector is an O(dq(d−1)) operation
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because the unitaries are sparse. While such an approach is
evidently attractive, we will see that there is a trade-off in
terms of the number of times the matrices A( j)

s1,s2 must be
applied.

The ancilla density matrix can be defined in terms of aver-
ages over trajectories in the physical indices in the following
way. Starting from the Kraus form,

R( j) =
∑

s

A( j)
s R( j−1)A( j)†

s , j = n + 1, . . . N ; (32)

in the case of unitary circuits the index s is a composite,
s = (s1, s2), and we have changed the indexing of slices so
that indices increase going right to left. We see that L updates
correspond to summing over trajectories in the physical in-
dices of length L

R(L) =
∑

s1:sL∈{Zq}L

A(L)
sL

· · · A(1)
s1

R(0)A(1)†
s1

· · · A(L)†
sL

. (33)

If we start from a pure state R(0) = |ψ0〉 〈ψ0| we can write this
as an average over trajectories with uniform distribution,

R(L) = qL E
s1:L∼uniform

[ ∣∣ψ̃s1:L

〉 〈
ψ̃s1:L

∣∣ ], (34)

where the vectors |ψs1:L 〉 are defined as∣∣ψ̃s1:L

〉 = A(L)
sL

· · · A(1)
s1

|ψ0〉 . (35)

These vectors are unnormalized. The normalization factors

p(s1 : sL ) ≡ 〈
ψ̃s1:L

∣∣ψ̃s1:L

〉
(36)

are a normalized probability distribution over trajectories by
virtue of the left canonical condition Eq. (14). Denoting
the normalized vectors as |ψs1:L 〉 we can express the ancilla
density matrix as

R(L) = E
s1:N ∼p(·)

[∣∣ψs1:L

〉 〈
ψs1:L

∣∣]. (37)

As a trajectory increases in length, the normalization factors
are updated according to

p(s1 : sL ) = p(s1 : sL−1) 〈ψL−1|A(L)†
sL

A(L)
sL

|ψL−1〉 , (38)

so that the second factor may be interpreted as a conditional
probability

p(sL|s1:L−1) = 〈ψL−1|A(L)†
sL

A(L)
sL

|ψL−1〉 , (39)

Equation (37) expresses the ancilla density matrix in terms
of vectors, but it requires an average over trajectories. The
downside of this approach is that evaluating R will require
roughly γ −1 trajectories, where γ is the purity of a half-
infinite region, which sets the approximate rank of the reduced
density matrix. However, this approach lends itself to paral-
lelization while the channel based approach does not.

For a translationally invariant system, and assuming this
random process is ergodic, we can substitute an average over
the length of single long trajectory in the L → ∞ limit,

R = lim
L→∞

1

L

L∑
l=1

∣∣ψs1:l

〉 〈
ψs1:l

∣∣ . (40)

In practice, long runs and multiple trajectories are used.
O(D) evaluation of matrix products is not much use if we

still need O(D3) evaluation of the spectrum of R(L) or O(D2)

evaluation of the purity. However, we can access the purity
without dealing with R(L) directly using

γL = tr[R(L)2] = E
s1:N ,t1:N ∼p(·)

∣∣ 〈ψt1:L

∣∣ψs1:L

〉 ∣∣2
, (41)

which follows from Eq. (37). This formula expresses the
purity as the average fidelity over pairs of trajectories. In a
high-purity state the ancilla vectors stay close to each other
as they evolve over different trajectories, whereas in a highly
entangled state different trajectories explore different regions
of ancilla space.

Note that the expectations discussed in this section are
unrelated to any random variables that may form part of the
specification of the circuit. Evaluating the average purity, for
example, would require an additional average of Eq. (41) over
these variables.

IV. EXACTLY SOLVABLE EXAMPLE: SELF-DUAL
KICKED ISING MODEL

In order to illustrate the utility of the formalism introduced
in the previous section, we now turn to an example of a
unitary circuit in which the entanglement spectrum can be
determined analytically. This is the kicked Ising model at the
self-dual point discussed in two recent papers [19,20]. The
kicked Ising model describes the evolution of a system of
L spin-1/2 subsystems (qubits) for an integer time t by the
unitary operator (UKI)t , where UKI = KIh is composed of the
two unitaries

Ih = e−iHI[h], K = e−iHK , (42)

where

HI[h] =
L∑

j=1

[JZ jZ j+1 + h jZ j], (43)

HK = b
L∑

j=1

Xj, (44)

and (Xj,Yj, Zj ) are the Pauli matrices for spin j. HI[h] is
the classical Ising model with arbitrary longitudinal fields hj ,
while HK describes a transverse field.

In Ref. [20] the growth of the entanglement entropies was
found exactly for some particular initial product states at the
special “self-dual” values

|J| = |b| = π

4
. (45)

For a region A of size N , the authors found that when starting
from an arbitrary product state in the Zj basis the Rényi
entropies (1) need to be exactly given by

lim
L→∞

S(n)
A (t ) = min(2t − 2, N )ln2, (46)

independent of Rényi index n. The interpretation in terms of
the entanglement spectrum is striking: there are 2min(2t−2,N )

eigenvalues equal to 2− min(2t−2,N ) and the rest are zero.
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We now show how our quantum channel approach may be
used to derive the corresponding result for the case of a semi-
infinite interval,

lim
L→∞

S(n)
A (t ) = (t − 1)ln2. (47)

We can present the unitary (UKI)t as a unitary circuit of
depth t , where the layers alternate between unitaries op-
erating between spins 2 j − 1 and 2 j, and between spins
2 j and 2 j + 1. A variety of decompositions are avail-
able. For reasons that will become clear, we choose the
following:

U12 =

I

I

K K

a b

c d

, (48)

where the one-qubit (K) and two-qubit (I) gates have the form

K = exp [−ibX ], (49)

I = exp [−iJZ1Z2 − i(h1Z1 + h2Z2)/2]. (50)

In the Z basis, the elements of U12 are

(U12)ab,cd = − sin 2b

2
exp(−iJ[ab + cd] − iJ̃[ac + bd])

× exp (−ih1[a + c]/2 − ih2[b + d]/2), (51)

where a, b, c, d ∈ {1,−1} and

J̃ = −π

4
− i

2
ln tan b. (52)

The matrix (U12)ab,cd is unitary, but the matrix Ũ12 with
elements (Ũ )ab,cd = (U12)ac,bd is not except at the self-dual
points, Eq. (45). The unitarity of Ũ12 has the graphical repre-
sentation

U12

U†
12

a

b

a

b
=

a

b

a

b
= δaa δbb . (53)

The unitarity of Ũ12 has the interesting consequence that the
SW-NE MPS is in the left and right canonical form, so that∑

s

A( j)
s A( j)†

s = 12t−1 . (54)

To see this, we first give the graphical representation of the
left-hand side of Eq. (54),

(55)
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where we used unitarity to eliminate the top and bottom gates. Using the motif Eq. (53) we can telescope the circuit until

s1,s2

A(j)
s1,s2

A(j)†
s1,s2

a1:3,a1:3

=

U12

U†
12

a1

a2

a3

a1

a2

a3

(56)

Finally, we use the explicit form of Eq. (51) at the self-dual point to evaluate

U12

U †
12

a1

a1

c d =
b

(U12)a1b,cd (U∗
12)a1b,cd = δa1a1

, (57)

which corresponds to an initial state equal to a product state
in the Zj basis. This verifies the condition Eq. (54).

An MPS in both left and right canonical form describes a
bistochastic quantum channel: one that preserves the identity.
As a result, the ancilla density matrix R j = 21−t12t−1 for all j.
Evaluating the Rényi entropies yields our result, Eq. (47).

It seems likely that a similar analysis can be performed
for general Clifford circuits, which also have degenerate en-
tanglement spectra [8]. However, establishing this in general
requires one to carve out several special cases (such as circuits
that generate no entanglement at all from a number of initial
states [30,31]) and we will not pursue this here.

V. NUMERICAL RESULTS: RANDOM UNITARY CIRCUITS

In this section we present numerical results for the evo-
lution of various entanglement measures, and their spatial
fluctuations, for random unitary circuits. The coarse features
of the evolution of the entanglement spectrum were already
discussed in Ref. [21]. In particular, the bandwidth of the
entanglement spectrum broadens linearly in time; as noted
in that work, this broadening is a natural consequence of
the wide separation between the entanglement and light-cone
speeds. For circuits of depth � 10 this broadening implies
that an appreciable fraction of the spectrum of the reduced
density matrix is zero to within numerical precision. Our
focus here is on the large eigenvalues of the reduced density
matrix (which dominate Rényi entropies Sn, n � 1). Because
the vast majority of the eigenvalues are near zero, this “low-

entanglement-energy” tail can be described accurately by low-
rank approximations as in Sec. III C, allowing us to go to
circuits of depth t = 14 with modest computational effort.

A. Benchmarking the low-rank approximation

For depths t � 10 we can compare the entanglement
spectra computed by low-rank approximation with the exact
ones (Fig. 3). Although the rank of the reduced density matrix
in this case is 256, we find that working with the top 20
states allows us to match the low-energy behavior of the
entanglement spectrum.

For the largest depths we have considered, exact time
evolution is not feasible; however, there is an exact result
for the average purity of a semi-infinite system [10], viz.
γ̄ = (4/5)t−1. (Note that the exponent t − 1 here is one less
than in [10] because our partition of the system lies between
the two gates in the top layer of the circuit, which therefore
leaves the entanglement unaffected.) For the numerical results
presented here we increase the rank of the approximation until
the mean computed purity matches this exact result to within
statistical error (which is about 1%). For the largest depth
we have systematically considered (t = 14) we need to keep
≈ 120 states to match the mean purity. This is only about 1%
of the spectrum; thus the low-rank approximation is much
more efficient than direct propagation of the channel would
be.
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FIG. 3. Entanglement density of states (i.e., histogram of entan-
glement energies), at depth t = 8, computed both exactly and by
low-rank approximation of the quantum channel (Sec. III C). For
rank �20 the low-energy behavior of the entanglement spectrum is
well captured.

B. Shape of the entanglement spectrum

In this section we discuss the shape of the entangle-
ment spectrum and its relation to the evolution of the Rényi
entropies for RUCs. First, let us recall that the eigenstate
thermalization hypothesis predicts that the reduced density
matrix of a subsystem should take the form N exp(−βH ),
where H is the Hamiltonian of the subsystem and β is the
inverse temperature. Therefore the entanglement Hamiltonian
−lnρ ∝ βH + lnN , i.e., it is a stretched and shifted version of
the physical Hamiltonian. The entanglement spectrum there-
fore has the same shape as the physical spectrum: for a large
subsystem LA with a local Hamiltonian, it will be essentially
Gaussian in the bulk, with a bandwidth that increases as√

LA, although the extreme value statistics (corresponding to
the shape of the spectrum near its ground state) are model
dependent. When β

√
LA is large, the entanglement spectrum

will have a large bandwidth, and therefore (because of the
Jacobian) the reduced density matrix will have a density
of eigenvalues �(λ) distribution of the form �(λ) ∼ 1/λ.
Infinite temperature is a singular limit, as β = 0 so the
entanglement spectrum is degenerate. In practice, a typical,
randomly picked state deviates from infinite temperature by
an amount ∼1/

√
LA, so the entanglement “bandwidth” is LA

independent (up to possible logarithmic dependencies that we
are not concerned with here). For Floquet systems or RUCs
with no conservation laws, these arguments suggest that the
entanglement spectrum of a small subsystem at very late times
is degenerate up to finite-size effects. Once finite-size effects
are included we expect a Marchenko-Pastur distribution [32].

For the case of interest to us—large subsystems at short
times—the numerical evidence [21] suggests that the spec-
trum of the reduced density matrix has the density �(λ) ∼
1/λ over many decades, at any time 1 � t � lA; this is
qualitatively unlike the (compact) Wishart distribution that
obtains at very late times [32]. The bulk of the spectrum of the
reduced density matrix consists of eigenvalues below machine
precision whenever t � 8 (Fig. 4). Here, we are concerned
with the “low-energy” or “high-Schmidt-coefficient” edge,

(a)

(b)

FIG. 4. (a) Cumulative distribution function of the entanglement
eigenvalues under random unitary dynamics, for various circuit
depths, extracted from exact evolution of the reduced density matrix
under the quantum channel corresponding to the unitary circuit.
At the largest depths, an appreciable fraction of the entanglement
spectrum consists of eigenvalues below machine precision. (b) A
more detailed view of the entanglement spectrum near its “low-
energy” edge at various depths t under random unitary dynamics.
Recall that the rank of the density matrix increases exponentially
with the depth. All points except t = 14 are averaged over 3000
realizations; t = 14 is averaged over 300 realizations. Inset: slope of
the linear growth of the entanglement density of states with energy.

which governs the behavior of the Rényi entropies S(n), n � 1,
which we can follow out to later times t ≈ 14 (Fig. 4). The
evolution at early times is nontrivial, but appears to settle
down into a well-defined limiting behavior for t � 7: there
is a threshold in the entanglement density of states, followed
by a linear increase with entanglement energy that persists out
to the energies we can reliably access. The coefficient of this
linear growth is approximately 2t/2 for the larger accessible
t . This is exponentially slower than the growth of the total
number of states, so the fraction of states in the tails thins out
exponentially in time.

The Rényi index dependence of S(n) for large n follows
from this behavior of the limit shape, if we further assume that
the entanglement spectrum is self-averaging. A simple model
for the spectral density ρ(ε) of the entanglement energies that
is consistent with the large deviation form Eq. (3) is

ρ(ε) = exp [αt�(E − v∞t )], (58)
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FIG. 5. Rényi-index dependence of the entropy Sα . The fits are to
the form Sn = S∞(1 − 1/n), which works for large n, with S∞ � t/6.
Deviations from this form grow with time.

in which case

vn = α − nv∞
1 − n

. (59)

A large n result thus implies vn/v∞ � 1 − 1/n, which is
consistent with our numerical observations (Fig. 5).

Although the late-time entanglement spectrum is not nu-
merically accessible, our results allow us to comment on a few
possible qualitative scenarios of the entanglement spectrum.
First, it is clear numerically that the probability density of
states is exponentially small near the low-energy edge of the
entanglement spectrum. This turns out to be necessary for the
Rényi entropies to have distinct velocities. [If one considers,
e.g., a box-shaped entanglement density of states (DOS), it is
simple to show that all Rényi entropies with n > 0 must have
the same velocity, regardless of the aspect ratio of the box.
Similar results hold for Marchenko-Pastur and other possible
compact shapes.] Second, one might suppose the entangle-
ment spectrum has a Gaussian shape. Matching exact results
for S0, the normalization of ρ, and S2 requires the Gaussian to
have a linearly growing mean and variance. Numerically, the
entanglement bandwidth grows linearly in time rather than as
a square root, possibly because of level repulsion. Developing
a theory of how the entanglement spectrum evolves is an
important question for future work: at present we do not
have even a phenomenological Brownian-motion model of
this growth.

C. Statistics and spatial correlations of entanglement

Out to the latest times we have considered, the sample-
averaged Rényi entropies have Gaussian distributions. (Thus,
quantities such as the purity are log-normally distributed.)
Whether these distributions become anisotropic at much
larger system sizes is unclear; however, we have not seen any
sign of incipient skewness out to the times we can simulate
(Fig. 6).

We now turn to fluctuations of the entanglement across
spatial cuts. The prediction of Ref. [8], based on a mapping
to the KPZ equation, is that the entanglement fluctuations are
spatially correlated, with a correlation length ξ (t ) ∼ t2/3, and
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FIG. 6. Histograms of S2 and S∞ for t = 12; lines are fits to a
Gaussian.

that the width of the entanglement distribution scales as t1/3

(i.e., the entanglement “roughens”). The method used here
works with an infinite system at a fixed depth, and enables one
to address these spatial correlations. We find that the spatial
correlations of entanglement do get longer-ranged in time, as
their power spectrum clearly narrows in k space (Fig. 7). The

t
10
6
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0.0
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P k
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FIG. 7. Top: power spectrum of the Fourier transform of min-
entropy across spatial cuts, normalized to one for all circuits. Note
the narrowing of the Fourier transform with increasing t . Data are for
a single system of length 5000. Bottom: estimate of the correlation
length ξ extracted from the width of the Fourier peak.
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FIG. 8. Average purity of a random unitary circuit with q = 2
computed by applying the quantum channel (red circles) and by the
trajectory method (green bars) for L = 1000 steps. Good agreement
is found with the result γ̄ = (4/5)t−1 from Ref. [10] (dashed blue
line).

Fourier transform has a characteristic width, from which we
can extract a correlation length that clearly grows sublinearly
with t . However, the correlation length remains short out to
the latest times we can access, so we do not have the dynamic
range to extract meaningful exponents.

The KPZ picture also predicts that the entanglement
“roughens” with time, i.e., its standard deviation grows. This
is consistent with what we see, although, again, the roughen-
ing is too weak to extract meaningful exponents.

D. Trajectory approach for purity

Finally, we demonstrate the trajectory approach described
in Sec. III D. To evaluate the purity using Eq. (41) we evolve a
pair of trajectories s1:L and t1:L with the transition probabilities
given in Eq. (39). For a random unitary circuit with a purity
that fluctuates with spatial position, evaluating the unaver-
aged purity at a point would involve averaging over many
trajectories with the same set of gates. As a proof of principle
we instead focus on the ensemble averaged purity, and average
the fidelity | 〈ψt1:l |ψs1:l 〉 |2 for l = 1, . . . L with a trajectory of
L = 1000. In this case we can compare with the known exact
result γ̄ = (4/5)t−1 for random unitary circuits [10]. Since
we are now evolving vectors in the ancilla space rather than
density matrices we can simulate deeper circuits. Figure 8
shows the average purity for depths up to 18, comparing the
trajectory method with the exact result, as well as with the
density-matrix approach for depths up to 12. Good agreement
is found in all cases.

E. Circuits with more structure

The transfer-matrix method discussed here extends directly
from random unitary circuits to any other type of circuit
that can be decomposed into a “brickwork” arrangement of
two-site gates. We discuss two examples here: circuits with a
conservation law and translation-invariant circuits.
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FIG. 9. Entanglement spectra for circuits with a conservation
law. Upper panel: behavior of the entanglement spectrum near its
edge for three classes of initial states: random product states, random
computational-basis bit strings (“number sharp”), and the nonran-
dom Néel state. Lower panel: fluctuations of the min-entropy for
these three classes of states. All data are for depth t = 12, averaged
over 3000 samples. Only the initial Néel state approaches a Gaussian
distribution.

1. Number-conserving circuits

As an illustrative example we now turn to circuits with a
single conservation law, which we choose to be the number
of ↑ spins in the computational basis [33,34]. For a random
circuit, all classes of product states are equivalent; however,
circuits with a conservation law yield very different entan-
glement DOSs depending on the initial state. Figure 9 shows
the results for three classes of initial states: random product
states, random bit strings in the computational basis, and a
uniform Néel state. While the Néel state behaves analogously
to the random unitary circuit, at least at these depths, we
see that the other two types of product states give rise to
very different entanglement spectra, with substantially higher
DOSs at low energies. The difference can be attributed to rare
states with anomalously large weight on configurations with
long strings of aligned spins, which do not entangle under
number-conserving dynamics [12,13].

2. Translation-invariant circuits

Next, we consider translation-invariant circuits, in which
all the gates at a given time step are identical. Gates could
be the same at different time steps (giving a Floquet system)
or random at every time step (giving a system with perfectly
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FIG. 10. Power spectrum of min-entropy fluctuations in the XXZ
chain; the initial state is a random product state in the computational
basis. As in random unitary circuits, the correlation length of the
entanglement fluctuations grows in time.

spatially correlated noise). We focus here on the former case.
For concreteness we focus on the integrable Trotterization
of the XXZ model that was recently introduced [35–37].
This model is parametrized by two parameters (η, λ), and the
dynamics consists of repeated application of the two-site gate,

U (η, λ) ≡

⎛
⎜⎜⎜⎝

1 0 0 0

0 sin η

sin(η+λ)
sin λ

sin(η+λ) 0

0 sin λ
sin(η+λ)

sin η

sin(η+λ) 0
0 0 0 1

⎞
⎟⎟⎟⎠. (60)

When η is imaginary and λ is real, this is a Trotterized
version of the Ising phase of the XXZ chain, with larger η

corresponding to larger easy-axis anisotropy.
One could consider the dynamics of entanglement for

either random or homogeneous initial states. For random
states, we expect (and find) spatial fluctuations of entangle-
ment, which have a growing correlation length as in random

random
XXZ =i
XXZ =2i
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FIG. 11. Evolution of the min-entropy under the quantum chan-
nel, after L steps, for depth t = 12. The data shown are for the
Trotterized XXZ chain at two values of the anisotropy, and (for com-
parison) for a translation-invariant circuit with a randomly chosen
gate. The integrable XXZ chain has nonmonotonic entanglement
growth, which is generically absent. In all cases the initial state is
the Néel state ↑↓↑↓ . . ..
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FIG. 12. Upper panel: entanglement spectra starting from the
Néel state, under Trotterized XXZ dynamics, vs anisotropy parame-
ter η, at depth 12. For large η the dynamics freezes, so S∞ remains
close to zero out to late times. Lower panel: time evolution of S∞ for
a fixed anisotropy η = 1.5i.

unitary circuits (Fig. 10). At the accessible times, we are
unable to extract any clear qualitative difference between the
behavior of the correlation length in these integrable circuits
and the random unitary case. For translation-invariant states
(specifically the Néel state), the quantum channel converges
to a definite steady state after a time interval on the order of
the circuit depth (Fig. 11). Comparing the transient behavior
between the XXZ circuit and a (presumably nonintegrable)
circuit consisting of tiling a random two-site gate, we see
that the transient behavior of the integrable case is different:
the min-entropy overshoots its steady-state value in the inte-
grable case, but not in the random case. Figure 12 shows the
lowest 40 entanglement energies at t = 12 as a function of
the anisotropy parameter η; as one would expect, increasing
the anisotropy slows down the growth of entanglement. This
manifests itself as the top eigenvalue in the Schmidt spectrum
drifting toward zero, leading to a large gap in the Schmidt
spectrum. However, the min-entropy, starting from the Néel
state, grows linearly out to the circuit depths we can access,
with no signs of curvature. This is consistent with the intuitive
picture of ballistic entanglement growth in integrable systems
[38], since quasiparticles move ballistically although spin
dynamics is diffusive [37,39–41].

An interesting quantitative difference between integrable
dynamics and generic chaotic dynamics is that (for interme-
diate values of η) the entanglement spectrum stays “narrow”
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in the integrable case: Schmidt coefficients do not rapidly
spread out over many decades the way they do under random
unitary dynamics. This is consistent with the quasiparticle
picture, which predicts that entanglement should spread with
a characteristic quasiparticle velocity that does not depend
on the Rényi index. (We note that attempts to make this
intuitive picture more quantitative have been technically chal-
lenging [42].) How this picture extends to the case of strong
anisotropy, in which the quasiparticles have a broad distribu-
tion of velocities, is an interesting open question.

VI. CONCLUSIONS

In concluding, let us summarize the technical achievements
of the quantum channel approach.

(1) Unitary circuits are presented directly as matrix product
states in canonical form.

(2) The spectrum of the reduced density matrix is related
to that of the ancilla states exposed by the diagonal cut.

(3) The resulting quantum channel allows us to work in the
infinite width limit at finite depth.

(4) Analytical results are obtained for the kicked Ising
model at the self-dual point using a simple graphical calculus,
simpler than the approach of Ref. [20].

(5) The numerical evaluation of the channel may be im-
proved by making a low rank approximation for the ancilla
density matrix or by unraveling a quantum trajectory over the
physical states.

In this work, we benchmarked the quantum channel ap-
proach against exact results for the purity in random unitary
circuits, and used it to compute the shape and fluctuations of
the entanglement spectrum at low “entanglement energies.”
With relatively little computational effort we were able to
get converged results for depths t = 14 for the entanglement
spectrum and t = 18 for the purity. We expect that there is
room to optimize the algorithm and perform more resource-
intensive computations, allowing us to access somewhat later
times than we have in the present work. Our results support
and extend earlier work [21] showing that the entanglement
spectrum has a bandwidth that grows rapidly in time, with a
sharp onset. Under random unitary dynamics (with or without
a conservation law), most of the Schmidt coefficients that
are generated are exponentially small in circuit depth, and
can therefore be truncated, allowing for efficient computation
of the entanglement spectrum. We were able to compute
the spatial fluctuations of entanglement for large systems,

and finally for translation-invariant systems we obtained con-
verged results for the entanglement spectrum by evolving the
associated quantum channel to convergence.

A key distinction between the quantum channel approach
and standard methods (such as time-evolving block decima-
tion [43]) for evolving a matrix-product state is that the quan-
tum channel approach constructs the entanglement spectrum
without explicitly representing the physical wave function at
time t . Our truncation and sampling schemes are also concep-
tually different from that in time-evolving block decimation
(TEBD) [24,43]. Thus the quantum channel offers benefits
if one wants to compute the entanglement spectrum (since
it requires storing only the object of interest); however, it
is not clear how one would apply our methods to compute
observables in the physical (rather than ancilla) space.

A number of avenues for future work present themselves.
The thermodynamic shape of the entanglement spectrum of
a semi-infinite circuit is still not well understood beyond its
coarsest features. At a technical level, applying our approach
to the entanglement of a finite region will involve consider-
ing the quantum channel at different “times,” instead of the
stationary (distribution of the) ancilla density matrix. Finally,
our analysis of the kicked Ising model shows that the soluble
self-dual point arises simply from the relation Eq. (53), and
suggests a criterion for searching for more models in the same
class (see also Ref. [44]). The ancilla-space density matrices
for these “dual-unitary” circuits are proportional to the iden-
tity and thus have no operator entanglement [45] at any time;
they can be represented as matrix-product operators of bond
dimension 1. For circuits close to these dual-unitary points,
therefore, we expect the ancilla-space operator entanglement
to grow slowly, so representing the reduced density matrix as
a matrix-product operator and using TEBD methods to apply
the quantum channel is a promising strategy. For generic uni-
tary circuits, we have checked that the ancilla-space operator
entanglement grows linearly in time with a prefactor of order
unity, so this TEBD approach is less promising.
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