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In Thouless pumping, although a nonflat band has no effects on the quantization of particle transport, it
induces wave-packet dispersion which hinders the practical applications of Thouless pumping. Indeed, we find
that the dispersion mainly arises from the dynamical phase difference between individual Bloch states. Here we
propose two efficient schemes to suppress the dispersion in Thouless pumping: a relocalization echo protocol
and a high-order tunneling suppression protocol. In the relocalization echo protocol, we reverse the Hamiltonian
in the second pumping cycle to cancel the dynamical phase difference arising from the nonflat band, so that
the dispersed wave packet becomes relocalized. In the high-order tunneling suppression protocol, we modulate
the nearest-neighbor tunneling to make the Bloch band more flat and suppress the high-order tunneling which
causes wave-packet dispersion. Our study paves a way toward the dispersionless Thouless pumping for practical
applications in matter transport, state transfer, and quantum communication.
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I. INTRODUCTION

Topological Thouless pumping [1], a quantized transport
in a one-dimensional cyclically modulated periodic potential,
has attracted great attention. In addition to the electronic
system [1], an ultracold atomic system [2] and photonic
waveguide array [3] have been proposed to implement Thou-
less pumping. Recently, Thouless pumping has been exper-
imentally demonstrated via cold atoms in modulated optical
lattices [4,5]. Moreover, topological Thouless pumping has
been widely studied in interacting systems [6–8], a high-
dimensional system [9], and Floquet systems [10–12].

The realization of Thouless pumping has to satisfy two
key conditions: (i) the system undergoes adiabatic evolution,
and (ii) the input state uniformly fills the evolved Bloch band.
The nonadiabatic effects in Thouless pumping have been well
understood [13–15]. Generally, the input state can be chosen
as a Wannier state, which is strictly localized for an ideal flat
band. During the pumping process, the input Wannier state
acquires both Berry phase and dynamical phase, which shift
its center position and change its spatial distribution [3,7].
Although a nonflat band does not affect the position shift,
it induces wave-packet dispersion even under adiabatic evo-
lution. Due to the dispersion, large-size systems are needed
to avoid boundary effects and it becomes more difficult to
determine the wave-packet center. Moreover, the dispersion
will hinder the practical applications of Thouless pumping in
matter transport, state transfer, and quantum communication
[16–18]. Although a flat band may suppress the dispersion,
it is still a challenge to keep the band flat during the whole
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process. Thus it is important to find efficient approaches to
suppress the dispersion.

In this article we present two protocols to suppress the
dispersion during Thouless pumping: (i) the relocalization
echo protocol and (ii) the high-order tunneling suppression
protocol. In the first protocol, the Hamiltonian is changed
from Ĥ (t ) in the first pumping cycle to −Ĥ (t ) in the second
pumping cycle. Since the dynamical phases of individual
Bloch states are opposite in the two cycles, the final dynamical
phases vanish and the dispersed wave packet becomes relo-
calized in the second cycle. This relocalization echo protocol
is similar to the well-developed spin echo technique [19–23].
In the second protocol, we modulate the nearest-neighbor
tunneling to switch off the high-order resonant tunneling,
which is the main source of dispersion. Actually, such a
dispersion suppression attributes to the tunneling modulation
which makes the band more flat.

II. QUANTIZED MEAN POSITION SHIFT AND VARIATION
OF DISPERSION WIDTH

A. Model

We consider the generalized commensurate Aubry-André-
Harper (AAH) model [3,24–26],

Ĥ (t ) =
∑

j

(Jj (t )c†
j c j+1 + H.c.) +

∑
j

Vj (t )c†
j c j, (1)

with L q-site cells (the total sites is N = qL). Here c†
j (c j) are

creation (annihilation) operators for the jth site. We alternately
denote the (3l − 2)th, (3l − 1)th, and (3l )th sites as A, B,
and C. Their corresponding on-site energies are respectively
VA, VB, and VC , see Fig. 1.The on-site energies are modulated
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FIG. 1. Schematic of AAH model. We alternately denote the
(3l − 2)th, (3l − 1)th, and (3l )th sites as A, B, and C. VA, VB,
and VC are corresponding on-site energies. Here J1, J2, and J3 are,
respectively, the tunneling strengthes between A and B, B and C in
the same cell, and C and A in two nearest-neighbor cells.

according to Vj (t ) = V0 cos[2πβ j + φ(t )] with the modula-
tion amplitude V0 and the rational parameter β = p/q (where
p and q are coprime numbers). For the nearest-neighbor
tunneling strength, we set Jj (t ) = −J for the first protocol
and Jj (t ) = −J sin[2πβ j + φ(t )] for the second protocol.
In our calculations, β = p/q = 1/3, and the phase φ(t ) is
adiabatically swept according to φ(t ) = ωt + φ0. Here ω is
the ramping speed, φ0 is the initial modulation phase, and
T = 2π/ω is the pumping period.

The topological features of a Thouless pumping can be
characterized by the Chern number,

Cm = 1

2π

∫ π/q

−π/q
dk

∫ T

0
dtFm(k, t ), (2)

which is defined within the Brillouin-like zone (−π/q <

k � π/q, 0 < t � T ) [1]. Here Fm(k, t ) = i(〈∂t um|∂kum〉 −
〈∂kum|∂t um〉) is the Berry curvature and |um(k, t )〉 =

1√
L

∑
j um, j (k, t )c†

j |0〉, um, j = um, j+q, is the periodic part of
the Bloch state |ψm(k, t )〉.

B. Relation between mean position shift and Chern number

At the initial time t = 0, the input state for performing
Thouless pumping is chosen as the Wannier state [27]

|Wm(R, 0)〉 = 1√
L

∑
k

e−ikqR|ψm(k, 0)〉

= 1

L

∑
k, j

e−ikqReik jum, j (k, 0)c†
j |0〉, (3)

where R is the cell index and m denotes the band index.
Due to the freedom in choosing the phase of Bloch states,
eiθ (k)|ψm(k)〉, the Wannier state is arbitrary. Fortunately, by
minimizing the spread function 	 = 〈X̂ 2〉 − 〈X̂ 〉2, one can
get the unique maximally localized Wannier state (MLWS)
[7,28,29]. Here the position operator is defined as X̂ =∑qL

j=1 jn̂ j with n̂ j = c†
j c j .

Below we calculate the mean position shift in a pump-
ing cycle. The mean position at t = 0 is given as (see
Appendix A)

〈X̂m(0)〉 = qR + 1

L

∑
k

〈um(k, 0)|i ∂

∂k
|um(k, 0)〉. (4)

The time evolution is governed by the time-dependent
Schrödinger equation ih̄ ∂

∂t |ϕ(t )〉 = Ĥ (t )|ϕ(t )〉. During the
pumping process, as the band gap is never closed, the particle
will stay in the initial band under adiabatic evolution. The
wave function |ϕ(t )〉 at time t can be expanded in the basis
of instantaneous Bloch states of the mth band,

|ϕ(t )〉 =
∑

k

exp

(
− i

h̄

∫ t

0
dt ′Em(k, t ′)

)
gk (t )|ψm(k, t )〉, (5)

where the coefficients gk (t ) satisfy

∂

∂t
gk (t ) = −

∑
k′

gk′ (t )〈ψm(k, t )| ∂

∂t
|ψm(k′, t )〉

× exp

(
− i

h̄

∫ t

0
dt ′[Em(k′, t ′) − Em(k, t ′)]

)
, (6)

with gk (0) = 1√
L

e−ikqR. The instantaneous Bloch states are

also eigenstates of the translation operator T̂ ,

T̂ |ψm(k′, t )〉 = e−ik′q|ψm(k′, t )〉. (7)

Here T̂ also satisfies T̂ c†
j |0〉 = c†

j+q|0〉. By differentiating
Eq. (7) and taking the scalar product with 〈ψm(k, t )|, we get

(e−ik′q − e−ikq )〈ψm(k, t )| ∂

∂t
|ψm(k′, t )〉 = 0. (8)

It means that 〈ψm(k, t )| ∂
∂t |ψm(k′, t )〉 = δk,k′ 〈ψm(k, t )

| ∂
∂t |ψm(k, t )〉. So the coefficients gk (t ) are given as

gk (t ) = gk (0)exp

(
−

∫ t

0
dt ′〈ψm(k, t ′)| ∂

∂t ′ |ψm(k, t ′)
)

= gk (0)exp

(
−

∫ t

0
dt ′〈um(k, t ′)| ∂

∂t ′ |um(k, t ′)
)

. (9)

After a pumping cycle (t = T ), the wave function reads

|Wm(R, T )〉 = 1√
L

∑
k

e−ikqReiγ (k)|ψm(k, 0)〉, (10)

with

γ (k) = γb(k) + γd (k),

γd (k) = −
∫ T

0
Em(k, t )dt, (11)

γb(k) =
∫ T

0
〈um(k, t )|i ∂

∂t
|um(k, t )〉dt .

Here we respectively denote γd and γb as the dynamical phase
and the Berry phase (here and hereafter we set h̄ = 1). The
mean position at t = T is given as

〈X̂m(T )〉 = 〈X̂m(0)〉 − 1

L

∑
k

∂

∂k
γ (k). (12)

In the limit of large L, one can use the form of continuous
integral to replace the summation over the quasimomentum k,
and the mean position shift in one pumping cycle is given as


P = 〈X̂m(T )〉 − 〈X̂m(0)〉

= q

2π

∫ π/q

−π/q
Xb(k)dk = qCm. (13)
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FIG. 2. Xd (k) (left) and Xb(k) (right) for the highest band. Here
we chose Jj (t ) = −J and the parameters are set as N = 45, J = 1,
V0 = 30, φ0 = 0, and ω = 0.01.

This relationship depends only on the band topology
[30,31] and it is independent of the evolution details.
Since Em(k, t ) is periodic with the period 2π/q, the term

q
2π

∫ π/q
−π/q

∂
∂k

∫ T
0 Em(k, t )dtdk vanishes. In Fig. 2 we plot

Xd (k) = − ∂
∂k γd (k) and Xb(k) = − ∂

∂k γb(k) versus the quasi-
momentum k. It is shown that the average value of Xd (k)
vanishes and the one of Xb(k) is qCm. This well agrees with
the analytical value given by Eq. (13).

C. Variation of dispersion width during Thouless pumping

However, the nonflat band makes the dynamical phases of
individual Bloch states different and this difference makes the
input MLWS dispersed. This dispersion can be characterized
by the dispersion width DW = √

	, which is the square root
of the spread function 	. To get the variation of DW , we
analyze the spread functional first. For the isolated band we
consider, the spread functional of the Wannier states in the
mth band can be written as

	(t ) = 〈X̂ 2〉 − 〈X̂ 〉2, (14)

with 〈X̂ 2〉 = 〈Wm(0, t )|X̂ 2|Wm(0, t )〉 and 〈X̂ 〉 = 〈Wm(0, t )
|X̂ |Wm(0, t )〉. It can be decomposed as two terms, 	 = 	I +
	D, with

	I =
∑

m′ �=m,R

|〈Wm′ (R, t )|X̂ |Wm(0, t )〉|2,
(15)

	D =
∑
R �=0

|〈Wm(R, t )|X̂ |Wm(0, t )〉|2.

Here 	I is gauge invariant and therefore does not change
during the whole pumping procedure, and 	D is zero for
the MLWSs [7,28,29]. Therefore the dispersion after one
pumping cycle is determined by (see Appendix B)

	D(T ) = 1

L

∑
k

(
− ∂

∂k
γ (k) + 1

L

∑
k

∂

∂k
γ (k)

)2

. (16)

In the limit of large L, we can use the form of continuous
integral to replace the summation over quasimomentum k and
obtain

	D(T ) = q

2π

∫ π/q

−π/q
(Xd (k) + Xb(k) − qCm)2dk. (17)

Actually, the quantized transport qCm is just the average
value of Xb(k) over the Brillouin-like zone. The term Xd (k)

FIG. 3. Xd (k) (blue solid line) and ξ (k) (red dotted line) for
the highest band. The parameters are set as the ones for Fig. 2.
These parameters correspond to strong diagonal modulation with
|J/V0| = 1/30.

arises from the nonuniformly dynamical phases accumulated
in the pumping process, which gradually induce dispersion,
and so that more significant dispersion appears for slower
modulation. In contrast, the term ξ (k) = Xb(k) − qCm does
not depend on the evolution time. In Fig. 3 we plot Xd (k) and
ξ (k) = Xb(k) − qCm versus the quasimomentum k. It clearly
shows that Xd (k) is the main source of dispersion under strong
diagonal modulation (i.e., |J/V0| � 1).

III. DISPERSION-SUPPRESSED TOPOLOGICAL
THOULESS PUMPING

A. Relocalization echo protocol

In this protocol we discuss how to suppress the dispersion
via canceling the dynamical phases. The system undergoes
the adiabatic evolution with Ĥ (t ) in the first cycle, and then
suddenly jumps to the adiabatic evolution with −Ĥ (t ) in the
second cycle. At the beginning, each individual Bloch state
|ψm(k, 0)〉 has no dynamical phase, see the horizontal arrows
in Fig. 4(e). The dynamical phase difference increases with
the evolution time during the first cycle, see the anticlockwise-
rotating arrows with different frequencies. In the second
cycle, since the Hamiltonian changes from Ĥ (t ) to −Ĥ (t ),
the eigenstate index changes from m in the first cycle to
m′ = q + 1 − m in the second cycle, and the energy bands
become reversed, see the insets in Fig. 4(e). This means that
the corresponding Wannier state also changes from filling
the mth band of H (t ) to filling the m′th band of −H (t ). As
|ψm(k, t )〉 and |ψm′ (k, T + t )〉 represent the same quantum
state, this ensures that the Berry phases accumulated in the
two cycles are equal. Thus the Chern numbers for the two
bands are exactly the same. Since the mean position shift 
P
only depends on the Chern number, it takes the same value in
each cycle.

Due to the band inversion, the Bloch states |ψm(k, t )〉
and |ψm′ (k, T + t )〉 evolve with opposite energy. As
a result, the dynamical phase for the second cycle
γ

(2)
d is just the opposite to the one for the first cy-

cle γ
(1)

d , that is, γ
(2)

d = − ∫ 2T
T 〈ψm′ (k, t )|Ĥ (t )|ψm′ (k, t )〉dt =∫ T

0 〈ψm(k, t )|Ĥ (t )|ψm(k, t )〉dt = −γ
(1)

d . Consequently, the
dynamical phases accumulated in the second cycle cancel
the ones accumulated in the first cycle, see the clockwise-
rotating arrows back to the initial direction in Fig. 4(e). The
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FIG. 4. Thouless pumping during two pumping cycles: (i) The
relocalization echo protocol (left column), and (ii) the traditional
protocol (right column). (a) and (b): The density distribution 〈n̂ j〉
versus t/T . (c) and (d) The mean position shift 
P (blue solid line)
and the dispersion width DW (red dashed line) versus t/T . (e) and
(f) The dynamical phase γd (k) versus t/T . The insets in (e) and (f)
illustrate the energy bands. The solid (dashed) arrows and blue solid
(dashed) lines correspond to the points in solid (dashed) circles. The
parameters are set as the ones for Fig. 2.

blue solid (dashed) lines respectively denote the dynamical
phases of the Bloch states corresponding to the solid (dashed)
circles in the bands. In contrast, in the traditional Thouless
pumping without reversing the sign of H (t ), the dynamical
phase difference and the dispersion width will increase with
the evolution time, see Fig. 4(f).

In Fig. 4 we compare our relocalization echo protocol
with the traditional Thouless pumping. At the beginning, the
particle stays in the 27th site (i.e., the C sublattice at the ninth
cell), which is labeled as |C〉9. The initial state has 99.9%
projection on the MLWS for the highest band. In the first
cycle, the density distribution gradually spreads with the evo-
lution time. In the second cycle, for the traditional Thouless
pumping, the density distribution spreads as the one in the first
cycle, see Fig. 4(b). However, for the relocalization echo pro-
tocol, the density distribution relocalizes in the second cycle
and the final distribution almost recovers its initial shape, see
Fig. 4(a). The final state in the relocalization echo protocol has
98.9% projection on the MLWS |C〉7, but the final state in the
traditional Thouless pumping has only a very small projection
on |C〉7. Although the mean position shifts 
P are almost the
same (2 unit cells) for both the relocalization echo protocol
[Fig. 4(c)] and the traditional Thouless pumping [Fig. 4(d)],
the corresponding dispersion widths are very different. In the
relocalization echo protocol, the dispersion width DW (red
dashed line) gradually increases in the first cycle and then
gradually decreases to 0 in the second cycle, see Fig. 4(c).
In the traditional Thouless pumping, the dispersion width DW

(red dashed line) keeps increasing with the evolution time, see
Fig. 4(d). Thus, although the mean position shifts are both
determined by Chern number, the wave-packet dispersion is
strongly suppressed by the relocalization echo protocol.

B. High-order tunneling suppression protocol

The dispersion mechanism in Thouless pumping can also
attribute to the high-order quantum tunneling. Under strong
diagonal modulation (|J/V0| � 1), due to the first-order reso-
nant tunneling, the mean position shift mainly occurs around
the time when the on-site potentials of neighboring sites are
equal, see Fig. 4. If the particle only jumps to the nearest-
neighboring sites, the wave packet will keep localized. How-
ever, at the same time, the high-order resonant tunneling also
takes place and thus the wave packet disperses, see Fig. 6(c).
As a result, the dispersion width DW grows drastically around
the resonant points, see Fig. 4. Unlike the unidirectional first-
order resonant tunneling, the high-order resonant tunneling
always occurs between neighboring cells and has equal prob-
ability to spread toward opposite directions.

To describe the dispersion caused by the intercell tun-
neling, we derive the effective model via applying degen-
erate perturbation theory. Under strong diagonal modulation
(|J/V0| � 1), we treat the tunneling term

V̂ =
∑

j

(Jjc
†
j c j+1 + H.c.), (18)

as a perturbation to the on-site energy term

Ĥ0 =
∑

j

Vjc
†
j c j . (19)

Since different resonant points corresponding to different
effective Hamiltonians, we decompose one pumping cycle as
three regions: (I) around the first resonant point where VA =
VB, (II) around the second resonant point where VB = VC ,
and (III) around the third resonant point where VC = VA. The
unperturbed term Ĥ0 has three eigenvalues, E1 = VA, E2 = VB,
and E3 = VC , each with L-fold degenerate eigenstates. As an
example, we calculate the effective Hamiltonian for region
I, where VA and VB are far separated from VC . The effective
Hamiltonians for regions II and III are quite similar and will
be given at last. The eigenstates of Ĥ0 construct two different
subspaces: (1) the subspace U formed by {|A〉l , |B〉l} (with
l = 1, . . . , L), and (2) the subspace V formed by {|C〉l} (with
l = 1, . . . , L). The projection operators on spaces U and V
are, respectively, defined as

P̂0 =
∑

l

|A〉l〈A|l + |B〉l〈B|l ,
(20)

Q̂0 =
∑

l

|C〉l〈C|l .

According to the Schrieffer-Wolff transformation method
[32,33], the effective Hamiltonian for the subspace U is
given as

ĤU = Ĥ0P̂0 + P̂0V̂ P̂0 +
∞∑

n=2

Ĥeff,n,

Ĥeff,n =
∑
j�1

b2 j−1P̂0S̃2 j−1(Vod )n−1P̂0,

S̃2 j−1(Vod )n−1 =
∑

m1, . . . , m2 j−1 � 1
m1 + · · · + m2 j−1 = n − 1

× S̃m1 · · · S̃m2 j−1 (Vod ). (21)
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Here b2 j−1 are the Taylor coefficients of the function
tanh(x/2) and the superoperator S̃ describing the adjoint ac-
tion of S̃, that is, S̃(Vod ) = [S,Vod ]. In this article we consider
the effective Hamiltonian up to third order. The second-order
effective Hamiltonian is

Ĥeff,2 = 1
2 P̂0S̃1(Vod )P̂0, (22)

and the third-order effective Hamiltonian is

Ĥeff,3 = 1
2 P̂0S̃2(Vod )P̂0, (23)

with

S1 = L(Vod ), S2 = −L([Vd , S1]),

Vd = D(V̂ ), Vod = O(V̂ ). (24)

Here the superoperators are defined as

O(Ŷ ) = P0Ŷ Q0 + Q0Ŷ P0,

D(Ŷ ) = P0Ŷ P0 + Q0Ŷ Q0,

L(Ŷ ) =
∑
i, j

〈i|O(Ŷ )| j〉
Ei − Ej

|i〉〈 j|, (25)

with {|i〉} being an orthonormal eigenbasis of Ĥ0 and Ĥ0|i〉 =
Ei|i〉 for all i. We denote the eigenvalues and eigenstates
belonging to the subspace U as {El0} and |l0〉, respectively.
In this way the first-order effective Hamiltonian is written as

P̂0V̂ P̂0 =
∑
i, j∈l0

〈i|V̂ | j〉|i〉〈 j|, (26)

the second-order effective Hamiltonian is written as

Ĥeff,2 =
∑

i, j∈l0,m/∈l0

[
1

2

(
1

Ei − Em
+ 1

Ej − Em

)

×〈i|V̂ |m〉〈m|V̂ | j〉|i〉〈 j|
]
, (27)

and the third-order effective Hamiltonian is written as

Ĥeff,3 =
∑

i, j∈l0,m,n/∈l0

〈 j|V̂ |m〉〈m|V̂ |n〉〈n|V̂ |i〉
2(Ei − Em)(Ei − En)

| j〉〈i|

+
∑

i, j∈l0,m,n/∈l0

〈i|V̂ |m〉〈m|V̂ |n〉〈n|V̂ | j〉
2(Ei − Em)(Ei − En)

|i〉〈 j|

−
∑

i, j,k∈l0,m/∈l0

〈k|V̂ |m〉〈m|V̂ |i〉〈i|V̂ | j〉
2(Ei − Em)(Ej − Em)

|k〉〈 j|

−
∑

i, j,k∈l0,m/∈l0

〈 j|V̂ |i〉〈i|V̂ |m〉〈m|V̂ |k〉
2(Ei − Em)(Ej − Em)

| j〉〈k|. (28)

Similarly, the effective Hamiltonian for the subspace V can
also be obtained and the total effective Hamiltonian for region
I reads as

ĤI =
∑

l

VIAc†
l,Acl,A + VIBc†

l,Bcl,B + VICc†
l,Ccl,C

+ [
J (1)

I c†
l,Acl,B + J (2)

I c†
l,Acl−1,B − J (3)

I

(
c†

l,Acl+1,A

+ c†
l,Bcl+1,B − 2c†

l,Ccl+1,C
) + H.c.

]
. (29)

Where VIA = VA + J2
3


3
, VIB = VB + J2

2

2

, and VIC = VC − J2
2


2
−

J2
3


3
are effective on-site potentials and J (1)

I = J1 − J1(J2
2 +J2

3 )
2
2
3

,

J (2)
I = J2J3

2 ( 1

2

+ 1

3

), and J (3)
I = J1J2J3

2
2
3
are, respectively, the

first-, second-, and third-order tunneling strengths. The sec-
ond term in J (1)

I represents a correction from the third-order
process. Here J1, J2, and J3 are, respectively, the tunneling
strengthes between A and B, B and C in the same cell, and
C and A in two nearest-neighbor cells. The potential biases
are denoted as 
1 = VA − VB,
2 = VB − VC,
3 = VA − VC .
The effective Hamiltonian for one pumping cycle is given as

ĤT =
⎧⎨
⎩

ĤI, φ(t ) ∈ [0, π/6) ∪ [5π/6, 7π/6) ∪ [11π/6, 2π ],
ĤII, φ(t ) ∈ [π/6, π/2) ∪ [7π/6, 3π/2),
ĤIII, φ(t ) ∈ [π/2, 5π/6) ∪ [3π/2, 11π/6),

(30)
with ĤI given in Eq. (29) and

ĤII =
∑

l

VIIAc†
l,Acl,A + VIIBc†

l,Bcl,B + VIICc†
l,Ccl,C

+ [
J (1)

II c†
l,Bcl,C + J (2)

II c†
l+1,Bcl,C − J (3)

II

( − 2c†
l,Acl+1,A

+ c†
l,Bcl+1,B + c†

l,Ccl+1,C
) + H.c.

]
,

ĤIII =
∑

l

VIIIAc†
l,Acl,A + VIIIBc†

l,Bcl,B + VIIICc†
l,Ccl,C

+ [
J (1)

III c†
l+1,Acl,C + J (2)

III c†
l,Acl,C − J (3)

III

(
c†

l,Acl+1,A

− 2c†
l,Bcl+1,B + c†

l,Ccl+1,C
) + H.c.

]
. (31)

Where VIIA = VA + J2
1


1
+ J2

3

3

, VIIB = VB − J2
1


1
, VIIC =

VC − J2
3


3
, J (1)

II = J2 − J2(J2
1 +J2

3 )
2
1
3

, J (2)
II = − J1J3

2 ( 1

1

+ 1

3

),

J (3)
II = J1J2J3

2
1
3
and VIIIA = VA + J2

1

1

, VIIIB = VB − J2
1


1
+ J2

2

2 ,

VIIIC = VC − J2
2


2
, J (1)

III = J3 − J3(J2
1 +J2

2 )
2
1
2

, J (2)
III = J1J2

2 ( 1

1

− 1

2

),

J (3)
III = J1J2J3

2
1
2
. In Fig. 5 we compare the Thouless pumping

under the original Hamiltonian [Eq. (1)] and the effective

FIG. 5. Thouless pumping during one pumping cycle. Left: The
density distribution 〈n̂ j〉. Right: The mean position shift 
P and the
dispersion width DW . (a) and (b) Correspond to the original and
effective Hamiltonians, respectively. The parameters are set as the
ones for Fig. 2.
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FIG. 6. Dispersion-suppressed Thouless pumping under modula-
tion. (a) Modulated on-site energies and nearest-neighbor tunneling
terms. (b) Top: The density distribution 〈n̂ j〉. Bottom: The mean
position shift 
P and the dispersion width DW . The blue solid and
red dashed-dotted lines denote 
P and DW , respectively. The gray
dashed line corresponds to the system without tunneling modulation.
(c) High-order resonant tunneling processes in regions I and II. The
other parameters are set as the ones for Fig. 2.

Hamiltonian ĤT [Eq. (30)]. Clearly the results obtained from
the effective Hamiltonian agree with those obtained from the
original Hamiltonian.

To understand the dispersion process, we discuss how
the intercell high-order resonant tunneling appears. As an
example, we consider a particle initially occupied the 27th site
(i.e., the sublattice C of the ninth cell), and the system evolves
in region I. Because of the large potential bias, it will stay
in the sublattice C until the tunneling strength is comparable
to the potential bias. The three-order resonant tunneling makes
the particle move to the sublattice C in adjacent cells, that
is, |C〉l → |C〉l+1 + |C〉l−1, see Fig. 6(c1). Since the leftward
and rightward three-order tunneling processes have the same
strength, they do not change the mean position shift and may
only cause wave-packet dispersion. Then, according to the
on-site modulation Vj (t ) = V0 cos[2πβ j + φ(t )], the system
evolves into region II. In the vicinity of VB = VC , due to
the effective first-order tunneling J (1)

II (|B〉l〈C|l + H.c.), the
particle jumps from the sublattice C to its nearest-neighbor
sublattice B. In addition to the first-order resonant tunnel-
ing |C〉l → |B〉l , the second-order resonant tunneling |C〉l →
|B〉l+1 and |B〉l → |C〉l−1 may occur at the same time, which
are described by J (2)

II (|B〉l+1〈C|l + H.c.). In particular, the
wave-packet dispersion becomes significant because these
second-order tunneling processes connect with the first-order
ones, that is, |C〉l → |B〉l+1 → |C〉l+1 and |C〉l → |B〉l →
|C〉l−1, see Fig. 6(c2). In the whole process, the third-order
resonant tunneling always takes place, and its strength is given
as J (3)

II ( − 2|A〉l+1〈A|l + |B〉l+1〈B|l + |C〉l+1〈C|l + H.c.). The
time evolutions in all regions are similar: the third-order res-
onant tunneling and the connected second-order-to-first-order
resonant tunneling cause wave-packet dispersion, but do not
affect the mean position shift.

To suppress the wave-packet dispersion, one may switch
off the high-order resonant tunneling. In general, there are
several different schemes to switch off the high-order resonant
tunneling. We find that one can switch off the high-order
resonant tunneling via modulating the tunneling strength as

Jj (t ) = −J sin[2πβ j + φ(t )]. (32)

At the resonant point tr in region II, we have VB(tr ) =
VC (tr ) and {J1(tr ), J2(tr ), J3(tr )} = {0,

√
3/2,−√

3/2}. Thus
we have the high-order tunneling strengthes J (2)

II = J (3)
II = 0.

Similarly, at other resonant points [Fig. 6(a)], the high-order
tunneling is also switched off.

In Fig. 6 we show the dispersion-suppressed topological
Thouless pumping under the tunneling modulation (32). In
the top panel of Fig. 6(b), we show the time evolution of
the density distribution 〈n̂ j〉. The initial state is |C〉9 whose
projection on the MLWS for the highest band is 99.9%.
The density distribution is well localized during the whole
pumping process and the final state has 99.9% projection on
the state |C〉8. In the bottom panel of Fig. 6(b) we show the
mean position shift 
P (blue solid line) and the dispersion
width DW (red dashed-dotted line). The mean position shifts
−0.999 unit cells, which is very close to the Chern number
−1 for the highest band. The dispersion width DW is very
small during whole process and the sharp peaks correspond
to the steps in 
P. However, if the tunneling strength is fixed,
the dispersion width DW will increase with time, see the gray
dashed line in the bottom panel of Fig. 6(b).

In high-order tunneling suppression protocol, we modu-
late the nearest-neighbor tunneling strength. This modulation
suppresses the effectively high-order tunneling processes and
we find it also makes the Bloch band more flat. The energy
gap between the mth and (m+1)th bands is defined as Gm =
min{k}(Em+1,k − Em,k ). The bandwidth for mth band is defined
as Wm = max{k}Em,k − min{k}Em,k . The flatness ratios for our
three-band system are, respectively, given as δ1 = W1/G1,
δ2 = W2/min(G1, G2) and δ3 = W3/G2. In Fig. 7 we show the
flatness ratios with respect to the time-dependent phase φ(t ).

IV. SUMMARY AND DISCUSSIONS

In Thouless pumping, even under adiabatic evolution, the
nonflat band will bring nonuniformly dynamical phases and
then induce wave-packet dispersion. We have put forward two
protocols to achieve dispersion-suppressed Thouless pump-
ing. In relocalization echo protocol, the initial MLWS will
expand in the first cycle and it gradually localizes during
the second cycle via reversing the Hamiltonian. In high-order
tunneling suppression protocol, by modulating the nearest-
neighbor tunneling strength, the wave packet is almost disper-
sionless during the whole pumping process. In both protocols,
the particle transports are well consistent with the quantized
ones given by the Chern number and the final wave packets
almost perfectly return to their input shapes. Our studies
pave a way toward implementing long-distance dispersionless
Thouless pumping for practical applications.

We also note that nonadiabatic charge pumping has been
widely studied such as in discrete time crystals [34]. Recently,
a nonadiabatic quantized charge pumping has been demon-
strated in two-dimensional periodically driven quantum
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FIG. 7. Flatness ratios during one pumping cycle with fixed
tunneling strength (a) and with modulated one (b). The solid, dotted,
and dashed lines respectively correspond to the lowest, middle, and
highest bands. The parameters are set as the ones for Fig. 2.

systems with spatial disorders [35]. Hence, it would be inter-
esting to achieve dispersionless charge pumping in a nonadia-
batic way.

Lastly, we briefly discuss the experimental feasibility. Due
to rich manipulation techniques, such as individual site control
and large range of tunable parameters, our protocols can be
realized via superconducting quantum circuits [36–40]. It has
been demonstrated that by controlling the flux threading the
nonhysteretic rf SQUID loop between the two resonators, the
coupling strength between two superconducting transmission
line resonators can be tuned from negative to positive [41].
This experimental technique enables the desired tunneling
modulation in our system. Moreover, one may use the pho-
tonic lattices with complex couplings as a potential platform
for testing our protocols [42].
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APPENDIX A: DERIVATION OF EQ. (4)

Applying the position operator X̂ on the Wannier state, we have

X̂ |Wm(R, 0)〉 = 1

L

∑
k, j

e−ikqReik jum, j (k, 0) jc†
j |0〉 = qR|Wm(R, 0)〉 + 1

L

∑
k, j

e−ikqReik j i
∂

∂k
um, j (k, 0)c†

j |0〉. (A1)

Here we use the relation ∂
∂k |Wm(R, t )〉 = 0. Thus the mean position at t = 0 is given as

〈X̂m(0)〉 = qR + 1

L2

∑
k,k′, j

e−i(k−k′ )qRei(k−k′ ) ju∗
m, j (k

′, 0)i
∂

∂k
um, j (k, 0)

= qR + 1

L2

∑
k,k′

e−i(k−k′ )qR
L−1∑
R′=0

q∑
j′=1

ei(k−k′ )(qR′+ j′ )u∗
m, j′ (k

′, 0)i
∂

∂k
um, j′ (k, 0)

= qR + 1

L

∑
k

q∑
j′=1

u∗
m, j′ (k, 0)i

∂

∂k
um, j′ (k, 0) = qR + 1

L

∑
k

〈um(k, 0)|i ∂

∂k
|um(k, 0)〉. (A2)

APPENDIX B: DERIVATION OF EQ. (16)

We show how to derive Eq. (16). To do this, we calculate the element 〈Wm(R, T )|X̂ |Wm(0, T )〉 and obtain

〈Wm(R, T )|X̂ |Wm(0, T )〉
= 1

L

∑
k,k′, j

eik′qRei[γ (k)−γ (k′ )]ei(k−k′ ) ju∗
m, j (k

′, 0)
[(

− ∂

∂k
γ (k)

)
um, j (k, 0) + i

∂

∂k
um, j (k, 0)

]

= 1

L

∑
k

eikqR

(
〈um(k, 0)|i ∂

∂k
|um(k, 0)〉 − ∂

∂k
γ (k)

)
. (B1)
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The derivation of Eq. (B1) is similar to Eq. (4). Thus we get

	D(T ) =
∑

R

|〈Wm(R, T )|X̂ |Wm(0, T )〉|2 − |〈Wm(0, T )|X̂ |Wm(0, T )〉|2

= 1

L2

∑
R,k,k′

ei(k−k′ )qR

(
〈um(k, 0)|i ∂

∂k
|um(k, 0)〉 − ∂

∂k
γ (k)

)

×
(

〈um(k′, 0)|i ∂

∂k′ |um(k′, 0)〉 − ∂

∂k′ γ (k′)
)

−
(

1

L

∑
k

〈um(k, 0)|i ∂

∂k
|um(k, 0)〉 − ∂

∂k
γ (k)

)2

= 1

L

∑
k

(
〈um(k, 0)|i ∂

∂k
|um(k, 0)〉 − ∂

∂k
γ (k)

)2

−
(

1

L

∑
k

〈um(k, 0)|i ∂

∂k
|um(k, 0)〉 − ∂

∂k
γ (k)

)2

= 1

L

∑
k

[(
〈um(k, 0)|i ∂

∂k
|um(k, 0)〉 − ∂

∂k
γ (k)

)
−

(
1

L

∑
k

〈um(k, 0)|i ∂

∂k
|um(k, 0)〉 − ∂

∂k
γ (k)

)]2

= 1

L

∑
k

(
− ∂

∂k
γ (k) + 1

L

∑
k

∂

∂k
γ (k)

)2

. (B2)

Here we use the relation

〈um(k, 0)|i ∂

∂k
|um(k, 0)〉 = 1

L

∑
k

〈um(k, 0)|i ∂

∂k
|um(k, 0)〉, (B3)

for the MLWSs [7,28,29].
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