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Bulk photovoltaic effects in the presence of a static electric field
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This paper presents a study of dc photocurrents in biased insulators to the third order in the electric field.
We find three photocurrents which are characterized by physical divergences of the third-order free-electron
polarization susceptibility. In the absence of momentum relaxation and saturation effects, these dc photocurrents
grow as t n (n = 2, 1, 0) with illumination time. The photocurrents are dubbed jerk, third-order injection, and
third-order shift current, respectively, and are generalizations of the second-order injection and shift currents of
the bulk photovoltaic effect (BPVE). We also revisit the theory of the second-order bulk photovoltaic effect and
include Fermi surface contributions which are important in metals. Finally, we show that injection, shift, and jerk
currents admit simple physical interpretations in terms of semiclassical wave packet dynamics in electric fields.
Experimental signatures and extensions to higher-order susceptibilities are also discussed.

DOI: 10.1103/PhysRevB.100.064301

I. INTRODUCTION AND MAIN RESULTS

Electrons in crystals can exhibit fascinating dynamics in
the presence of external electric and magnetic fields. In met-
als, the anomalous Hall effect [1,2] or the chiral anomaly in
Weyl semimetals [3,4] are two examples. Insulators, despite
lacking a Fermi surface, can also exhibit nontrivial carrier dy-
namics as in the bulk photovoltaic effect (BPVE) [5–40]. The
BPVE is the generation of a dc photocurrent in homogeneous
insulators or semiconductors that lack inversion symmetry.

In the presence of a static E0 and an optical field E, the
dc current can be expanded in powers of the electric fields.
Schematically we can write [9]

Jdc = σ
(1)
darkE0 + σ

(2)
darkE0 + σ

(2)
bpveE2 + σ

(3)
ph E2E0 + · · · . (1)

The first and second terms are the linear and quadratic dc con-
ductivity in the absence of illumination. The third is the BPVE
and the fourth is the photoconductivity, i.e., the intensity-
dependent dc conductivity. In insulators, the BPVE is usually
the dominant contribution. In this article we first review the
theory of the BPVE (including Fermi surface contributions),
and then we extend it to study the photoconductivity.

The peculiar nature of the BPVE was first noticed by (1) its
dependence on the intensity of light, (2) its large open-circuit
photovoltages, and (3) its dependence on light polarization
[5–7]. (1) indicates that the BPVE is quadratic in the optical
field, (2) indicates that the BPVE is an ultrafast effect in which
transport occurs before carriers pretermalize at the bottom
of the conduction band (top of the valence band), and (3)
indicates that the BPVE response tensor is complex and has
two components. The real part σ2 couples to the real electric
fields and the imaginary part η2 to the imaginary electric
fields, schematically [9]

J(2)
dc,pbve = σ2|E|2 + η2E × E∗. (2)

This led to the first successful phenomenological theory of
both components of the BPVE, namely, the injection current,

also called circular photogalvanic effect (CPGE), represented
by η2 and the shift current represented by σ2.

The lack of inversion symmetry could manifest in two
distinct scenarios in the BPVE. In the first scenario, pho-
toexcited carriers relax momentum asymmetrically into ±k
directions via collisions with other electrons, phonons, or
impurities. This leads to a polar distribution and a net current
[8–10]. In the second scenario, the origin of the BPVE is
the light-matter interaction not the dynamics of momentum
relaxation. In injection current processes, light pumps carriers
into velocity-carrying states asymmetrically at ±k points in
the Brillouin zone (BZ) leading to a polar distribution and a
net current [9,14]. Within a simple relaxation time approxi-
mation, the steady state injection current is proportional to the
first power of the relaxation time constant and vanishes for
linearly polarized light.

In shift current processes, inversion symmetry breaking
manifests as a separation of the centers of charge of the
valence and conduction bands so that charge moves coher-
ently across the unit cell upon carrier photoexcitation from
valence to conduction band [11]. The shift current vanishes
for circular polarization of light and decays on the time scale
of the quantum coherence of the solid.

The BPVE has been extensively studied since the 1960s
in ferroelectrics mainly in the context of photovoltaic appli-
cations. The injection current, the shift current, or both have
been reported in many materials [5–7,12,13,16–19,22–24,26,
33–38,40], including GaAs [16,17], CdSe [12,13], CdS [13],
quantum wells [18,19], RhSi [40], and Bi12GeO20 [37]. More
recently, the BPVE has attracted attention for its promise in
novel optoelectric applications [25–27]; specifically in two-
dimensional (2D) ferroelectrics [28–33].

Following Sipe and coworkers [14], BPVE response ten-
sors can be derived from the perspective of divergent polariza-
tion susceptibilities. In this approach, the BPVE arises from
light-matter interactions and not from momentum relaxation
processes; the latter are included phenomenologically a poste-
riori. For not too large electric fields, the insulator’s response
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TABLE I. Summary of bulk photovoltaic effects (BPVEs) obtained from divergences of free electric polarization susceptibilities. The
standard BPVEs are derived from the singularities of χ2. Higher-order BPVEs can be classified by their dependence on illumination time in
the absence of momentum relaxation and saturation effects, e.g., η2, η3, and η4 are all injection current responses and σ2, σ3 are all shift currents
responses. We write susceptibilities as χ abc...

n (−ω�, ωβ, ωσ , ...) where b, c... are Cartesian indices, ωβ, ωσ , ... are frequency components, and
ω� = ωβ + ωσ + · · · is a frequency sums [41]. [X,Y ] ({X,Y }) indicate commutation (anticommutation) with respect to b, c indices. Other
conventions are explained in Sec. II.

BPVE Symbol Expression

Time
dependence

∼tα Origin Ref.

Injection ηabc
2

πe3

2h̄2V

∑
nmk fmn ωnm;a[rb

nm, rc
mn]δ(ωnm − ω) 1 χ2(0, ω,−ω) → ∞ [42]

Shift σ abc
2

iπe3

2h̄2V

∑
nmk fmn{rc

nm;a, rb
mn}δ(ωnm − ω) 0 [42]

Jerk ιabcd
3

πe4

3h̄3V

∑
nmk fmn[2ωnm;ad rb

nmrc
mn + ωnm;a(rb

nmrc
mn);d ]δ(ωnm − ω) 2 χ3(0, ω,−ω, 0) → ∞ [43]

Injection η3 Eq. (137) 1 Present
Shift σ3 Eq. (161) 0 Present

Injection ν3 Eq. (7) 1 χ3(0,−2ω, ω,ω) → ∞ [44]
Shift σ3 Eq. (8) 0 [44]

Snap ς4 Eq. (174) 3 χ4(0, ω,−ω, 0, 0) → ∞ Present
Jerk ι4 2
Injection η4 1
Shift σ4 0

Any an
1

2π i

∮
|z|=ρ

dz χn
zl+1 , z = −iω�, α = n − 1, ..., 0 χn(ω�, ωβ, ωσ , ...) → ∞,

ω� = ωβ + ωσ + · · · → 0
Present

ρ → 0, l = −n, . . . ,−1, Eq. (182)

to an external electric field is described perturbatively by
susceptibilities χn as

P = P0 + χ1E + χ2E2 + χ3E3 + . . . , (3)

where P0 is the electric polarization in the absence of an
external electric field [45,46], χ1 is the linear susceptibility,
and χ2, χ3, ... are nonlinear susceptibilities [47].

The electric polarization in insulators is commonly thought
to be determined by the off-diagonal elements of the density
matrix because these elements describe the displacement of
charge from its equilibrium position in the presence of an
electric field. Intraband processes, however, have been shown
to be important [42,48,49]. Among other things they cure
unphysical divergences in susceptibilities in the dc limit by
incorporating the fact that the intraband motion of Bloch elec-
trons cannot accelerate indefinitely in insulators [42,48]. Im-
portantly, when intraband and interband processes are taken
into account on an equal footing divergent susceptibilities
represent real photocurrents.

Consider, for example, the dc divergences of χ2. If we de-
note the amplitude of the electric field by Eb = ∑

β Eb
βe−iωβ t ,

the polarization to second order

Pa(2) =
∑
bβcσ

χabc
2 (−ω�,ωβ, ωσ )Eb

βEc
σ e−iω� t (4)

oscillates with frequency ω� = ωβ + ωσ in the longtime
limit. The intraband part of the susceptibility χ2i in

χ2 = χ2i + χ2e (5)

can be expanded in powers of ω� as [14,42]

(−iω� )2χ2i = η2 + (−iω� )σ2 + . . . , (6)

or equivalently

χ2i = η2

z2
+ σ2

z
+ · · · , (7)

where z = −iω� . Clearly, χ2i diverges at zero frequency sum.
Since χ2e is regular as ω� → 0, χ2 itself diverges at zero
frequency sum. As a side note, in metals, the Fermi surface
adds other divergent dc contributions to the second-order
BPVE, see Sec. VIII.

Assuming a monocromatic optical field and using Maxwell
equation

dP
dt

= J, (8)

Eq. (6) implies η2 and σ2 are response functions of the
nonlinear currents

d

dt
Ja(2)

inj ≡ 2
∑

bc

ηabc
2 (0, ω,−ω)Eb(ω)Ec(−ω), (9)

Ja(2)
sh ≡ 2

∑
bc

σ abc
2 (0, ω,−ω)Eb(ω)Ec(−ω). (10)

η2 and σ2 are the standard injection and shift current response
functions derived from the susceptibility approach [14]. Im-
portantly, they vanish for frequencies smaller than the energy
gap (they are ‘resonant’). The dots in Eq. (6) are associated
with the (nonresonant) rectification currents [50,51].
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In the absence of momentum relaxation and saturation
effects the injection and shift currents grow with illumination
time as ∣∣Ja(2)

inj

∣∣ ∝ η2t, (11)∣∣Ja(2)
sh

∣∣ ∝ σ2. (12)

In this article we study how the injection and shift currents are
modified by the presence of a static field, i.e., the fourth term
in Eq. (1). We use the method of finding divergences of the
free third-order electric polarization susceptibility χ3. Biased
irradiated semiconductors of this kind have been extensively
studied numerically using the semiclassical Boltzmann equa-
tion [52]. As shown below, this approach misses some impor-
tant quantum effects which are recovered in the susceptibility
approach. In summary, the third order polarization

Pa(3) =
∑

bβcσdδ

χabcd
3 (−ω�,ωβ, ωσ , ωδ )Eb

βEc
σ Ed

δ e−iω� t , (13)

oscillates with frequency ω� = ωβ + ωσ + ωδ in the longtime
limit. We show that the intraband part, χ3i, of χ3 = χ3i + χ3e

admits the Taylor expansion

(−iω� )3χ3i = ι3 + (−iω� )η3 + (−iω� )2σ3 + . . . , (14)

or alternatively the Laurent series

χ3i = ι3

z3
+ η3

z2
+ σ3

z
+ . . . , (15)

where z = −iω� and ι3, η3, σ3 are (resonant) residues.
Clearly, χ3i diverges in the dc limit (ω� = 0) and similar
to η2 and σ2, ι3, η3, and σ3 represent response functions of
nonlinear currents

d2

dt2
Ja(3)

jerk ≡ 6
∑
bcd

ιabcd
3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed

0 , (16)

d

dt
Ja(3)

inj ≡ 6
∑
bcd

ηabcd
3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed

0 , (17)

Ja(3)
sh ≡ 6

∑
bcd

σ abcd
3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed

0 . (18)

The difference is that a static field (zero frequency) is taken
into account in addition to a monochromatic optical field. In
the absence of momentum relaxation and saturation effects the
currents vary as t2, t, t0 with illumination time and we dub
them jerk, third-order injection current, and third-order shift
current, respectively. The dots in Eq. (15) represent regular
terms associated with rectification currents.

Since χ3e is regular in the dc limit, one can write the same
expansion as in Eq. (15) for both χ3i and χ3. Similarly, the
third order conductivity which is defined by

Ja(3) ≡
∑

bβcσdδ

σ abcd (3)(−ω�,ωβ, ωσ , ωδ )Eb
βEc

σ Ed
δ e−iω� t , (19)

admits the expansion

σ (3) = ι3

z2
+ η3

z
+ σ3 + . . . . (20)

The subsequent evolution of charge distribution in the sample
involves not only the above generation processes but also

the macroscopic current dynamics in a sample for which
momentum and energy relaxation is crucial. In the presence of
dissipation, the dc divergences will be cut off by a momentum
relaxation time scale, just as the dc divergence of metals in the
Drude model is cut off by a momentum relaxation time. In the
BPVE, we expect two main relaxation time scales. One is the
relaxation time scale of the diagonal elements of the density
matrix, τ1, which ι3, η3, and η2 depend on. This could be of
the order of 100 fs or longer in clean semiconductors [53].
The second is the relaxation time scale of the off-diagonal
elements of the density matrix, τ2, which σ3 and σ2 depend
on. Typically, τ2 < τ1, but a recent experiment found τ2 to be
as large as 250 fs [17]. For weakly disordered semiconductors,
the photoconductivity (ω� = 0) in Eq. (1) becomes

σ
(3)
ph ∼ τ 2

1 ι3 + τ1η3 + σ3. (21)

We can generalize the above results to any power in the
electric fields. In general, with each additional power in
the electric field, χni has an additional frequency factor in the
denominator. This means that the dc singularities of χni are,
at most, of the order n. We can show that the nth order z = 0
singularities of χn (n � 2) represent photocurrents which vary
as t n in the absence of momentum relaxation and saturation
effects. This occurs when all but two of the external frequen-
cies are zero. In addition, there is a hierarchy of higher order
shift, injection,... currents which are represented by z = 0
singularities of order 1, 2, 3, ..n of χn. Formally χn (or σ (n))
can be expanded as

χn =
∞∑

l=−n

al z
l , (22)

where al = 0 for frequencies smaller than the gap and hence
the residues are

al = 1

2π i

∮
|z|=ρ

χn dz

zl+1
. (23)

The poles of χn may be of lower order than n when the optical
field is not monocromatic; see, for example, the fourth row in
Table I where the field’s frequencies are ω and 2ω.

Importantly, we give simple physical arguments to explain
the microscopic processes involved in ι3, η3, σ3, and σ2 and
provide explicit expressions in terms of material parameters
amenable for first principles computations. To have a sense of
the magnitude of these currents, we calculate them in single-
layer GeS using a two-dimensional (2D) tight-binding model.

The article is organized as follows. In Sec. II we describe
the conventions used in this paper. In Secs. III, IV, and
V we introduce the Hamiltonian, polarization, and current
operators. In Sec. V A we revisit the calculation of the intra-
band current following Sipe and Shkrebtii [14]. In Sec. VII
we rederive the expressions for the injection and shift cur-
rent responses giving simple physical interpretations based
on semiclassical wave packet dynamics in electric fields.
In Sec. VIII we include Fermi surface contributions to the
second-order BPVE. We then study the physical divergences
of χ3 at zero frequency in Secs. IX, X, XI, and XII. The jerk
current has been presented previously and is included here
only for completeness [43]. BPVEs arising from singulari-
ties of χn(n > 3) are discussed in Sec. XIII A. Experimental
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signatures of jerk, third-order injection and third-order shift
current in single-layer GeS are summarized in Sec. XIV. A
summary of the BPVEs in insulators is presented in Table I.
Details of the derivations are given in the appendices.

II. NOTATION

To keep the notation under control we often omit the inde-
pendent variables such as time, real space position, or crystal
momentum, especially in expressions which are diagonal in
these variables.

We use the standard notation for the nth electric po-
larization susceptibility [41], χabc...

n (−ω�,ωβ, ωσ , ...), where
ωβ, ωσ ,... label external frequency components, abc, ... label
Cartesian components, and ω� = ωβ + ωσ + · · · labels a fre-
quency sum. We often write χabc...

n or simply χn for brevity
absorbing a free permittivity factor ε0 into the susceptibility.

We adopt a semicolon and subscript, ‘;a,’ to mean a covari-
ant derivative with respect to crystal momenta with Cartesian
component a = x, y, z. Unless otherwise specified we contract
spinor indices, e.g., nα → n in all expressions. A hat on a
Hamiltonian, polarization, and current indicates an operator
and a lack of a hat means a quantum mechanical average. We
do not use hats on the creation or annihilation operators or on
the position operator. A bold font indicates a vector or spinor.

To distinguish the injection current derived from η3 from
that of η2 we often call the former third-order injection current
and the latter second-order injection current. Similarly, third-
order shift current refers to current derived from σ3. We hope
the missing details will become clear from the context.

III. HAMILTONIAN

We start from a Hamiltonian

Ĥ0 =
∫

drψψψ†

(
p̂2

2m
+ V (r) + μ2

Be · (p̂ × σσσ )

)
ψψψ, (24)

describing Bloch electrons with spin-orbit (SO) coupling,
where V (r) is the periodic potential of the ions, p̂ = −ih̄∇∇∇r
is the momentum operator, e(r) = −∇∇∇rV (r) is the SO field
from the nucleus, and μB = eh̄/2mc is the Bohr magneton.
Electron-electron correlations in mean-field theory can be
easily included by renormalizing the parameters of the non-
interacting theory in Eq. (24). Momentum relaxation is incor-
porated phenomenologically at the end of the calculation. The
electron charge is e = −|e|. We define the real space spinor
field as

ψψψ =
(

ψ↑
ψ↓

)
. (25)

A classical homogeneous electric field is coupled to the
Hamiltonian by minimal substitution p̂ → p̂ − eA. After the
gauge transformation

ψ̃α = ψαe−ieA·r/h̄ (26)

(α is the spinor component), the Hamiltonian for the trans-
formed fields becomes

Ĥ (t ) = Ĥ0 + ĤD(t ). (27)

In what follows we omit the tilde above the transformed fields.
Ĥ0 is given by Eq. (24), and the perturbation has the dipole
form

ĤD = −e
∫

drψψψ† r · Eψψψ. (28)

The electric field is given by E = −∂A/∂t . The eigenfunc-
tions of H0 can be chosen to be Bloch wave functions
ψψψ (β )

n (kr) = u(β )
n (kr)e−ikr, where u(β )

n (k, r + R) = u(β )
n (k, r)

has the period of a lattice vector R. k is the crystal momentum
and β = 1, 2 is the spinor index. The field operators can then
be expanded in Bloch states

ψα (r) =
∑
nβk

ψ (β )
nα (kr)anβ (k), (29)

where a†
nβ (k) creates a particle in a Bloch state and

obeys anticommutation rules {a†
nα (k), amβ (k′)} = δnmδαβδkk′

[= δnm(2π )3δ(k − k′)/V in the thermodynamic limit]. In this
basis, H0 is diagonal

Ĥ0 =
∑
nβk

h̄ωnβa†
nβanβ, (30)

and h̄ωnβ (k) is the energy of band n and spinor β. The
sum over crystal momenta is confined to the Brillouin zone
(BZ). In the thermodynamic limit in d dimensions the sum
becomes

∑
k → V

∫
dd k/(2π )d , where V is the volume of

the crystal. In what follows we chose the periodic gauge by
which Bloch wave functions are periodic in reciprocal lattice
vectors, ψψψ (β )

n (k + G, r) = ψψψ (β )
n (k, r).

IV. POLARIZATION OPERATOR

The many-body polarization operator is well defined in
finite systems. It is given by

P̂ = 1

V

∫
drψψψ† erψψψ, (31)

where er/V is the one-body polarization operator. From
Eq. (28), the dipole Hamiltonian becomes simply

ĤD = −V P̂ · E. (32)

In periodic systems, HD is given in terms of Bloch operators
as

P̂ = e

V

∑
nmkk′

〈nk|r|mk′〉a†
n(k)am(k′). (33)

Because the position operator is unbounded and the Bloch
wave functions extend to infinity, the matrix elements (restor-
ing spinor indices)

〈nk|r|mk′〉 → 〈nαk|r|mβk′〉

=
∫

drψψψ (α)†
n (kr)rψψψ (β )

m (k′r) (34)

are singular. Fortunately, this singularity does not propagate
to observables such as the spontaneous polarization [14] if we
separate the singularity by the well-known identity [1,54]

〈nk|r|mk′〉 = δnm[δ(k − k′)ξnn + i∇∇∇kδ(k − k′)]

+ (1 − δnm)δ(k − k′)ξnm. (35)
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Here ξnm are the Berry connections

ξnm → ξnαmβ =
∫

dr u(α)†
n i∇∇∇k u(β )

m . (36)

The polarization operator can then be separated into an inter-
band component proportional to (1 − δnm) and an intraband
component proportional to δnm. To tighten the notation let us
define the dipole matrix elements as

rnm ≡ ξξξ nm n �= m

≡ 0 otherwise. (37)

The polarization is then [14]

P̂ = P̂e + P̂i, (38)

where

P̂e = e

V

∑
nmk

rnma†
nam, (39)

P̂b
i = ie

V

∑
nk

a†
nan;b, (40)

and b = x, y, z. The intraband polarization depends on the
covariant derivative of an

an;b ≡
(

∂

∂kb
− iξ b

nn

)
an, (41)

which transforms as a scalar, an;b → an;beiφβ
n , under local

gauge transformations ψ (β )
n → ψ (β )

n eiφ(β )
n . This should be con-

trasted with the transformation of ∂an/∂kb which acquires a
gauge-dependent contribution and hence it cannot represent a
physical observable.

From Eq. (38), the susceptibility also naturally separates
into intraband and interband contributions as

χ = χi + χe. (42)

V. CURRENT OPERATOR

The current density is given by

Ĵ = e

V

∫
drψψψ†v̂ψψψ, (43)

where v̂ = [r, Ĥ0]/ih̄ = p̂/m + μ2
Bσσσ × e is the electron’s ve-

locity. In the presence of light, the momentum changes to
p̂ → p̂ − eA, but after the gauge transformation (26), the
current has the same expression. In terms of Bloch operators
it becomes

Ĵ = e

V

∑
nmk

vnma†
nam, (44)

where vnm ≡ 〈nk|v̂|mk〉. The current satisfies charge conser-
vation and Maxwell’s equation

∇ · ĵ + ∂ρ̂

∂t
= 0 (45)

dP̂
dt

= Ĵ, (46)

where ρ̂ = eψψψ†ψψψ is the local charge density, ĵ =
(e/2)ψψψ†v̂ψψψ + (e/2)(v̂ψψψ )†ψψψ is the local charge current,

and P̂ is the polarization given by Eq. (38). Local particle
conservation follows from the equation of motion (EOM) of
ρ̂ in the standard way. Maxwell’s equation is established as
follows. From Eqs. (27) and (38) and ih̄dP̂/dt = [P̂, Ĥ ], we
obtain

i
dP̂a

dt
= e

V

∑
nmk

(
iωn;aδnm + ωmnra

nm

)
a†

nam (47)

where ωnm ≡ ωn − ωm. We define the covariant derivative of
the matrix element Onm ≡ 〈nk|O|mk〉 between Bloch states
n, m by

Onm;b ≡
[

∂

∂kb
− i

(
ξ b

nn − ξ b
mm

)]
Onm, (48)

which can be shown to transform as a tensor under gauge
transformations. Since the energy bands are the diagonal
matrix elements of the Hamiltonian, their covariant derivative
reduces to the standard derivative ωn;a = ∂ωn/∂ka = va

n =
pa

n/m + μ2
B(σσσ × e)a

nn. On the right hand side of Eq. (47), we
recognize the diagonal and off-diagonal matrix elements of
the velocity. The off-diagonal matrix elements are obtained by
taking Bloch matrix elements on both sides of v̂ = [r, Ĥ ]/ih̄.
Comparing with Eq. (44), the Maxwell’s equation is estab-
lished in the basis of Bloch operators.

The intraband polarization operator defines the intraband
current operator which, as shown below, connects the semi-
classical wave packet dynamics and the BPVEs.

A. Intraband current

We define the intraband current operator as the time deriva-
tive of the intraband polarization operator Ĵi = dP̂i/dt . Sim-
ilarly, the interband current is Ĵe = dP̂e/dt . The total current
is the sum of the two

Ĵ = Ĵi + Ĵe. (49)

Let us first calculate Ĵe from

ih̄
dP̂a

e

dt
= [

P̂a
e , Ĥ0

] − V
∑

b

[
P̂a

e , P̂b
i + P̂b

e

]
Eb. (50)

The first term has been computed in Eq. (47). The second term
is[

P̂a
e , P̂b

i + P̂b
e

]
= − ie2

V 2

∑
nmk

(
ra

nm;b + i
∑

p

[
ra

nprb
pm − rb

npra
pm

])
a†

nam. (51)

To make progress we now invoke a sum rule first discussed
by Sipe and coworkers [42]. It derives from taking matrix
elements of

[ra, rb] = 0 (52)

and carefully separating the interband and intraband parts of
the position operator shown in Eq. (35). It is easy to show
that such procedure works for spinor matrix elements too.
Two cases of interest follow. Taking diagonal matrix elements
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(n = m) of Eq. (52) gives

�ba
n ≡ ∂ξ a

nn

∂kb
− ∂ξ b

nn

∂ka
= −i

∑
l

[
ra

nl r
b
ln − rb

nl r
a
ln

]
, (53)

and off-diagonal elements (m �= n) gives

ra
nm;b − rb

nm;a = −i
∑

l

[
ra

nl r
b
lm − rb

nl r
a
lm

]
. (54)

It is customary, in analogy with electrodynamics, to define a
gauge field tensor �ab

n derived from the Berry vector potential
of band n. The Berry curvature ���n = ∇∇∇ × ξξξ nn is related to
the gauge field by �ab

n = ∑
e εabe�

e
n. We now separate the

diagonal from the nondiagonal matrix elements in Eq. (51)
and use Eqs. (53) and (54) to obtain

−V
∑

b

[
P̂a

e , P̂b
i + P̂b

e

]
Eb

= ie2

V

∑
nk

(E × ���n)aa†
nan + ie2

V

∑
nmkb

Ebrb
nm;a a†

nam. (55)

Subtracting Ĵe [Eq. (50)] from Ĵ [Eq. (47)] we obtain Ĵi

Ĵa
i = e

V

∑
nmk

[
ωn;aδnm − e

h̄
(E × ���n)aδnm − e

h̄
E · rnm;a

]
a†

nam.

(56)

This is an important result. The first term is the standard
group velocity (renormalized by the SOC) of an electron
wave packet in band n, ωn;a = va

n . As shown below, this term
gives rise to the injection current contribution to the BPVE.
The second term depends on the Berry curvature ���n and
is often called ‘anomalous’ velocity. It gives rise to many
topological effects in condensed matter physics. For example,
it gives rise to the (intrinsic) anomalous Hall conductivity in
metallic ferromagnets [1,55] and, as shown in Sec. VIII, to
the (intrinsic) nonlinear Hall effect in nonmagnetic metals
[56,57]. In insulators, this term contributes to third order in
the electric field but not to second order.

The third term resembles a small dipole created by the
external electric field. Just as the standard momentum deriva-
tive of Bloch energies leads to the usual group velocity, the
(covariant) derivative of the dipole energy Unm = eE · rnm can
be thought of as a group velocity

va
dip,nm = − e

h̄
E · rnm;a (57)

associated with a pair of wave packets in distinct bands.
The first two integrands in Eq. (56) are gauge invariant and

are usually interpreted as velocity contributions of electron
wave packets [58]. The dipole velocity, on the other hand,
is not gauge invariant and hence is not a physical velocity.
However, the product of the dipole velocity and the density
matrix is gauge invariant and, in this context, the dipole
velocity can be given the interpretation of the velocity of pairs
of wave packets. As shown below, the dipole velocity gives
rise to the shift current contribution to the BPVE. Indeed,
the intraband current unifies the well-known semiclassical
dynamics of wave packets in electric fields with the BPVEs.

What is the physical interpretation of the interband current?
The fact that the interband polarization is regular in the dc

limit (ω� → 0) implies the interband current vanishes in
this limit. This suggests that the interband current captures
electron oscillations about their equilibrium positions but not
their uniform acceleration.

Up to this point, the above formalism is valid for metals
and insulators. Except for Sec. VIII, we will focus on the
short time response of insulators, discarding Fermi surface
contributions and momentum relaxation. By ‘short time’ we
mean shorter than momentum relaxation characteristic time
(∼100 fs) but longer than the period of light (∼2 fs).

VI. PERTURBATION THEORY

Let us define the single-particle density matrix

ρmn ≡ 〈a†
nam〉, (58)

where the an operators are in the Heisenberg representation.
The quantum average is over the ground state defined with
all the valence bands filled and all conduction bands empty.
Being noninteracting, the system is completely characterized
by the single-particle density matrix. The amplitude of the
electric field is

Eb =
∑

β

Eb
βe−i(ωβ+iε)t , (59)

where β = 1, 2, ... labels the frequency components of the
field. The dipole Hamiltonian is treated as a perturbation with
the electric field being turned on slowly in the infinite past
so that all the transients effects have vanished. As usual, this
is accomplished by taking the limit ε → 0 at the end of the
calculation. To find the density matrix we first compute its
EOM [14]

∂ρmn

∂t
+ iωmnρmn = e

ih̄

∑
lb

Eb
(
ρml r

b
ln − rb

mlρln
)

− e

h̄

∑
b

Ebρmn;b. (60)

The first term on the right comes from interband processes as
can be recognized by the presence of rnm. The second term
comes from intraband processes which involve the covariant
derivative of the density matrix

ρmn;b ≡
[

∂

∂kb
− i

(
ξ b

mm − ξ b
nn

)]
ρmn. (61)

Only when the intraband and interband motion is considered
on an equal footing, the EOM reduces to the Boltzmann
equation (in the one-band limit) with no collision integral.

A. Zeroth order

If E = 0 the solution of Eq. (60) is simply ρ (0)
mn = δnm fn,

where fn ≡ f (εn(k)) = 0, 1 is the Fermi occupation of band
n at zero temperature.
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B. First order

Substituting the zeroth order solution into the right-hand
side of Eq. (60) and solving for ρ (1)

mn we obtain

ρ (1)
mn =

∑
bβ

ρ̄ (1)bβ
mn Eb

βe−iωβ t (62)

= e

h̄

∑
bβ

rb
mn fnm

ωmn − ωβ

Eb
βe−iωβ t , (63)

where we defined fnm ≡ fn − fm. Note that to first order only
interband processes are allowed in insulators.

C. Second order

To second order we have

ρ (2)
mn =

∑
bβ

∑
cσ

ρ̄ (2)bβcσ
mn Eb

βEc
σ e−iω� t , (64)

where

ρ̄ (2)bβcσ
mn = ie

h̄(ωmn − ω� )

×
[
ρ̄ (1)bβ

mn;c + i
∑

l

(
ρ̄

(1)bβ
ml rc

nl − rc
ml ρ̄

(1)bβ
ln

)]
, (65)

and ω� = ωβ + ωσ . The covariant derivative of a quotient in
ρ̄

(1)bβ
mn;c is simply(

ra
mn fnm

ωmn − ωα

)
;b

= ra
mn;b fnm

ωmn − ωα

− ra
mn fnmωmn;b

(ωmn − ωα )2
. (66)

D. nth order

In the longtime limit, we expect harmonic solutions of the
form

ρ (n)
mn =

∑
a1α1,...

ρ̄ (n)a1α1,..
mn Ea1

α1
. . . Ean

αn
e−iω(n)

� t , (67)

where ω
(n)
� = ωα1 + · · · + ωαn . Substituting into Eq. (60) and

iterating we obtain an equation for ρ̄ (n+1)
mn in terms of ρ̄ (n)

mn .
Omitting the superscripts a1α1, ... for clarity we obtain

ρ̄ (n+1)
mn = ie

h̄
(
ωmn − ω

(n+1)
�

)
[

i
∑

l

(
ρ̄

(n)
ml ran+1

ln − ran+1

ml ρ̄
(n)
ln

)

+ ρ̄ (n)
mn;an+1

]
. (68)

Note that at every order in perturbation theory there are in-
terband (first term) and intraband (second term) contributions.
In general, the nth-order ρ (n) (n � 1) has 2n−1 intraband and
2n−1 interband contributions.

VII. PHYSICAL DIVERGENCES OF χ2

The susceptibility and conductivity response tensors to
second order are defined by

Pa(2) =
∑
bβcσ

χabc
2 (−ω�,ωβ, ωσ )Eb

βEc
βe−iω� t , (69)

Ja(2) =
∑
bβcσ

σ abc(2)(−ω�,ωβ, ωσ )Eb
βEc

βe−iω� t , (70)

where ω� = ωβ + ωσ . They are related by dPa(2)/dt = Ja(2).
χ2 can be split into interband and intraband components, χ2 =
χ2e + χ2i, using Eqs. (39), (56), (63), and (64). The result
is [42]

χabc
2e

C2
= i

∑
nmk

ra
nm fnm

ωmn − ω�

(
rb

mn

ωmn − ωβ

)
;c

−
∑
nlmk

ra
nm

ωmn − ω�

(
rb

ml r
c
ln flm

ωml − ωβ

− rc
ml r

b
ln fnl

ωln − ωβ

)
, (71)

χabc
2i

C2
= i

ω2
�

∑
nmk

ωnm;arb
nmrc

mn fmn

ωnm − ωβ

+ 1

iω�

∑
nmk

rc
nm;arb

mn fnm

ωmn − ωβ

,

(72)

where we defined C2 = e3/h̄2V . These expressions need to be
symmetrized with respect to exchange of indices bβ ↔ cσ .
We note that χ2i is easier to calculate from J(2)

i rather than
directly from P(2)

i .
The Taylor expansion of χ2i in Eq. (6) [14,42] means that

χ2i diverges as ω� → 0 and that the injection η2 and shift
σ2 response tensors can be obtained from this expansion, see
Appendix B. Here we derive these tensors from a slightly
different perspective that exposes the analytic properties of
χ2i. Let us assume χ2i admits a Laurent series

χ2i = η2

z2
+ σ2

z
+ . . . (73)

where z = −iω� . Then η2 is given by

η2 = 1

2π i

∮
|z|=ρ

dz zχ2i, (74)

where ρ is the radius of convergence. All the frequencies are
parametrized in terms of ω� = iz. One such parametrization
is

ωβ = ω + nβω� (75)

ωσ = −ω + nσω�, (76)

where nβ + nσ = 1. The manifold where ω� = 0 is a line
of singular points (ωβ, ωσ ) = (ω,−ω), parametrized by a
single frequency ω > 0. Symmetrizing χ2i with respect to
exchange of indices bβ ↔ cσ and using Eq. (74) we obtain
ηabc

2 (0, ω,−ω) as

ηabc
2 = πe3

h̄2V

∑
nmk

fmn ωnm;arb
nmrc

mnδ(ωnm − ω), (77)

or equivalently

ηabc
2 = πe3

2h̄2V

∑
nmk

fmnωnm;a
(
rb

nmrc
mn − rc

nmrb
mn

)
δ(ωnm − ω),

(78)

which is independent of the parameters nβ, nσ . In calculating
η2 we take the limit ρ → 0 before the limit ε → 0. This
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corresponds to the physical situation where ω� = 0 in the
infinite past. Similarly, σ abc

2 (0, ω,−ω) is given by

σ2 = 1

2π i

∮
|z|=ρ

dz χ2i. (79)

An explicit integration gives

σ abc
2 = iπe3

2h̄2V

∑
nmk

fmn
(
rc

nm;arb
mn − rc

nmrb
mn;a

)
δ(ωnm − ω). (80)

In calculating σ2 we took nβ = nσ = 1/2 to eliminate a res-
onant imaginary term which depends on nβ − nσ . This term
does not arise in the standard method [14,42] because there
the prescription is to Taylor expand only the real parts. Taking
nβ = nσ means we are approaching the line of singularities at
right angle.

Equations (77) and (80) are the well-known injection and
shift current tensors. η2 is pure imaginary and antisymmetric
in the b, c indices and hence vanishes for linear polarization.
σ2, on the other hand, is real, symmetric in b, c indices, and
hence vanishes for circular polarization. The corresponding
injection and shift currents are given by

Ja(2)
sh ≡

∑
bβcσ

σ abc
2 (−ω�,ωβ, ωσ )Eb

βEc
σ e−iω� t , (81)

d

dt
Ja(2)

inj ≡
∑
bβcσ

ηabc
2 (−ω�,ωβ, ωσ )Eb

βEc
σ e−iω� t , (82)

subject to ω� = 0. Assuming a monocromatic source Eb =
Eb(ω)e−iωt + c.c. and performing the frequency sums keep-
ing only dc terms (ω� = 0), we obtain

Ja(2)
sh = 2

∑
bc

σ abc
2 (0, ω,−ω)Eb(ω)Ec(−ω) (83)

d

dt
Ja(2)

inj = 2
∑

bc

ηabc
2 (0, ω,−ω)Eb(ω)Ec(−ω), (84)

where the factor of 2 is from the intrinsic permutation sym-
metry of susceptibilities [41]. Being quadratic in the fields
the injection and shift current vanish for centrosymmetric
systems. The above expressions indicate the injection and
shift currents vary as ∣∣J(2)

inj (t )
∣∣ ∼ η2t (85)∣∣J(2)

sh (t )
∣∣ ∼ σ2 (86)

with illumination time in the absence of momentum relaxation
and saturation effects.

A. Physical interpretation of injection and shift current

In this section we show that the injection and shift currents
can be understood from simple semiclassical wave packet
dynamics in electric fields.

1. Injection current

The microscopic origin of the injection current from light-
matter interactions is well known. It arises from the asymme-
try in the carrier injection rate at time-reversed momenta in the

BZ [9,15]. To see this, let us consider an electron wave packet
with velocity va

n . From the first term in Eq. (56) the current is

Ja = e

V

∑
nk

fnv
a
n, (87)

where fn ≡ ρ (0)
nn . The effect of an optical field is to inject

carriers into the current-carrying states in the conduction
bands. Taking a time derivative of the occupations we obtain

d

dt
Ja

inj = e

V

∑
nk

dfn

dt
va

n . (88)

For low intensity, Fermi’s golden rule gives the one-photon
absorption rate [15]

dfv
dt

= −2πe2

h̄2

∑
c

|E(ω) · rcv|2δ(ωcv − ω),

dfc

dt
= 2πe2

h̄2

∑
v

|E(ω) · rcv|2δ(ωcv − ω), (89)

where c, v labels a conduction or a valence band, respectively.
For complex fields, e.g, circularly polarized or elliptically
polarized, the carrier injection rate at time-reversed points ±k
in the BZ is not the same

d

dt
fc(−k) �= d

dt
fc(k), (90)

leading to a polar distribution of Bloch velocity states. This is
the microscopic origin of the injection current and, as we show
below, of many higher-order injection currents. Substituting
into Eq. (88) we obtain

d

dt
Ja(2)

inj = 2πe3

h̄2V

∑
b′c′

∑
cvk

ωcv;arb′
vcrc′

cvδ(ωcv − ω)

× Eb′
(ω)Ec′

(−ω), (91)

or

d

dt
Ja(2)

inj = 2πe3

h̄2V

∑
bc

∑
nmk

fmnωnm;arb
nmrc

mnδ(ωnm − ω)

× Eb(ω)Ec(−ω), (92)

which is the standard injection current shown in Eq. (84).

2. Shift current

Injection current is proportional to the momentum relax-
ation time and hence explicitly breaks time-reversal sym-
metry. In the scenario where a shift current originates from
light-matter interactions [11], the shift current does not require
the presence of momentum relaxation to break time reversal
symmetry. How is time-reversal symmetry broken in shift cur-
rent processes? It is broken at the time of photon absorption
which is an irreversible process.

Materials that exhibit shift current have valence and con-
duction band centers spatially separated within the unit cell
and hence charge is shifted upon photon absorption. This
process depends only on the off-diagonal elements of the
density matrix and hence it requires quantum coherence as
has been extensively documented. Here we propose that shift
current arises from the quantum interference of two distinct
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m
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current

x

FIG. 1. Intuitive picture of microscopic generation of shift cur-
rent. The wiggle lines represent interband coherence oscillations
between the valence and conduction band centers of charge (circles)
which are spatially separated. The quantum interference between
population oscillations ρnm(t ) and dipole velocity oscillations E(t ) ·
rmn;a gives rise to a shift current.

microscopic processes involving wave packet oscillations in
the presence of an electric field. To see this consider the dipole
current in Eq. (56) to second order

Ja(2)
dip = − e2

h̄V

∑
nmk

E(t ) · rnm;a ρ (1)
mn (t ). (93)

The current is the sum of dipole velocities of each pair of wave
packets in bands n, m weighted by the probability ρ (1)

mn of being
occupied. From Eq. (63) we have

Ja(2)
dip = − e3

h̄2V

∑
bβcσ

∑
nmk

rb
nm;arc

mn fnm

ωmn − ωσ

Eb
βEc

σ e−iω� t , (94)

where ω� = ωβ + ωσ . Symmetrizing with respect to ex-
change of indices bβ ↔ cσ , assuming a monochromatic field
Eb = Eb(ω)e−iωt + c.c., and keeping only the dc resonant
terms we obtain

Ja(2)
sh = iπe3

h̄2V

∑
bc

∑
nmk

fmn
(
rb

nm;arc
mn + rc

nm;arb
mn

)
× δ(ωnm − ω)Eb(ω)Ec(−ω), (95)

which is the standard expression for the shift current in
Eq. (83). This calculation suggests that the constructive quan-
tum mechanical interference of interband coherence oscil-
lations and dipole velocity oscillations is the microscopic
origin of the shift current, see Fig. 1. We note that electron
oscillations between centers of charge, alone, do not lead
to a dc current. However, the directionality of the electron
oscillations combined with an isotropic relaxation (due to,
e.g., randomized collisions) could, in principle, also lead to
a dc current. In this scenario momentum relaxation would
play a significant role in the origin of the current. Before
showing how the injection and shift currents are modified by
the presence of a static electric field, we discuss Fermi surface
contributions to the second-order BPVE.

VIII. THE BPVE IN METALS

The Fermi surface of metals gives rise to two additional
contributions to the second-order BPVE. The first is the

nonlinear Hall effect (NLHE) discussed by Sodemann and
Fu [56] and the second is a metallic jerk current discussed
recently by Matsyshyn and Sodemann [59]. Here we show
that these photocurrents can be obtained from Eq. (56) and
simple physical assumptions.

To begin note that ρ (1)
nm has a Fermi surface contribution.

Substituting ρ (0)
nm = fnδnm into the right hand side of Eq. (60)

two terms are obtained. The first is an interband contribution
given by Eq. (63). The second is the intraband contribution

ρ
(1)
nm,i = −δnm

ie

h̄

∑
bβ

1

ωβ

∂ fn

∂kb
Eb

βe−iωβ t , (96)

which depends explicitly on the presence of a Fermi surface
via ∂ fn/∂kb. The dc divergence is cut off by the momentum
relaxation time scale τ1 as

1

−iωβ

→ 1
1
τ1

− iωβ

. (97)

From the second term in Eq. (56) we have

Ja(2)
nlhe = − e2

h̄V

∑
bβ

∑
nke

εabeEb
βe−iωβ �e

nρ
(1)
nn,i, (98)

after symmetrizing with respect to exchanges of field indices,
and performing the frequency sums the dc current is

Ja(2)
dc,nlhe =

∑
bc

σ
abc(2)
nlhe (0, ω,−ω)Eb(ω)Ec(−ω) + c.c. (99)

where

σ
abc(2)
nlhe (0, ω,−ω) ≡ e3

h̄2V

τ1

1 + iωτ1

∑
nke

εabe�
e
n

∂ fn

∂kc
, (100)

is the known response tensor for the dc nonlinear Hall effect
[56]. From a semiclassical point of view the dc NLHE arises
from the quantum interference of (intraband) oscillations of
excitations across the Fermi surface and oscillations of the
anomalous velocity of wave packets. A key difference with
injection current is that NLHE response tensor is antisymmet-
ric in the first two indices, rather than the last two.

Similarly, inspection of Eq. (56) shows that another dc cur-
rent to second-order is possible by taking two time derivatives
of the velocity in the first term and the equilibrium density
matrix

d2Ja

dt2
= e

V

∑
nk

fn
d2va

dt2
. (101)

The two derivatives of the velocity can be computed in pow-
ers of the electric field. The result is similar to Eq. (126) but
with the optical fields replacing the static fields. Symmetrizing
and performing the frequency sums we obtain

Ja(2)
2nd jerk =

∑
bc

ιabc
2 (0, ω,−ω)Eb(ω)Ec(−ω) (102)

where

ιabc
2 (0, ω,−ω) ≡ 2e3

h̄2V

∑
nk

fnωn;abc. (103)
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TABLE II. Second-order BPVEs in metals. intra - intraband;
inter - interband; FS - Fermi surface. ω� = ωβ + ωσ , frequency sum
of two optical fields, ∗in the absence of momentum relaxation.

intra. vs
dc Time inter. vs Mom.
current Symbol dep.∗ FS Sing.∗ relax.

Injection η2 t intra ω� = 0 τ1

Shift σ2 const inter ω� = 0 τ2

NLHE σ
(2)
nlhe const intra,FS ωβ = 0 τ1

Jerk ι2 t2 intra,FS τ 2
1

From the semiclassical perspective, the second-order jerk
current arises from the constant acceleration of a wave packet.
The acceleration can be constant because of the (classical)
interference of the oscillating electric field with itself. The re-
sponse tensor is symmetric under exchange of b, c indices and
hence vanish for circular polarization. The second-order jerk
current varies as t2 in the absence of momentum dissipation
and saturation effects.

The responses at 2ω can be calculated similarly. The results
are

Ja(2)
2ω,nlhe =

∑
bc

σ
abc(2)
nlhe (−2ω,ω,ω)Eb(−ω)Ec(−ω) + c.c.,

(104)

where σ
abc(2)
nlhe (−2ω,ω,ω) = σ

abc(2)
nlhe (0, ω,−ω) and

Ja(2)
2nd jerk =

∑
bc

ιabc
2 (−2ω,ω,ω)Eb(ω)Ec(−ω) + c.c. (105)

where ιabc
2 (−2ω,ω,ω) = (1/2)ιabc

2 (0, ω,−ω). Note that
both, the NLHE and the second-order jerk current can
produce current transverse to the polarization of the optical
field. This should be taken into account in interpreting
experiments in metals. A summary of the metallic BPVEs is
given in Table II.

IX. PHYSICAL DIVERGENCES OF χ3

The susceptibility and conductivity response tensors to
third order are defined by

Pa(3) =
∑

bβcσdδ

χabcd
3 (−ω�,ωβ, ωσ , ωδ )Eb

βEc
σ Ed

δ e−iω� t ,

(106)

Ja(3) =
∑

bβcσdδ

σ abcd (3)(−ω�,ωβ, ωσ , ωδ )Eb
βEc

σ Ed
δ e−iω� t ,

(107)

where ω� = ωβ + ωσ + ωδ . They are related by dP(3)/dt =
J(3). χ3 can be split into interband and intraband components
χ3 = χ3e + χ3i. Expanding the intraband component in pow-
ers of ω� gives

(−iω� )3χ3i = ι3 + (−iω� )η3 + (−iω� )2σ3 + · · · . (108)

See Appendix C. Equation (108) is equivalent to

χ3i = ι3

z3
+ η3

z2
+ σ3

z
+ · · · (109)

where z ≡ −iω� . Since χ3e is regular, Eq. (109) implies that
the conductivity in the limit of no momentum relaxation is

σ (3) = ι3

z2
+ η3

z
+ σ3 + z(reg), (110)

where reg represents the remaining regular terms (as z → 0).
The residues ι3, η3, and σ3 define various current contribu-
tions as follows. The limit

limz→0z2σ (3) = ι3, (111)

or equivalently

limω�→0
d2

dt2
Ja(3) ≡ d2

dt2
Ja(3)

jerk ,

=
∑

bβcσdδ

ιabcd
3 (0, ωβ, ωσ , ωδ )Eb

βEc
βEd

δ ,

(112)

(subject to ω� = 0) defines the jerk current. Similarly the
limits

limz→0z

[
σ (3) − ι3

z2

]
= η3, (113)

limz→0

[
σ (3) − ι3

z2
− η3

z

]
= σ3 (114)

define higher order injection and shift currents (respectively)
in the presence of a static electric field:

d

dt
Ja(3)

inj ≡
∑

bβcσdδ

ηabcd
3 (0, ωβ, ωσ , ωδ )Eb

βEc
βEd

δ , (115)

Ja(3)
sh ≡

∑
bβcσdδ

σ abcd
3 (0, ωβ, ωσ , ωδ )Eb

βEc
βEd

δ , (116)

subject to ω� = 0. We now analyze each of these currents in
detail.

X. JERK CURRENT

A. Hydrodynamic model

In an isotropic system the current is

Ja
clas = enva, (117)

where n is the carrier density. Taking two derivatives we
obtain

d2

dt2
Ja

clas = e
d2n

dt2
va + 2e

dn

dt

dva

dt
+ en

d2va

dt2
. (118)

If the rate of carrier injection dn/dt = g and acceleration
eEa

0 /m∗ are constant in time then

d2

dt2
Ja

clas = 2e2gEa
0

m∗ = constant (119)

leads to a current varying quadratically with illumination
time. This effect has been extensively studied in the context
of the THz generation in bias semiconductor antennas using
semiclassical kinetic equations, see for example Ref. [52].
However, the static field modifies the carrier injection rate
giving rise to novel contributions. We now discuss this effect.
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B. Susceptibility divergence

We find ι3 from the limit limω�→0(−iω� )3χ3i = ι3. The
details of the derivation are outlined in Appendix D.
ιabcd
3 (0, ω,−ω, 0) is given by [43]

ιabcd
3 = 2πe4

6h̄3V

∑
nmk

fmn
[
2ωnm;ad rb

nmrc
mn

+ωnm;a
(
rb

nmrc
mn

)
;d

]
δ(ωnm − ω), (120)

where ωnm;ad = ∂2ωnm/∂kd∂ka = ∂2ωn/∂kd∂ka − ∂2ωm/∂kd

∂ka.
Assuming time-reversal symmetry in the ground state we

can choose rnm(−k) = rmn(k) to show that ι3 is real, sym-
metric in the b, c indices, and satisfies [ιabcd

3 (0, ω,−ω, 0)]∗ =
ιacbd
3 (0, ω,−ω, 0) = ιabcd

3 (0,−ω,ω, 0). From Eq. (112), we
see that ι3 controls the current

d2

dt2
Ja(3)

jerk =
∑

bβcγ dδ

ιabcd
3 (−ω�,ωβ, ωγ , ωδ )Eb

βEc
γ Ed

δ e−iω� t ,

(121)

subject to ω� = 0. Performing the sum over frequencies we
obtain

d2

dt2
Ja(3)

jerk = 6
∑
bcd

ιabcd
3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed

0 , (122)

where Ed
0 is a static external field. The factor of 6 =

3! is the number of pair-wise exchanges of field indices
(bβ ), (cσ ), (dδ) [41]. The jerk current vanishes for frequen-
cies smaller than the energy band gap. Equation (122) indi-
cates that the jerk current grows quadratically with illumina-
tion time ∣∣J(3)

jerk (t )
∣∣ ∼ ι3t2, (123)

in the absence of momentum relaxation and saturation effects.
In analogy with second derivative of velocity which is called
‘jerk’ we dub it jerk current. This should be compared and
contrasted with injection current which grows linearly with
illumination time [Eq. (85)] and shift current which is constant
[Eq. (86)].

C. Materials

In general, the 81 components of ι3 are finite in both
centrosymmetric and noncentrosymmetric crystal structures.
In practice, the symmetries of the 32 crystal classes greatly
reduce the number of independent components. For example,
GaAs has 4̄3m point group, with 21 nonzero components and
four independent components [41]. However, ι3 is symmetric
under exchange of bc which reduces the number of inde-
pendent component to three. In 2D materials the number of
components of ι3 is also small. For example, single-layer GeS
has mm2 point group which contains a mirror-plane symmetry
and a twofold axis. In this case ι3 has only six independent
components.

In general, linear, circular, or unpolarized light will pro-
duce jerk current along the direction of the static field. Cur-
rent transverse to the static field may not be generated with
unpolarized or circular polarization.

D. Physical interpretation of jerk current

The terms in Eq. (120) are hard to interpret physically. We
now rederive the same result in a physically more transparent
way using a phenomenological model [43]. Consider an elec-
tron wave packet in band n subject to a static electric field Ed

0 .
The electron’s wave vector obeys

h̄
dk
dt

= −e
∂A0

∂t
, (124)

where the vector potential A0 gives the static electric field
Ed

0 = −∂Ad
0/∂t . The Bloch velocity of the electron vn(k −

eA0/h̄) can be expanded in powers of A0. Its first and second
time derivatives are given by

dva
n

dt
= e

h̄

∑
d

ωn;ad Ed
0 , (125)

d2va
n

dt2
= e2

h̄2

∑
de

ωn;adeEd
0 Ee

0 . (126)

Now, taking two time derivatives of Eq. (87)

d2Ja

dt2
= e

V

∑
nk

(
d2 fn

dt2
va

n + 2
dfn

dt

dva
n

dt
+ fn

d2va
n

dt2

)
, (127)

and using Eq. (89) and Eq. (125) we have (to linear order in
Ed

0 )

d2

dt2
Ja(3)

jerk = 2πe4

h̄3V

∑
bc′d

∑
cvk

2ωcv;ad rb
vcrc′

cv

× δ(ωcv − ω)Eb(ω)Ec′
(−ω)Ed

0

+ 2πe4

h̄3V

∑
bc′d

∑
cvk

ωcv;a
∂
(
rb
vcrc′

cv

)
∂kd

δ(ωcv − ω)

× Eb(ω)Ec′
(−ω)Ed

0 . (128)

Since ω > 0 we can extend the sums over to all bands and
recover Eq. (122). An important point of this calculation is
to show that the physical origin of the first term in Eq. (120)
comes from the acceleration of carriers in the static electric
field. The second contribution comes from a nonconstant
carrier injection rate d2 fn/dt2 �= 0 which is missing in the
standard semiclassical approach [52].

E. Jerk Hall current

In an isotropic medium, charge carriers move parallel to
the electric field. The jerk current, on the other hand, can
flow transverse to the static electric field in a rotationally
symmetric medium. To see this, let us assume a sample biased
in the x direction and compute the current in the y direction.
An optical field E = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c., with
Ea(ω) = |Ea(ω)|e−iφa , is incident perpendicular to the sample
surface which defines the xy plane. The current in the y
direction is

d2

dt2
Jy(3)

jerk = ς
yx
3 jH Ex

0 , (129)
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where the effective jerk Hall (jH) conductivity is

ς
yx
3 jH ≡ 6ι

yxxx
3 |Ex(ω)|2 + 6ι

yyyx
3 |Ey(ω)|2

+ 12ι
yyxx
3 |Ex(ω)||Ey(ω)| cos(φx − φy). (130)

In a simple relaxation time approximation the jerk conductiv-
ity [see Eq. (110)] is cut off by a relaxation time τ1 as

ι3

(−iω� )2
→ ι3(

1
τ1

− iω�

)2 . (131)

Hence, the jerk current is

Jy(3)
jerk ∼ τ 2

1

(1 − iω�τ1)2
ς

yx
3 jH Ex

0 , (132)

where τ1 is the relaxation time of the diagonal elements of the
density matrix. In the dc limit the current is proportional to
the square of the momentum relaxation. For frequencies larger
than the Drude peak but smaller than interband transitions
the current is independent of the scattering time and it is a
measure of the geometry of the Bloch wave functions.

The dependence on light’s polarization as cos(φx − φy) and
the square of the momentum relaxation are unique character-
istics of the jerk current which can be used to distinguish it
from η3 and σ3.

The symmetries of the crystal can also constrain the jerk
current, e.g., if the crystal has mirror symmetry y → −y the
first and second terms in Eq. (130) vanish. In addition, for
circular polarization φx − φy = ±π/2 the last term vanishes.
An estimate of the jerk current in realistic materials is given
next.

F. Example: Jerk current in single-layer GeS

To get a sense of the magnitude of the jerk current in real
materials we now calculate it for single-layer GeS. Single-
layer GeS is of great interest for its predicted in-plane sponta-
neous ferroelectric polarization, suitable energy band gap in
the visible spectrum (∼1.9 eV), and large nonlinear optical
response [28–31,33,62,63].

We consider a 2D, two-band tight-binding model of single-
layer GeS shown in Fig. 2(c). The details of the model are
presented in Appendix G. The model has been shown to
reproduce the ab initio shift and injection current of single-
layer GeS near the band edge, [28,30,61] specifically in the
energy range 1.9–2.14 eV. Since the model is 2D, we divide
the model’s 2D current by the thickness of the GeS layer
(d ∼ 2.56 Å) to obtain an effective bulk value.

Because of the mirror symmetry y → −y of the crystal,
only six tensor components are independent. As seen in Fig. 3,
the strongest is along the polar (chosen along x axis) of
magnitude ∼1016 Am/V3 s2. The current transverse to the
static electric field, described by the component ι

yyxx
3 [see

Eq. (129)] is an order of magnitude smaller.
The sample is rectangular of dimensions L × L and thick-

ness d = 2.56 Å and is biased by an external battery of
voltage V , as seen in Fig. 2(c). Let us assume the optical
field is incident perpendicularly to the plane of single-layer
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FIG. 2. (a) Band structure of single-layer GeS [28,60] indicating
transitions near the band edge (red arrow). (b) Crystal structure of
single-layer GeS, (c) sample setup and two-dimensional, two-band
tight-binding model of single-layer GeS which reproduces the non-
linear optical response near the band edge. The hopping parameters
considered are indicated. See main text for more details.

GeS as

E(t ) = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c. (133)

E0 = x̂Ex
0 , (134)

where Ex(ω) = E0(ω) cos θe−iφx , Ey(ω) = E0(ω) sin θ

e−iφy , θ is the angle with the x axis. The longitudinal and
transverse currents are

Ix(3)
jerk = 6Aτ 2

1

(
ιxxxx
3 |Ex(ω)|2 + ι

xyyx
3 |Ey(ω)|2)Ex

0 , (135)

Iy(3)
jerk = 12Aτ 2

1 ι
yyxx
3 |Ex(ω)||Ey(ω)| cos(φx − φy)Ex

0 , (136)

where A = Ld is the transverse area of the sample. Note that
the current along the polar (x) axis is independent of the po-
larization of light. Hence, the polar component of the current
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FIG. 3. Jerk current response tensor from the two-band model
of single-layer GeS. The two-band model is shown in Fig. 2(c).
The tensor vanishes for photon energies lower than the energy band
gap (∼1.9 eV [28,61]). The strongest component is along the polar
axis xxxx. The components yyxx, xxyy, describe a Hall-like response
and are an order of magnitude smaller. For added clarity, these
components are multiplied by 10.

will not vanish even for unpolarized light. The transverse
component of the current, on the other hand, vanishes for
circularly polarized (and unpolarized) light and is maximum
for linearly polarized light.

We choose the optical field to be linearly polarized (φx =
φy) at an angle θ with the polar axis as shown in the inset to
Fig. 4(a). The figure shows the jerk current induced as a func-
tion of θ . We assumed semiconductor parameters typically
found in the laboratory: L = 100 μm, V = 1 V, Ex

0 = V/L =
104 V/m, amplitude of the optical field E0 = 105 V/m, and
τ1 = 100 fs [53].

First note that the magnitude of the current is of the order
of pA-nA which is within experimental reach. Ix is maximum
when the polarization of light coincides with the polar axis
and decreases monotonically as the polarization turns away
towards the y axis. Iy, on the other hand, is nonmonotonic; it
is zero when the light polarization and the polar axis coincide,
then rises to a maximum at 45◦, and then decreases to zero for
light polarized perpendicular to the polar axis.

In ultrafast pulsed experiments, the THz radiation emitted
by the currents can be analyzed to study the nonlinear optical
response of the system without need of mechanical contact.
In this scenario the system does not have time to decay and
the response is determined mainly by the laser pulse charac-
teristics not by the momentum dissipation mechanism. The
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FIG. 4. Jerk current in single-layer GeS with linear polarization
at various angles θ with respect to the polar axis. (a) current parallel
to the polar axis and (b) current perpendicular to the polar axis. The
transverse current is largest at θ = 45◦ whereas the parallel current is
largest when the light’s polarization is along the polar axis. The inset
shows the top view of the sample.

above results indicate that the crystal structure, the geometry
of the setup, and light polarization can be used to uniquely
characterize the jerk current tensor components. Injection and
shift currents have been reported in THz spectroscopy in
various materials [13,16,18,64–66].

XI. THIRD-ORDER INJECTION CURRENT

An explicit calculation of η3 is given in Appendix E. The
result is

ηabcd
3 (0, ω,−ω, 0) = − πe4

6h̄3V

∑
nmk

fmn

(
�ad

nm

[
rb

nm, rc
mn

] + i
[
rb

nm, rc
mn;a

]
;d − 2iωnm;a

[(
rd

mn

ωnm

)
;b

, rc
nm

])
δ(ωnm − ω)

− πe4

3h̄3V

∑
nmlk

fmnωnm;a
rd

ln

ωnl

[
rb

nm, rc
ml

]
D−(ωnm, ω), (137)

We defined �ad
nm ≡ �ad

n − �ad
m as the difference of Berry

vector potentials. The Berry potential is related to the Berry
curvature by �ad

n = ∑
e εade�

e
n.

The covariant derivative of rd
mn/ωnm is with respect to the

gauge dependent rd
mn [see for example Eq. (D6)]. The product

rb
nmrc

mn;a is gauge invariant and hence its covariant derivative
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reduces to the standard derivative [see for example Eq. (B1)].
To simplify notation we also defined

[O(b), P(c)] ≡ O(b)P(c) − O(c)P(b), (138)
D±(ωnm, ω) ≡ δ(ωnm − ω) ± δ(ωnm + ω), (139)

where O, P are arbitrary matrix elements which depend on the
cartesian indices b, c. For example[

rb
nm, rc

mn

] ≡ rb
nmrc

mn − rc
nmrd

mn. (140)

One can see that η3 in Eq. (137) is manifestly an-
tisymmetric under exchange of b, c. In addition, it is
easy to show that ηabcd

3 (0, ω,−ω, 0) is pure imaginary
and satisfies [ηabcd

3 (0, ω,−ω, 0)]∗ = −ηabcd
3 (0, ω,−ω, 0) =

ηabcd
3 (0,−ω,ω, 0). The antisymmetry in the b, c indices im-

plies that η3 vanishes for linearly polarized light. η3 represents
the current

d

dt
Ja(3)

3i = 6
∑
bcd

ηabcd
3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed

0 , (141)

which varies as ∣∣J(3)
3i

∣∣ ∼ η3t, (142)

in the absence of momentum relaxation and saturation effects.

A. Materials

In general, the 81 components of η3 are finite in both
centrosymmetric and noncentrosymmetric crystal structures.
In practice, the symmetries of the 32 crystal classes greatly
reduce the number of independent components. For example,
GaAs has 4̄3m point group, with 21 nonzero components and
four independent components [41]. However, η3 is antisym-
metric under exchange of b, c which reduces the number of
independent components to one. In 2D materials the number
of components of η3 is also small. For example, single-layer
GeS has mm2 point group which contains a mirror-plane
symmetry and a twofold axis. In this case η3 has only two
independent components.

In general, circular or unpolarized light will produce third
order injection current along the direction of the static field.
Current transverse to the static field may not be generated with
unpolarized or linear polarization.

B. Physical interpretation of third-order injection current

The presence of a static field gives rise to new physical
processes which we now describe in detail.

1. First term

The first term in Eq. (137) arises from the asymmetric
injection of carriers into anomalous velocity states. To see
this, let us consider an electron wave packet in band n subject
to a static field Ed

0 . The static field induces an anomalous con-
tribution to the electron’s velocity which generates a current
given by [Eq. (56)]

J3i,1 = − e2

h̄V

∑
nk

fnE0 × �n, (143)

where we used fn = ρ (0)
nn . Taking a time derivative of the

occupations we obtain

d

dt
J3i,1 = − e2

h̄V

∑
nk

dfn

dt
E0 × �n. (144)

This expression means that when the optical field is turned
on electrons will be excited from the valence into anomalous
conduction states. To lowest , i.e., 2nd order in the optical field
and 1st in the static field, Fermi’s golden rule gives the one-
photon injection rate shown in Eq. (89). Using Eqs. (89) we
obtain

d

dt
Ja(3)

3i,1 = −2πe4

h̄3

∑
b′c′d

∑
vck

�ad
cv rb′

cvrc′
vcδ(ωcv − ω)

× Eb′
(ω)Ec′

(−ω)Ed
0 . (145)

Using the fact that ω > 0 we can extend the sum to all bands
and recover the first term in Eq. (137).

2. Second term

In the presence of a static field a wave packet drifts in
the BZ giving rise to a current. Similarly, a pair of wave
packets could drift coherently in the presence of a static
field giving rise to a dipole current. To see this, consider the
dipole velocity contribution to the current in Eq. (94). Writing
explicitly the small imaginary part of the external frequencies
and taking the resonant part we obtain

Ja(2)
3i,2 = − iπe3

h̄2V

∑
bc

∑
nmk

fnm
[
rb

nm;arc
mnδ(ωmn + ω)

+ rc
nm;arb

mnδ(ωmn − ω)
]
Eb(ω)Ec(−ω). (146)

Taking a time derivative of the dipole matrix elements, ex-
changing n, m indices, and making k → −k, we obtain

d

dt
Ja(3)

3i,2 = − iπe4

h̄3V

∑
bcd

∑
nmk

fnm
∂

∂kd

(
rb

nm;arc
mn

− rc
nm;arb

mn

)
δ(ωnm − ω)Eb(ω)Ec(−ω)Ed

0 , (147)

which can be recognized as the second term in Eq. (137).

3. Third term

The third term takes into account the change of the electron
distribution due to the static field. To see this, let us consider
the current of an electron wave packet in band n to third order
in the electric field. From Eq. (56)

Ja(3)
3i,3 = e

V

∑
nk

va
nρ

(3)
nn . (148)

Taking a time derivative of the density matrix gives

d

dt
Ja(3)

3i,3 = e

V

∑
nk

va
n

∂ρ (3)
nn

∂t
. (149)

From Eq. (60) the time derivative of the density matrix is

∂ρ (3)
nn

∂t
= e

ih̄

∑
bm

Eb
(
ρ (2)

nm rb
mn − rb

nmρ (2)
mn

) − e

h̄

∑
b

Ebρ
(2)
nn;b. (150)
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Now consider the intraband part of the second order density
matrix obtained from Eq. (65)

ρ
(2)
nm,i = ie

h̄

∑
bβcσ

ρ̄
(1)bβ
nm;c

ωmn − ω�

Eb
βEc

σ e−iω� t , (151)

where ω� = ωβ + ωσ . The first order density matrix in the
presence of a static field is [see Eq. (63)]

ρ̄ (1)d0
nm = e

h̄
fmn

rd
nm

ωnm
. (152)

Substituting the above equations into Eq. (150) and taking the
resonant part we recover the third term in Eq. (137). The factor
of two in Eq. (137) is due to two possible choices for the static
electric field.

4. Fourth term

This contribution arises from electrons excited from the
valence to conduction bands via an intermediate state l . These
new states are generated by the presence of static field.

C. Third-order injection Hall current

Let us assume a static field is in the x direction and compute
the current in the y direction. An optical field of the form E =
x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c. is incident perpendicular
to the sample surface which we take to define the xy plane.
From Eq. (141) the current transverse to the static field is

d

dt
Jy(3)

3iH = ς
yx
3iH Ex

0 (153)

where Ea(ω) = |Ea(ω)|e−iφa and the Hall coefficient is

ς
yx
3iH ≡ 12iηyyxx

3 |Ex(ω)||Ey(ω)| sin(φx − φy). (154)

Similar to η2, η3 vanishes for linear polarization φx = φy

and is maximum for circularly polarized light. In a simple
relaxation time approximation, the dc singularity in the con-
ductivity [see Eq. (110)] is cut off by a phenomenological
relaxation time τ1 as

η3

−iω�

→ η3
1
τ1

− iω�

. (155)

The current is

Jy(3)
3iH ∼ τ1

1 − iω�τ1
ς

yx
3iH Ex

0 . (156)

If ω� = 0, the current is proportional to τ1 the relaxation of
the diagonal elements of the density matrix. For frequencies
larger than the Drude peak ω�τ1 � 1 but smaller than inter-
band transitions the current is independent of the scattering
time and hence is a measure of the geometry of the Bloch
wave functions.

D. Example: Third-order injection current in single-layer GeS

To get a sense of the η3-injection current in real materials
we now calculate it for single-layer GeS. We use the same
two-band, 2D tight-binding model of single-layer GeS and
same sample geometry as in Sec. X F.

Out of the 16 tensor components the antisymmetry in the
b, c indices and the mirror symmetry y → −y of the crystal
leaves only two independent components, yyxx and xxyy,
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FIG. 5. Injection current response tensor ηabcd
3 in single-layer

GeS near the band edges. η3 gives rise only to current transverse
to the static field and vanishes for linearly polarized light. The
tight-binding model parameters are described in Sec. X F.

shown in Fig. 5. These components allow current to flow
only perpendicular to the static electric. The second term in
η3 is the dominant term followed by the third, and the first
terms which are one and two orders of magnitude smaller
respectively.

We chose the optical field to be circularly polarized and
the static field is either along the polar axis of the sample or

0
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FIG. 6. η3-injection current in single-layer GeS near the band
edge. (a) shows the current parallel to the polar axis, Ix and (b) the
current transverse to the polar axis Iy. Light is circularly polarized
and incident perpendicular to the plane of the GeS in both sample
setups.
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perpendicular to it

E(t ) = x̂E0(ω)e−iωt + ŷE0(ω)e−iωt + c.c., (157)

E0 = x̂Ex
0 , or ŷEy

0 , (158)

where φx − φy = π/2. The transverse currents are given by

Ix(3)
3i = 12Aτ1iηxxyy

3 |Ex(ω)||Ey(ω)|Ex
0 sin(φy − φx ) (159)

Iy(3)
3i = 12Aτ1iηyyxx

3 |Ex(ω)||Ey(ω)|Ex
0 sin(φx − φy) (160)

where A = Ld is the transverse area of the sample. Note
that the current vanishes for linearly polarized light but is
maximum for circular polarization.

The calculated induced current is shown in Figs. 6(a) and
6(b). Note that the photocurrent is of the order of pA and of
the same sign.

XII. THIRD-ORDER SHIFT CURRENT

Explicit calculation of σ3 gives

σ abcd
3 (0, ω,−ω, 0) = πe4

6h̄3V

∑
nmk

fmn

[{(
rd

mn

ωnm

)
;c

, rb
nm;a

}
−

{(
rd

mn;a

ωnm

)
;c

, rb
nm

}]
δ(ωnm − ω)

− iπe4

6h̄3V

∑
nmlk

fln

ωmn

[{
rc

nl ,
(
rd

mnrb
lm

)
;a

} − rd
mn

{
rc

nl;a, rb
lm

}]
D+(ωnl , ω). (161)

For details see Appendix F. In Eq. (161) we defined the
anticommutator with respect to the b, c indices as

{O(b), P(c)} ≡ O(b)P(c) + O(c)P(b) (162)

where O, P are arbitrary matrix elements. For example

{(
rd

mn

ωnm

)
;c

, rb
nm;a

}
≡

(
rd

mn

ωnm

)
;c

rb
nm;a +

(
rd

mn

ωnm

)
;b

rc
nm;a. (163)

D+ is defined in Eq. (139). Clearly, σ3 is symmetric under
exchange of b, c, pure real, and satisfies σ abcd

3 (0, ω,−ω, 0) =
σ acbd

3 (0,−ω,ω, 0). The tensor defines the nonlinear current

Ja(3)
sh = 6

∑
bcd

σ abcd
3 (0, ω,−ω, 0)Eb(ω)Ec(−ω)Ed

0 , (164)

which, in the absence of momentum relaxation and saturation
effects, is constant with illumination time (if quantum coher-
ence is maintained).

A. Materials

In general, the 81 components of σ3 are finite in both
centrosymmetric and noncentrosymmetric crystal structures.
In practice, the symmetries of the 32 crystal classes greatly
reduce the number of independent components. For example,
GaAs has 4̄3m point group, with 21 nonzero components and
four independent components [41]. However, σ3 is symmetric
under exchange of b, c which reduces the number of inde-
pendent components to three. In 2D materials the number of
components of σ3 is also small. For example, single-layer GeS
has mm2 point group which contains a mirror-plane symmetry
and a twofold axis. In this case σ3 has only six independent
components.

In general, linear, circular or unpolarized light will produce
third-order shift current along the direction of the static field.
Current transverse to the static field may not be generated with
unpolarized or circular polarization.

B. Physical interpretation of the third-order shift current

1. First term

The first term in σ3 arises from the quantum interference
of the dipole velocity and interband band coherences. To see
this, note that an oscillating external field creates a dipole
with wave packets in two distinct bands. Because the field
oscillates the dipole velocity also oscillates, see Eq. (57). If
the occupations of the bands, described by the density matrix,
oscillate 180◦ out of phase with respect to the velocity oscilla-
tions, a dc current can be established. The process is mediated
by the intraband part of the (second order) density matrix

Ja(3)
3sh,1 = − e2

h̄V

∑
nmk

E(t ) · rnm;aρ
(2)
mn,i(t ), (165)

where ρ
(2)
mn,i is the first term in Eq. (65) which clearly

represents the intraband part of ρ (2)
mn . Setting one of the fields

in ρ (2) to be static (say Ed
δ → Ed

0 ) we have

Ja(3)
3sh,1 =− ie4

h̄3V

∑
bβcσd

∑
nmk

rb
nm;a

ωmn − ωσ

(
rd

mn fnm

ωmn

)
;c

Eb
βEc

σ Ed
0 e−iω� t

(166)

where ω� = ωβ + ωσ . Symmetrizing with respect to electric
field indices, substituting ωβ = ±ω and ωσ = ∓ω and
keeping only resonant terms, we recover the first term in
Eq. (161).

2. Second term

The second term in σ3 arises from the quantum interference
of interband coherences. To see this, note that a static external
field creates a dipole with wave packets in two distinct bands.
Because the field is static, the dipole velocity is constant. The
static dipole velocity together with a nonoscillating interband
occupation, can generate a dc current. This process is also
mediated by the (static) intraband part of the (second order)
density matrix

Ja(3)
3sh,2 = − e2

h̄V

∑
d

∑
nmk

Ed
0 rd

nm;aρ
(2)
mn,i. (167)
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FIG. 7. Shift current response tensor σ abcd
3 of single-layer GeS

near the band edges. The model parameters are the same as in
Sec. X F. The largest response is along the polarization axis x.
The transverse response governed by xxyy and yyxx is an order of
magnitude smaller.

Following the same procedure as above and after an integra-
tion by parts it is easy to show that we recover the second term
in Eq. (161).

3. Third and fourth term

The third and fourth terms in σ3 are not easily derived from
a simple model. These processes involve virtual transitions
to intermediate bands created by the static external field and
involve the interband part of the second-order density matrix.

C. Third-order shift Hall current

Let us assume a static field is in the x direction and
compute the shift current in the y direction. An optical field of
the form E = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c. is incident
perpendicular to the sample surface which we take as the xy
plane. The current transverse to the static field is

Jy(3)
3shH = ς

yx
3shH Ex

0 (168)

where Ea(ω) = |Ea(ω)|e−iφa and the effective Hall conduc-
tivity is

ς
yx
3shH ≡ 12σ

yyxx
3 |Ex(ω)||Ey(ω)| cos(φx − φy). (169)

Similar to σ2, σ3 vanishes for circular polarization and is
maximum for linear polarization φx = φy at 45◦ with respect
to the x axis. Contrary to injection current, the shift current
does not have a Drude-like dc divergence but rather gives a
finite contribution in this limit (while quantum coherence is
maintained).

D. Example: Third-order shift current in single-layer GeS

To get a sense of the third-order shift current in real
materials we now calculate it for single-layer GeS. We use
the same setup and tight-binding model of single-layer GeS
as in Sec. X F.

Because of the mirror symmetry y → −y of the model,
only six tensor components are independent. As seen in
Fig. 7, the strongest is along the polar axis of magnitude
∼5 × 10−15 Am/V3. The component transverse to the static
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FIG. 8. σ3-shift current in single-layer GeS near the band edge
for light linearly polarized at various angles θ with respect to the
polar axis. (a) current parallel to the polar axis Ix is largest when
the light’s polarization lies along the polar axis, and (b) current
transverse to the polar axis Iy largest at θ = 45◦.

electric field σ
yyxx
3 (see Sec. XII C) is an order of magnitude

smaller.
The sample is rectangular of dimensions L × L and thick-

ness d = 2.56 Å and is biased by an external battery of voltage
V as seen in Fig. 2(c). For concreteness let us assume the
optical field is incident perpendicularly to the plane of single-
layer GeS as

E(t ) = x̂Ex(ω)e−iωt + ŷEy(ω)e−iωt + c.c., (170)

E0 = x̂Ex
0 . (171)

The longitudinal and transverse currents are

Ix(3)
sh = 6A

(
σ xxxx

3 |Ex(ω)|2 + σ
xyyx
3 |Ey(ω)|2)Ex

0 (172)

Iy(3)
sh = 6Aσ

yyxx
3 |Ex(ω)||Ey(ω)| cos(φx − φy)Ex

0 (173)

where Ex(ω) = E0(ω) cos θe−iφx , Ey(ω) = E0(ω) sin θ

e−iφy , θ is the angle with the x axis, and A = Ld is the
transverse area of the sample. Note that the current along
the polar x axis is independent of the polarization of light
and hence, it will not vanish even for unpolarized light.
The transverse component of the current, on the other hand,
vanishes for circularly polarized (and unpolarized) light and
is maximum for linearly polarized light.

We choose the optical field to be linearly polarized (φx =
φy) at an angle θ with the polar axis as shown in the inset
to Fig. 8(a). The figure shows the current along the x and
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TABLE III. Summary of nonlinear Hall-like responses of single-layer GeS near the band edge. A static electric field is present along
x which is taken to define the polar axis of GeS. In addition, an optical electric field is incident perpendicular to the plane of the sample
which defines the xy plane. The Hall current is in the y axis. The sample geometry is shown in Fig. 2(c) and the details are in Sec. X F. I ≡
inversion symmetry, no I ≡ no inversion symmetry. Ix is the current along the x axis. ∗For comparison, η2- and σ2-current is given for the same
parameters. w.r.t. stands for ‘with respect to’.

Hall current Hall current Hall current
Current Momentum Dependence I vs dependence on vanishes for maximum for Sign of Hall current Ref.
Iy relaxation on Ex

0 no I polarization polarization polarization Ix, Iy magnitude∗ Eq.

ι3-jerk τ 2
1 linear I, no I cos(φx − φy ) circular, linear at 45◦ +,− 10−8 A (136)

linear E(t ) ‖ x, y w.r.t. x axis
η3-injection τ1 linear I, no I sin(φx − φy ) linear circular +,+ 10−12 A (160)
σ3-shift τ2 linear I, no I cos(φx − φy ) circular, linear at 45◦ +,+ 10−14 A (173)

linear E(t ) ‖ x, y w.r.t. x-axis
η2-injection τ1 No no I 10−6 A∗

σ2-shift τ2 No no I 10−8 A∗

y axis induced as a function of θ . We assumed the same
semiconductor parameters as before, e.g., L = 100 μm, V =
1 V, Ex

0 = V/L = 104 V/m, amplitude of the optical field
E0 = 105 V/m, and τ1 = 100 fs.

First note that the magnitude of the currents is of the
order of pA-fA. Ix is maximum when the polarization of light
coincides with the polar axis and decreases monotonically as
the polarization turns away towards the y axis. Iy, on the other
hand, is nonmonotonic: It is zero when the polarization and
the polar axis coincide, then rises to a maximum at 45◦ and
then decreases to zero again for light polarized perpendicular
to the polar axis.

XIII. GENERALIZATIONS

A. Snap current

By power counting it is easy to see that the leading
divergence of χ4 is of order ω−4

� and that it occurs when
all but two of the external frequencies are zero. Proceeding
as before we calculate the corresponding response tensor
ςabcde

4 (0, ω,−ω, 0, 0). Taking three derivatives of Eq. (87)
and using Eqs. (89), (125), and (126) we obtain

ςabcde
4 = 2πe5

4!h̄4V

∑
nmk

fmn
[
3ωnm;aderb

nmrc
mn + 3ωnm;ad

(
rb

nmrc
mn

)
;e

+ωnm;a
(
rb

nmrc
mn

)
;de

]
δ(ωnm − ω). (174)

The tensor is symmetric in the b, c indices and represents a
third derivative of the nonlinear current

d3Ja(4)
sp

dt3
= 4!

∑
bcde

ςabcde
4 (0, ω,−ω, 0, 0)Eb(ω)Ec(−ω)Ed

0 Ee
0 ,

(175)

where Ed
0 , Ee

0 represent static fields. By analogy with a parti-
cle’s third derivative of its velocity we dub it snap current. The
current grows as ∼t3 with illumination time in the absence
of momentum relaxation and saturation effects. Hence, it is
proportional to the third power of the relaxation time τ1

Ja(4)
sp ∼ τ 3

1 4!
∑
bcde

ςabcde
4 Eb(ω)Ec(−ω)Ed

0 Ee
0 . (176)

Note that we can think of the snap current as a second order
photoconductivity.

B. Higher-order singularities

One can show that the leading physical divergence of
χni represents, in general, the n − 1-th time derivative of a
current and that these occur when all but two of the external
frequencies are set to zero. They are obtained from the leading
term in the Taylor expansions

(−iω� )3χ3i = ι3 + (−iω� )η3 + (−iω� )2σ3 + · · · (177)

(−iω� )4χ4i = ς4 + (−iω� )ι4 + (−iω� )2η4 + · · · (178)

(−iω� )5χ5i = κ5 + (−iω� )ς5 + (−iω� )2ι5 + · · · (179)

(−iω� )6χ6i = �6 + (−iω� )κ6 + (−iω� )2ς6 + · · · . (180)

...

These higher-order analogs of the injection current are named
by analogy with the time derivatives of a particle’s velocity,
e.g., jerk, snap, crackle, pop,..., etc. and we denote them by
ι, ς, κ, � ,..., respectively. Their physical origin is similar to
the injection current, namely the rate of carrier injection at
current carrying states at time-reserved points in the BZ is
asymmetric creating a polar distribution.

An alternative formulation is the Laurent series for χni (or
χn since χne is regular or σ (n)) as

χni =
∞∑

l=−n

al z
l (181)

where z = −iω� and al = 0 for frequencies less than the gap.
The residues a−1 = η, a−2 = σ, a−3 = ι, etc., are formally
given by

al = 1

2π i

∮
|z|=ρ

χni dz

zl+1
, (182)

ρ is the radius of convergence of the 1/z series. In these
calculations the limit ρ → 0 is taken before the limit ε → 0.

In general, if more than two frequencies are distinct
[15,42,67] (but ω� = 0), the series starts from l > −n.
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XIV. EXPERIMENTAL SIGNATURES

In real materials, the measured current will be limited
by momentum relaxation mechanisms due to collisions with
other electrons, phonons, or impurities. For weak disordered
insulators we expect the dc divergence of the conductivity in
Eq. (110) will be cut off by a relaxation time constant as

σ (3) = ι3(
1
τ1

− iω�

)2 + η3
1
τ1

− iω�

+ σ3 + . . . , (183)

assuming quantum coherence (time scale τ2) is maintained.
Calculation of τ2 requires a microscopic model of dissipation
which will be presented elsewhere.

We have estimated the current of each contribution as-
suming it can be detected separately. This is a challenge in
itself as is well documented in the literature [37]. Here we
propose to use ultrafast THz spectroscopy together with the
symmetry of the crystal, the geometry of the setup, and the
polarization of light to isolate these components. In ultrafast
experiments, momentum relaxation plays a minor role (at
least at short time scales) and the magnitude of the current
is determined by the parameters of the lasers. For example
the shift current magnitude follows the envelope of the pulse
[12,13,16,17]. Recently, the second-order injection current,
the second-order shift current or both, have been reported via
THz radiation [12,13,16–18,64–66]. In Table III we present a
summary of the jerk, injection and shift Hall-like responses
of single-layer of GeS near the band edge. As we can see,
either the dependence on polarization, the linearity of the
static field, the order of magnitude of the induced current, or
the momentum relaxation time scale can be used to distinguish
them.

XV. CONCLUSIONS

The second-order injection and shift currents are archetyp-
ical examples of nontrivial carrier dynamics in insulators and
semiconductors. In this paper we revisited the derivation of
the second-order BPVE adding Fermi surface contributions
to the theory and proposed a microscopic interpretation of
various BPVEs based on the coherent motion of pairs of wave
packets in the presence of electric fields.

We also studied the photoconductivity, i.e., a photocurrent
second-order in an optical and first order in a static field, from
the perspective of the third order electric polarization suscep-
tibility. Three new bulk photovoltaic effects are found. We dub
them jerk, third-order injection, and third-order shift currents,
respectively. The jerk current and third-order injection cur-
rents can be thought of as higher order versions of the standard
second-order injection current and have essentially the same
microscopic origin, namely, the asymmetric rate of population
of current-carrying states at time-reversed points in the BZ.
The presence of the electric field, however, gives rise the new
contributions due to the anomalous and dipole velocity which
are absent in the second-order injection current.

The third-order shift current can be thought of as a higher
order version of the second-order shift current. It involves
the coherent motion of pairs of wave packets across the
BZ. We showed that all photocurrents can be understood
using semiclassical wave packet dynamics and showed that

generalizations to higher order BPVEs are possible. Explicit
expressions for the photocurrents amenable for first-principles
computations are given.
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APPENDIX A: LIST OF IDENTITIES

Some definitions used in this paper are:

vnn(k) = 〈un|v|un〉 ≡ vn(k), (A1)

fn ≡ f (εn(k)), (A2)

fnm ≡ fn − fm, (A3)

ξξξ nm(k) ≡ i〈un|∇∇∇k|um〉, (A4)

rnm(k) ≡ ξξξ nm(k), (m �= n), (A5)

rnn(k) ≡ 0, (A6)

ωnm ≡ ωn − ωm. (A7)

They describe velocity matrix elements (A1), Fermi distribu-
tion (A2), Fermi function differences (A3), Berry connection
(A4), off-diagonal (A5) and diagonal dipole matrix elements
(A6), respectively, and frequency band differences (A7). un

is the periodic part of the Bloch wave function (spinor index
contracted). The covariant derivative of the dipole matrix
elements is defined as

rnm;a ≡
[

∂

∂ka
− i

(
ξ a

nn − ξ a
mm

)]
rnm, (A8)

or generally of any Bloch matrix element Onm as

Onm;a ≡
[

∂

∂ka
− i

(
ξ a

nn − ξ a
mm

)]
Onm. (A9)

We also defined the commutator and anticommutator with
respect to the Cartesian indices b, c as

[O(b), K (c)] ≡ O(b)K (c) − O(c)K (b) (A10)

{O(b), K (c)} ≡ O(b)K (c) + O(c)K (b) (A11)

where O, K are any Bloch matrix elements. Some identities
used in this paper are:

ωn(−k) = ωn(k), (A12)

ωn;a(−k) = −ωn;a(k) = − ∂

∂ka
ωn(k), (A13)

vnm(−k) = −vmn(k) = −[vnm(k)]∗, (A14)

rnm(−k) = rmn(k) = (rmn(−k))∗, (A15)

rnm;a(−k) = −rmn;a(k) = −(rnm;a(k))∗, (A16)

ωnm;a(k) = va
n (k) − va

m(k) = −ωnm;a(−k),

= ωmn;a(−k), (A17)

���n(−k) = −���n(k) = −(���n(k))∗. (A18)

They arise from the hermicity of operators and the assump-
tions of time-reversal invariance of the ground state. h̄ωn
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and ���n denote the band energy and Berry curvature of
band n.

APPENDIX B: DERIVATION OF η2 AND σ2 FROM
TAYLOR EXPANSION OF χ2

To compute ηabc
2 (0, ω,−ω) and σ abc

2 (0, ω,−ω) from
Eq. (6), start from Eq. (72) and symmetrize (−iω� )2χ2i with
respect to pair-wise exchanges of electric fields indices b, β
and c, σ [41]. Then write explicitly the small imaginary
part of frequencies, ωβ → ωβ + iε, ωσ → ωσ + iε and let
1/(x − iε) = 1/x + iπδ(x). Next, set ωβ = ω + nβω�, ωσ =
−ω + nσ ω�, 1 = nβ + nσ , and Taylor expand real parts up to
first order in ω� . It is easy to show that the nonresonant terms

cancel and we obtain Eqs. (77) and (80) as claimed. In this
calculation we used(

rc
nmrb

mn

)
;a = rc

nm;arb
mn + rc

nmrb
mn;a = ∂

∂ka

(
rc

nmrb
mn

)
(B1)

and some identities listed in Appendix A. Note that the
expression rc

nmrb
mn is gauge invariant and hence the covariant

derivative reduces to the standard crystal momentum deriva-
tive.

APPENDIX C: EXPANSION OF χ3i

Using Eqs. (39), (56), (65), and (68) the third order sus-
ceptibility χabcd

3 (−ω�,ωβ, ωσ , ω�) can be written as χ3 =
χ3e + χ3i where

χ3e

C3
= −

∑
nmk

ra
nm

ωmn − ω�

[
1

(ωmn − ω2)

(
rb

mn fnm

ωmn − ωβ

)
;c

]
;d

− i
∑
nmpk

ra
nm

ωmn − ω�

[
1

ωmn − ω2

(
rb

mprc
pn fpm

ωmp − ωβ

− rc
pmrb

pn fnp

ωpn − ωβ

)]
;d

− i
∑
nmpk

ra
nm

ωmn − ω�

[(
rb

mp fpm

ωmp − ωβ

)
;c

rd
pn

ωmp − ω2
− rb

mp

ωpn − ω2

(
rb

pn fnp

ωpn − ωβ

)
;c

]

−
∑

nmplk

ra
nm

ωmn − ω�

[
rd

mp

ωpn − ω2

(
rb

pl r
c
l p fl p

ωpl − ωβ

− rc
pl r

b
ln fnl

ωl p − ωβ

)
−

(
rb

ml r
c
l p flm

ωml − ωβ

− rc
ml r

b
l p fpl

ωl p − ωβ

)
rd

pn

ωmp − ω2

]
(C1)

χ3i

C3
≡

6∑
r=1

χ3ir

= 1

ω2ω
2
�

∑
nmk

ωnm;a fmn

(
rb

nmrc
mn

ωnm − ωβ

)
;d

− 1

ω2
�

∑
nmk

ωnm;ard
mn

ωnm − ω2

(
rb

nm fmn

ωnm − ωβ

)
;c

− i

ω2
�

∑
nmlk

ωnm;ard
mn

ωnm − ω2

(
rb

nl r
c
lm fln

ωnl − ωβ

− rc
nl r

b
lm fml

ωlm − ωβ

)

− i

ω2ω�

∑
nmk

�ad
nm

rb
nmrc

mn fmn

ωnm − ωβ

+ 1

ω�

∑
nmk

rd
mn;a

ωnm − ω2

(
rb

nm fmn

ωnm − ωβ

)
;c

+ i

ω�

∑
nmlk

rd
mn;a

ωnm − ω2

(
rb

nl r
c
lm fln

ωnl − ωβ

− rc
nl r

b
lm fml

ωlm − ωβ

)
. (C2)

We defined C3 ≡ e4/h̄3V, �ad
nm ≡ �ad

n − �ad
m , ω� ≡ ωβ +

ωσ + ω�, and ω2 ≡ ωβ + ωσ . These expressions still need to
be symmetrized with respect to pair-wise exchange of electric
field indices (b, β ), (c, σ ), (d,�). We note that, it is easier
to calculate χ3i from the intraband current Ja(3)

i rather than
from P(3)

i .
Equation (C2) has a distinguishable structure, see Fig. 9.

The first three terms in χ3i are derived from the combination
va

nρ
(3)
nn [Eq. (56)]. By analogy with χ2i [Eq. (72)], we would

expect these terms to be injection current type of contributions
with one caveat; the first term has no analog in χ2i since it is
proportional to three powers of frequency ω−2

� ω−1
2 and is the

most divergent at zero frequency. The second and third terms,
proportional to ω−2

� , seem standard injection coefficients sim-
ilar to the first term in χ2i.

The fourth term is proportional to (ω�ω2)−1 and arises
from the anomalous velocity (E × ���)aρ (2)

nn . It is an injection
current type of coefficient. The fifth and sixth terms, pro-
portional to ω−1

� , originate from E · rnm;aρ
(2)
mn and hence are

expected to be shift current type of contributions.
The goal in the next three sections (D, E, and F) is to

calculate the coefficients ι3, η3, σ3 in the expansion

(−iω� )3χ3i = ι3 + (−iω� )η3 + (−iω� )2σ3 + . . . . (C3)

To avoid cumbersome notation, we write the susceptibilities
with the additional factors as

(−iω� )3χabcd
3i

C3
→ χ3i. (C4)
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i  =   i1  +  i2  +  i3  +  i4  +   i5  +  i6

1st 2nd 3rd

4th 1st

2nd
1st,2nd 3rd,4th

Bloch vel Anomalous vel Dipole vel

FIG. 9. Origin of the first, second,..., contributions to the ex-
pressions for ι3-jerk (Eq. (120)), η3-injection (Eq. (137)) and σ3-
shift (Eq. (161)) response tensors. Each of the six terms in the χ3i

originates from either the Bloch velocity (first three), anomalous
velocity (fourth) and the dipole velocity (fifth and sixth). Due to the
structure of the poles in χ3i, the Bloch velocity and dipole velocity
contribute to multiple response functions.

The strategy is to parametrize (the real part of) the external
frequencies as

ωβ = ω + nβω�, ωσ = −ω + nσω�, ω� = 0, (C5)

subject to nβ + nσ = 1. Figure 9 summarizes the result.

APPENDIX D: DERIVATION OF ι3

ι3 derives from χ3i1 and χ3i2.

1. First term of ι3

Integrate by parts χ3i1 and symmetrize it with re-
spect to pair-wise exchange of electric field indices (b, β ),
(c, σ ), (d,�) [41] to obtain

χ3i,1 ≡
3∑

l=1

χ3i,1,l

= − iω�

6

∑
nmk

ωnm;ad fmnrb
nmrc

mn

(ωnm − ωβ )(ωnm + ωσ )

− iω�

6

∑
nmk

ωnm;ac fmnrb
nmrd

mn

(ωnm − ωβ )(ωnm + ω�)

− iω�

6

∑
nmk

ωnm;ab fmnrd
nmrc

mn

(ωnm − ω�)(ωnm + ωσ )
. (D1)

The second and third terms will cancel against other terms
as we show later, but the first term will contribute to ι3. By
partial fractions and writing explicitly the imaginary parts of
the frequencies, the first term gives

χ3i,1,1 = −iω�

6(ωβ + ωσ )

∑
nmk

ωnm;ad fmnrb
nmrc

mn

(ωnm − ωβ − iε)

− iω�

6(ωβ + ωσ )

∑
nmk

ωnm;ad fmnrc
nmrb

mn

(ωnm − ωσ − iε)
. (D2)

Using Eq. (C5), 1/(x − iε) = 1/x + iπδ(x), and expanding in
powers of ω� to first order we obtain

χ3i,1,1 = 2π

6

∑
nmk

ωnm;ad fmnrb
nmrc

mnδ(ωnm − ω)

− iω�

6

∑
nmk

ωnm;ad fmnrb
nmrc

mn

∂

∂ω

(
1

ωnm − ω

)
. (D3)

The first term is independent of ω� and vanishes for frequen-
cies smaller than the energy band gap. This is the first term
of ι3 in Eq. (120). The second nonresonant term will cancel
against other terms.

2. Second term of ι3

This contribution is obtained from χ3i2. To see this, let us
symmetrize the second term in Eq. (C2). After two integra-
tions by parts we obtain

χ3i2 ≡
8∑

l=1

χ3i2,l = iω�

6

∑
nmk

ωnm;acrd
mnrb

nm fmn

(ωnm − ωβ − ωσ )(ωnm − ωβ )
+ iω�

6

∑
nmk

ωnm;arb
nm fmn

ωnm − ωβ

(
rd

mn

ωnm − ωβ − ωσ

)
;c

+ iω�

6

∑
nmk

ωnm;abrd
mnrc

nm fmn

(ωnm − ωβ − ωσ )(ωnm − ωσ )
+ iω�

6

∑
nmk

ωnm;arc
nm fmn

ωnm − ωσ

(
rd

mn

ωnm − ωβ − ωσ

)
;b

− iω�

6

∑
nmk

ωnm;arc
mn fmn

ωnm − ωβ − ω�

(
rb

nm

ωnm − ωβ

)
;d

− iω�

6

∑
nmk

ωnm;arb
mn fmn

ωnm − ω� − ωσ

(
rd

nm

ωnm − ω�

)
;c

− iω�

6

∑
nmk

ωnm;arb
mn fmn

ωnm − ωσ − ω�

(
rc

nm

ωnm − ωσ

)
;d

− iω�

6

∑
nmk

ωnm;arc
mn fmn

ωnm − ω� − ωβ

(
rd

nm

ωnm − ω�

)
;b

. (D4)

There are eight terms. To O(ω� ), the l = 1, 3 terms cancel
with identical second and third terms in Eq. (D1). The terms
l = 2, 6 and l = 4, 8 combine to give the third term of η3

in Eq. (137) (see next section). The l = 5, 7 terms contribute
to ι3.

Note that we can set ωβ + ωσ = 0 (or ω� = 0) (where
this combination appears) since the pairs of poles in these
expressions are distinct. This is not true in l = 5, 7 and we

consider them separately. After differentiation the l = 5 term
we obtain

χ3i2,5 = − iω�

6

∑
nmk

ωnm;arc
mnrb

nm;d fmn

(ωnm − ω2)(ωnm − ωβ )

+ iω�

6

∑
nmk

ωnm;arc
mnrb

nm fmnωnm;d

(ωnm − ω2)(ωnm − ωβ )2
(D5)
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here ω2 = ωβ + ω� and we used(
rd

nm

ωnm − ω�

)
;c

= rd
nm;c

ωnm − ω�

− rd
nmωnm;c

(ωnm − ω�)2
. (D6)

Now obtain simple poles via partial fractions. The term with
a square of frequencies in the denominator can be handled by

ωnm;d

(ωnm − ω�)2
= − ∂

∂kd
(ωnm − ωβ )−1, (D7)

and a partial integration. Next, write the imaginary part of
frequencies, use 1/(x − iε) = 1/x + iπδ(x), and set ωβ =
ω + nβω�, ωσ = −ω + nσω� , and 1 = nβ + nσ . Note that
with these definitions ω2 = ω + (1 + nβ )ω� . Now expand to
second order in ω� and set (without expanding) ω� = ω� .
After some algebra we obtain

χ3i2,5 = iω�

6

∑
nmk

rc
mnrb

nm;d fmn
∂

∂ka

(
1

ωnm − ω

)

+ iω�

12

∑
nmk

∂

∂kd

(
ωnm;arc

mnrb
nm

)
fmn

∂

∂ω

(
1

ωnm − ω

)

+ π

6

∑
nmk

∂

∂kd

(
ωnm;arc

mnrb
nm

)
fmnδ(ωnm − ω). (D8)

In this calculation we have used the identity

∂

∂ω

(
1

ωnm − ω

)
= − ∂

∂ωnm

(
1

ωnm − ω

)
. (D9)

Note that the third term in (D8) contributes to ι3. The other
two nonresonant terms will eventually cancel. A similar

calculation for the l = 7 term gives

χ3i2,7 = iω�

6

∑
nmk

rb
mnrc

nm;d fmn
∂

∂ka

(
1

ωnm + ω

)

− iω�

12

∑
nmk

∂

∂kd

(
ωnm;arb

mnrc
nm

)
fmn

∂

∂ω

(
1

ωnm + ω

)

+ π

6

∑
nmk

∂

∂kd

(
ωnm;arb

mnrc
nm

)
fmnδ(ωnm + ω). (D10)

Combining the l = 5 and l = 7 terms above and using (B1)
we obtain

χ3i2,5 + χ3i2,7 = iω�

6

∑
nmk

ωnm;ad rc
mnrb

nm fmn
∂

∂ω

(
1

ωnm − ω

)

+ 2π

6

∑
nmk

∂

∂kd

(
ωnm;arc

mnrb
nm

)
fmnδ(ωnm − ω).

(D11)

The first term is nonresonant and will cancel against the
second term in Eq. (D3). The second term combined with the
first term in Eq. (D3) gives ι3 in Eq. (120).

APPENDIX E: DERIVATION OF η3

We now derive each of the contributions to η3 in Eq. (137).

1. First term of η3

The first term in η3 comes from χ3i4. Symmetrizing χ3i4 in
Eq. (D4) and after partial fractions we obtain

χ3i,4 ≡
3∑

l=1

χ3i,4,l (E1)

= ω2
�

6(ωβ + ωσ )

∑
nmk

�ad
nm fmnrb

nmrc
mn

[
1

ωnm − ωβ

− 1

ωnm + ωσ

]

+ ω2
�

6

∑
nmk

�ac
nm fmnrb

nmrd
mn

(ωnm − ωβ )(ωnm + ω�)
+ ω2

�

6

∑
nmk

�ab
nm fmnrd

nmrc
mn

(ωnm − ω�)(ωnm + ωσ )
. (E2)

Only the first term contributes to η3. Writing the imaginary parts of the frequencies, setting ωβ = ω + nβω�, ωσ = −ω + nσω� ,
and Taylor expanding, we obtain to leading order in ω�

χ3i,4,1 = 2iπω�

6

∑
nmk

�ad
nm fmnrb

nmrc
mnδ(ωnm − ω) + ω2

�

6

∑
nmk

�ad
nm fmnrb

nmrc
mn

∂

∂ω

(
1

ωnm − ω

)
. (E3)

Adding 1/2 of the first term to 1/2 of itself and letting k → −k in the second term we obtain the first contribution of η3 in
Eq. (137). The second term cancels against other nonresonant contributions.
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2. Second term of η3

This term arises from χ3i5. Symmetrizing we obtain

χ3i5 ≡
6∑

l=1

χ3i5,l = iω2
�

6

∑
nmk

rd
mn;a fmn

ωnm − ωβ − ωσ

(
rb

nm

ωnm − ωβ

)
;c

+ iω2
�

6

∑
nmk

rd
mn;a fmn

ωnm − ωβ − ωσ

(
rc

nm

ωnm − ωσ

)
;b

+ iω2
�

6

∑
nmk

rc
mn;a fmn

ωnm − ωβ − ω�

(
rb

nm

ωnm − ωβ

)
;d

+ iω2
�

6

∑
nmk

rb
mn;a fmn

ωnm − ω� − ωσ

(
rd

nm

ωnm − ω�

)
;c

+ iω2
�

6

∑
nmk

rb
mn;a fmn

ωnm − ωσ − ω�

(
rc

nm

ωnm − ωσ

)
;d

+ iω2
�

6

∑
nmk

rc
mn;a fmn

ωnm − ω� − ωδ

(
rd

nm

ωnm − ω�

)
;b

. (E4)

Let us consider χ3i5,3 first

χ3i5,3 = iω2
�

6

∑
nmk

rc
mn;a fmn

ωnm − ω2

(
rb

nm

ωnm − ωβ

)
;d

, (E5)

where ω2 = ωβ + ω�. Performing a partial fraction expan-
sion, a substitution 1/(x − iε) = 1/x + iπδ(x), followed by
a Taylor expansion (to second order) in ω� of the real
part about (ωβ, ωσ ) = (ω,−ω) using ωβ = ω + nβω�, ωσ =
−ω + nσ ω� such that ω2 = ω + (1 + nβ )ω� , we obtain

χ3i5,3 = iω2
�

6

∑
nmk

rc
mn;arb

nm;d fmn
∂

∂ω

(
1

ωnm − ω

)

− iω2
�

12

∑
nmk

(
rc

mn;arb
nm

)
;d fmn

∂

∂ω

(
1

ωnm − ω

)

+ iω� (iπ )

6

∑
nmk

(
rc

mn;arb
nm

)
;d fmnδ(ωnm − ω). (E6)

The first two terms are nonresonant contributions which can-
cel against other terms. A similar analysis of χ3i5,5 gives

χ3i5,5 = − iω2
�

6

∑
nmk

rb
mn;arc

nm;d fmn
∂

∂ω

(
1

ωnm + ω

)

+ iω2
�

12

∑
nmk

(
rb

mn;arc
nm

)
;d fmn

∂

∂ω

(
1

ωnm + ω

)

+ iω� (iπ )

6

∑
nmk

(
rb

mn;arc
nm

)
;d fmnδ(ωnm + ω). (E7)

The first two terms are nonresonant contributions which
cancel against other terms. After changing indices n, m and

k → −k we see that the third term in Eq. (E6) plus the third
term in Eq. (E7) gives the second term of η3 in Eq. (137).

3. Third term of η3

The third contribution to Eq. (137) arises from χ3i2,2 +
χ3i2,6 + χ3i2,4 + χ3i2,8 in Eq. (D4). Note that we can set ωβ +
ωσ = 0 from the outset since the poles in these expressions
are distinct. Setting 1/(x − iε) = 1/x + iπδ(x) and Taylor
expanding about (ωβ, ωσ ) = (ω,−ω) we see that to leading
order the nonresonant parts vanish and we obtain

χ3i2,2 + χ3i2,6

= −ω�π

3

∑
bmk

ωnm;a

(
rd

mn

ωnm

)
;c

rb
nm fmnδ(ωnm − ω). (E8)

Similar manipulations lead to vanishing nonresonant terms
and to

χ3i2,4 + χ3i2,8

= −ω�π

3

∑
bmk

ωnm;a

(
rd

mn

ωnm

)
;b

rc
nm fmnδ(ωnm + ω). (E9)

Relabeling of indices n, m, setting k → −k, and adding to
Eq. (E8) we recover the third term of η3.

4. Fourth term of η3

The fourth term arises from χ3i3. Let us label the 12 terms
obtained after symmetrization of χ3i3 as

χ3i3 ≡
12∑
l

χ3i3,l

= ω�

6

∑
nmok

ωnm;ard
mn

ωnm − ωβ − ωσ

[
rb

norc
om fon

ωno − ωβ

− rc
norb

om fmo

ωom − ωβ

]
+ ω�

6

∑
nmok

ωnm;ard
mn

ωnm − ωσ − ωβ

[
rc

norb
om fon

ωno − ωσ

− rb
norc

om fmo

ωom − ωσ

]

+ ω�

6

∑
nmok

ωnm;arc
mn

ωnm − ωβ − ω�

[
rb

nord
om fon

ωno − ωβ

− rd
norb

om fmo

ωom − ωβ

]
+ ω�

6

∑
nmok

ωnm;arb
mn

ωnm − ω� − ωσ

[
rd

norc
om fon

ωno − ω�

− rc
nord

om fmo

ωom − ω�

]

+ ω�

6

∑
nmok

ωnm;arb
mn

ωnm − ωσ − ω�

[
rc

nord
om fon

ωno − ωσ

− rd
norc

om fmo

ωom − ωσ

]
+ ω�

6

∑
nmok

ωnm;arc
mn

ωnm − ω� − ωβ

[
rd

norb
om fon

ωno − ω�

− rb
nord

om fmo

ωom − ω�

]
. (E10)
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We analyze the structure of χ3i3 by dividing its terms into two
groups. The first group composed of the l = 1, 2, 3, 4 terms
can be added together to give a simple result [see Eq. (E15)].
The second group is composed of the l = 5–12 terms. The
l = 5, 6, 9, 10 terms have pairs of poles separable by partial
fractions and can be combined with the l = 12, 11, 8, 7 terms
(respectively). Since we are interested in results to linear in
ω� , it is useful to note we can set ωβ + ωσ = 0 or ω� = 0
in all terms from the outset. This is because the poles in
each term are always distinct and separable by simple partial
fractions. This should be contrasted with the l = 5, 7 terms of
Eq. (D4), or the l = 3, 5 terms in Eq. (E4), where the poles
collide and they have to be treated separately.

The sum of the l = 1, 2 terms can be written as

χ3i3,1 + χ3i3,2 = ω�

6

∑
nmok

ωnm;ard
mnrb

norc
om fon

ωnm
F+(ωno, ωβ ),

(E11)

where F+ is defined as

F+(ωno, ωβ ) ≡ 1

ωno − ωβ − iε
+ 1

ωno + ωβ + iε

= H+(ωno, ωβ ) + iπD−(ωno, ωβ ), (E12)

and

H±(ωno, ωβ ) ≡ 1

ωno − ωβ

± 1

ωno + ωβ

D±(ωno, ωβ ) ≡ δ(ωno − ωβ ) ± δ(ωno + ωβ ). (E13)

Similar manipulations for the sum of the l = 3, 4 terms leads
to

χ3i3,3 + χ3i3,4 = ω�

6

∑
nmok

ωnm;ard
mnrc

norb
om fon

ωnm
F+(ωno, ωσ ).

(E14)

Adding the l = 1–4 contributions we find

4∑
l

χ3i3,l = ω�

6

∑
nmok

ωnm;a
rd

mn

ωnm

(
rb

norc
om + rc

norb
om

)
fonH+(ωno, ω) + iπω�

6

∑
nmok

ωnm;a
rd

mn

ωnm

(
rb

norc
om − rc

norb
om

)
fonD−(ωno, ω). (E15)

The first term will cancel against other nonresonant contributions.
Next we consider the group of l = 5, 6, 9, 10. It is easy to show these terms can be written as

χ3i3,5 ≡
4∑
l

χ3i3,5,l = ω�

6

∑
nmok

ωnm;arc
mnrb

nord
om fon

ωmo

[
1

ωnm − ω
+ iπδ(ωnm − ω) − 1

ωno − ω
− iπδ(ωno − ω)

]
, (E16)

χ3i3,6 ≡
4∑
l

χ3i3,6,l = ω�

6

∑
nmok

ωnm;arc
mnrd

norb
om fmo

ωno

[
1

ωnm − ω
+ iπδ(ωnm − ω) − 1

ωom − ω
− iπδ(ωom − ω)

]
, (E17)

χ3i3,9 ≡
4∑
l

χ3i3,9,l = ω�

6

∑
nmok

ωnm;arb
mnrc

nord
om fon

ωmo

[
1

ωnm + ω
+ iπδ(ωnm + ω) − 1

ωno + ω
− iπδ(ωno + ω)

]
, (E18)

χ3i3,10 ≡
4∑
l

χ3i3,10,l = ω�

6

∑
nmok

ωnm;arb
mnrd

norc
om fmo

ωno

[
1

ωnm + ω
+ iπδ(ωnm + ω) − 1

ωom + ω
− iπδ(ωom + ω)

]
. (E19)

We now combine them with the resonant (r) and nonreso-
nant (nr) parts of the l = 12, 11, 8, 7 terms (respectively). The
result is

χ3i3,5,1 + (χ3i3,12)nr = −ω�

6

∑
nmok

ωnm;arc
mnrb

nord
om fmn

ωom(ωnm − ω)
, (E20)

χ3i3,5,2 + (χ3i3,12)r

= − iπω�

6

∑
nmok

ωnm;arc
mnrb

nord
om fmn

ωom
δ(ωnm − ω), (E21)

χ3i3,6,1 + (χ3i3,11)nr = ω�

6

∑
nmok

ωnm;arc
mnrd

norb
om fmn

ωno(ωnm − ω)
, (E22)

χ3i3,6,2 + (χ3i3,11)r

= − iπω�

6

∑
nmok

ωnm;arc
mnrd

norb
om fmn

ωon
δ(ωnm − ω), (E23)

χ3i3,9,1 + (χ3i3,8)nr = −ω�

6

∑
nmok

ωnm;arb
mnrc

nord
om fmn

ωom(ωnm + ω)
, (E24)

χ3i3,9,2 + (χ3i3,8)r

= − iπω�

6

∑
nmok

ωnm;arb
mnrc

nord
om fmn

ωom
δ(ωnm + ω), (E25)

χ3i3,10,1 + (χ3i3,7)nr = ω�

6

∑
nmok

ωnm;arb
mnrd

norc
om fmn

ωno(ωnm + ω)
, (E26)

χ3i3,10,2 + (χ3i3,7)r

= iπω�

6

∑
nmok

ωnm;arb
mnrd

norc
om fmn

ωno
δ(ωnm + ω). (E27)

Now we want to show that to O(ω� ) the resonant part of the
sum of the l = 1–4 and l = 5–12 groups gives the fourth term
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of η3 and the nonresonant part vanishes. First the resonant
contributions.

a. Resonant contributions

Let n ↔ m and k → −k in χ3i3,6,4 and add to χ3i3,5,4 to
obtain

χ3i3,6,4+χ3i3,5,4 =− iπω�

6

∑
nmok

ωnm;a
rc

mnrd
omrb

no fon

ωmo
D−(ωno, ω).

(E28)

Similar manipulations on χ3i3,10,4 and χ3i3,9,4 give

χ3i3,10,4+χ3i3,9,4 = iπω�

6

∑
nmok

ωnm;a
rb

mnrd
omrc

no fon

ωmo
D−(ωno, ω).

(E29)

Adding Eqs. (E28) and (E29) gives

χ3i3,6,4 + χ3i3,5,4 + χ3i3,10,4 + χ3i3,9,4

= iπω�

6

∑
nmok

ωnm;a
rd

om

ωmo

(
rb

mnrc
no − rc

mnrb
no

)
fonD−(ωno, ω).

(E30)

Performing analogous manipulations, add Eq. (E21) to
Eq. (E23) and Eq. (E25) to Eq. (E27) to obtain

χ3i3,5,2 + (χ3i3,12)r + χ3i3,6,2 + (χ3i3,11)r

= − iπω�

6

∑
nmok

ωnm;a
rc

mnrb
nord

om fmn

ωom
D−(ωnm, ω), (E31)

and

χ3i3,10,2 + (χ3i3,7)r + χ3i3,9,2 + (χ3i3,8)r

= iπω�

6

∑
nmok

ωnm;a
rb

mnrd
omrc

no fmn

ωom
D−(ωnm, ω), (E32)

respectively. After n ↔ l , and k → −k in Eq. (E30), add to
Eq. (E15) to obtain

(
4∑
l

χ3i3,l

)
r

+ χ3i3,6,4 + χ3i3,5,4 + χ3i3,10,4 + χ3i3,9,4

= iπω�

6

∑
nmok

ωnl;a
rd

mn

ωnm

(
rb

norc
om − rc

norb
om

)
fonD−(ωno, ω).

(E33)

Now add Eq. (E31) and Eq. (E32) to obtain

χ3i3,6,2 + (χ3i3,11)r + χ3i3,5,2 + (χ3i3,12)r

+χ3i3,10,2 + (χ3i3,7)r + χ3i3,9,2 + (χ3i3,8)r

= iπω�

6

∑
nmok

ωno;a
rd

mn

ωnm

(
rb

norc
om − rc

norb
om

)
fonD−(ωno, ω).

(E34)

Finally, the sum of all resonant terms in χ3i3 to linear order in
ω� amounts to adding Eq. (E33) to Eq. (E34). The result is

E33 + E34 = 2iπω�

6

∑
nmok

ωno;a
rd

mn

ωnm

(
rb

norc
om − rc

norb
on

)
× fonD−(ωno, ω) (E35)

which is the fourth term in η3.

b. Nonresonant contributions

The sum of the (nonresonant) third terms in Eqs. (E16),
(E17), (E18), and (E19) gives

χ3i3,6,3 + χ3i3,5,3 + χ3i3,9,3 + χ3i3,10,3

= −ω�

6

∑
nmok

ωnm;a
rd

om

(
rc

mnrb
no + rb

mnrc
no

)
fon

ωmo
H+(ωno, ω).

(E36)

Next, the sum of Eqs. (E20) and (E22) and of Eqs. (E24) and
(E26) gives

χ3i3,5,1 + (χ3i3,12)nr + χ3i3,6,1 + (χ3i3,11)nr

= −ω�

6

∑
nmok

ωnm;a
rc

mnrb
nord

om fmn

ωom
H+(ωnm, ω), (E37)

χ3i3,9,1 + (χ3i3,8)nr + χ3i3,10,1 + (χ3i3,7)nr

= −ω�

6

∑
nmok

ωnm;a
rb

mnrc
nord

om fmn

ωom
H+(ωnm, ω). (E38)

After l ↔ n and k → −k in Eq. (E36) are combined with the
nonresonant part of Eq. (E15) we obtain(

4∑
l

χ3i3,l

)
nr

+ χ3i3,6,3 + χ3i3,5,3 + χ3i3,9,3 + χ3i3,10,3

= ω�

6

∑
nmok

ωno;a
rd

mn

(
rc

omrb
no + rb

omrc
no

)
fon

ωnm
H+(ωno, ω).

(E39)

Adding Eq. (E37) and Eq. (E38) we obtain

E37 + E38

= −ω�

6

∑
nmok

ωnm;a
rd

om

(
rc

norb
mn + rb

norc
mn

)
fmn

ωom
H+(ωno, ω),

(E40)

which after l ↔ n and n ↔ m is seen to cancel Eq. (E39). This
concludes the proof that to linear order on ω� the nonresonant
terms vanish.

APPENDIX F: DERIVATION OF σ3

1. First and second terms in σ3

Consider χ3i5,1 and χ3i5,2 in Eq. (E4). In these terms we can
set ωβ + ωσ = 0. Using 1/(x − iε) = 1/x + iπδ(x) and

∂

∂kc

(
rd

mn;arb
nm

ωnm

)
=

(
rd

mn;a

ωnm

)
;c

rb
nm +

(
rd

mn;a

ωnm

)
rb

nm;c (F1)
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the resonant parts are

(χ3i5,1 + χ3i5,2)r = πω2
�

6

∑
nmk

fmn

[(
rd

mn;a

ωnm

)
;c

rb
nm

+
(

rd
mn;a

ωnm

)
;b

rc
nm

]
δ(ωnm − ω). (F2)

Similar manipulations on χ3i5,4 and χ3i5,6 in Eq. (E4) yield the
rest of the terms in the square brackets in σ3. The nonresonant
parts can be shown to vanish.

2. Third and fourth terms in σ3

These contributions to σ3 arise from χ3i6 in Eq. (C2). It can
be shown that the nonresonant parts vanish and the resonant
part gives the third and fourth terms in σ3. Since the algebraic
steps are very similar to those used in finding the third term in
η3 we omit the derivation.

APPENDIX G: TWO-BAND MODEL
OF SINGLE-LAYER GES

We consider a two-band, 2D model of single-layer GeS
given by the Hamiltonian

H = f0σ0 + faσa, (G1)

where σa, a = x, y, z are the standard Pauli matrices and σ0

is the 2 × 2 identity matrix. In this section, summation over
repeated indices is implied. The functions fa are given by
the hopping integrals of the model. The Hamiltonian has
eigenvectors given by

uc = A

(
fx − i fy

ε − fz

)
(G2)

uv = A

(
fz − ε

fx + i fy

)
, (G3)

where A−2 = 2ε(ε − fz ) is the normalization and eigenvalues
by Ec,v = f0 ± ε where ε = √

fa fa and c, v denote the con-
duction and valence band, respectively. An arbitrary phase
factor in the eigenvectors has been omitted, since the final
expressions are independent of this phase. The Bloch wave
functions are constructed as

ψnk =
∑

R

eik·R[
u(1)

n φ(r − R) + eik·r0 u(2)
n φ(r − r0 − R)

]
,

(G4)

where u(i)
n denotes the eigenvector corresponding to eigen-

value n = v, c (valence, conduction) and i = 1, 2 denotes the
first and second components. r0 = (a0, 0) is the position of
site B with respect to site A which is taken to be the origin.
φ(r) are pz orbitals and R runs over all lattice positions.
Notice that the phase of the wave function at site B is different
than that at site A.

The hopping parameters of the Hamiltonian are [61]

f0 = 2t ′
1[cos k · a1 + cos k · a2] + 2t ′

2 cos k · (a1 − a2),

(G5)

fx − i fy = eik·r0 (t1 + t2�k + t3�
∗
k ), (G6)

fz = �, (G7)

where �k ≡ e−ik·a1 + e−ik·a2 , � is the onsite potential and
t1, t2, t3, t ′

1, t ′
2 are hopping matrix elements as indicated in

Fig. 2(c). a1 = (ax,−ay ), a2 = (ax, ay) are the primitive lat-
tice vectors.

For single-layer GeS the parameters are: (ax, ay, d ) =
(4.53/2, 3.63/2, 2.56) Å, where d is the thickness
of the slab, a0 = 0.62 Å, and (t1, t2, t3, t ′

1, t ′
2,�) =

(−2.33, 0.61, 0.13, 0.07,−0.09, 0.41) eV. It was shown
that these parameters reproduce the band structure and
geometry of the wave function in the vicinity of the gamma
point [61]. To compare with bulk values the results are
multiplied by 2/d . The factor of 2 takes into account the
smaller unit cell of the tight-binding model.

[1] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
[2] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.

Ong, Rev. Mod. Phys. 82, 1539 (2010).
[3] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.

90, 015001 (2018).
[4] A. Vishwanath, Physics 8, 84 (2015).
[5] D. H. Auston, A. M. Glass, and A. A. Ballman, Phys. Rev. Lett.

28, 897 (1972).
[6] A. M. Glass, D. von der Linde, and T. J. Negran, Appl. Phys.

Lett. 25, 233 (1974).
[7] W. T. H. Koch, R. Munser, W. Ruppel, and P. Wrfel,

Ferroelectrics 13, 305 (1976).
[8] V. I. Belinicher and B. I. Sturman, Phys. Usp. 23, 199 (1980).
[9] B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photore-

fractive Effects in Non-Centrosymmetric Materials (Gordon and
Breach Science Publishers, Philadelphia, 1992).

[10] V. I. Belinicher and B. I. Sturman, Ferroelectrics 83, 29
(1988).

[11] R. von Baltz and W. Kraut, Phys. Rev. B 23, 5590 (1981).

[12] N. Laman, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, Appl.
Phys. Lett. 75, 2581 (1999).

[13] N. Laman, M. Bieler, and H. M. van Driel, J. Appl. Phys. 98,
103507 (2005).

[14] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).
[15] H. M. van Driel and J. E. Sipe, Coherence Control of Photocur-

rents in Semiconductors, (Springer, New York, 2001), Chap. 5,
pp. 261–306.

[16] D. Côté, N. Laman, and H. M. van Driel, Appl. Phys. Lett. 80,
905 (2002).

[17] A. Ghalgaoui, K. Reimann, M. Woerner, T. Elsaesser, C.
Flytzanis, and K. Biermann, Phys. Rev. Lett. 121, 266602
(2018).

[18] M. Bieler, N. Laman, H. M. van Driel, and A. L. Smirl, Appl.
Phys. Lett. 86, 061102 (2005).

[19] M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys. Rev. B
76, 161304(R) (2007).

[20] J. Rioux, G. Burkard, and J. E. Sipe, Phys. Rev. B 83, 195406
(2011).

064301-26

https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/Physics.8.84
https://doi.org/10.1103/Physics.8.84
https://doi.org/10.1103/Physics.8.84
https://doi.org/10.1103/Physics.8.84
https://doi.org/10.1103/PhysRevLett.28.897
https://doi.org/10.1103/PhysRevLett.28.897
https://doi.org/10.1103/PhysRevLett.28.897
https://doi.org/10.1103/PhysRevLett.28.897
https://doi.org/10.1063/1.1655453
https://doi.org/10.1063/1.1655453
https://doi.org/10.1063/1.1655453
https://doi.org/10.1063/1.1655453
https://doi.org/10.1080/00150197608236596
https://doi.org/10.1080/00150197608236596
https://doi.org/10.1080/00150197608236596
https://doi.org/10.1080/00150197608236596
https://doi.org/10.1070/PU1980v023n03ABEH004703
https://doi.org/10.1070/PU1980v023n03ABEH004703
https://doi.org/10.1070/PU1980v023n03ABEH004703
https://doi.org/10.1070/PU1980v023n03ABEH004703
https://doi.org/10.1080/00150198808235446
https://doi.org/10.1080/00150198808235446
https://doi.org/10.1080/00150198808235446
https://doi.org/10.1080/00150198808235446
https://doi.org/10.1103/PhysRevB.23.5590
https://doi.org/10.1103/PhysRevB.23.5590
https://doi.org/10.1103/PhysRevB.23.5590
https://doi.org/10.1103/PhysRevB.23.5590
https://doi.org/10.1063/1.125084
https://doi.org/10.1063/1.125084
https://doi.org/10.1063/1.125084
https://doi.org/10.1063/1.125084
https://doi.org/10.1063/1.2131191
https://doi.org/10.1063/1.2131191
https://doi.org/10.1063/1.2131191
https://doi.org/10.1063/1.2131191
https://doi.org/10.1103/PhysRevB.61.5337
https://doi.org/10.1103/PhysRevB.61.5337
https://doi.org/10.1103/PhysRevB.61.5337
https://doi.org/10.1103/PhysRevB.61.5337
https://doi.org/10.1063/1.1436530
https://doi.org/10.1063/1.1436530
https://doi.org/10.1063/1.1436530
https://doi.org/10.1063/1.1436530
https://doi.org/10.1103/PhysRevLett.121.266602
https://doi.org/10.1103/PhysRevLett.121.266602
https://doi.org/10.1103/PhysRevLett.121.266602
https://doi.org/10.1103/PhysRevLett.121.266602
https://doi.org/10.1063/1.1855426
https://doi.org/10.1063/1.1855426
https://doi.org/10.1063/1.1855426
https://doi.org/10.1063/1.1855426
https://doi.org/10.1103/PhysRevB.76.161304
https://doi.org/10.1103/PhysRevB.76.161304
https://doi.org/10.1103/PhysRevB.76.161304
https://doi.org/10.1103/PhysRevB.76.161304
https://doi.org/10.1103/PhysRevB.83.195406
https://doi.org/10.1103/PhysRevB.83.195406
https://doi.org/10.1103/PhysRevB.83.195406
https://doi.org/10.1103/PhysRevB.83.195406


BULK PHOTOVOLTAIC EFFECTS IN THE PRESENCE OF … PHYSICAL REVIEW B 100, 064301 (2019)

[21] J. Rioux and J. Sipe, Physica E 45, 1 (2012).
[22] C. Somma, K. Reimann, C. Flytzanis, T. Elsaesser, and M.

Woerner, Phys. Rev. Lett. 112, 146602 (2014).
[23] M. Nakamura, F. Kagawa, T. Tanigaki, H. S. Park, T. Matsuda,

D. Shindo, Y. Tokura, and M. Kawasaki, Phys. Rev. Lett. 116,
156801 (2016).

[24] M. Holtz, C. Hauf, A.-A. Hernández Salvador, R. Costard, M.
Woerner, and T. Elsaesser, Phys. Rev. B 94, 104302 (2016).

[25] A. M. Rappe, I. Grinberg, and J. E. Spanier, Proc. Natl. Acad.
Sci. USA 114, 7191 (2017).

[26] J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Akbashev,
A. Polemi, Y. Qi, Z. Gu, S. M. Young, C. J. Hawley, D.
Imbrenda, G. Xiao, A. L. Bennett-Jackson, and C. L. Johnson,
Nat. Photonics 10, 611 (2016).

[27] L. Z. Tan, F. Zheng, S. M. Young, F. Wang, S. Liu, and A. M.
Rappe, npj Comput. Mater. 2, 16026 (2016).

[28] T. Rangel, B. M. Fregoso, B. S. Mendoza, T. Morimoto, J. E.
Moore, and J. B. Neaton, Phys. Rev. Lett. 119, 067402 (2017).

[29] J. Ibañez Azpiroz, S. S. Tsirkin, and I. Souza, Phys. Rev. B 97,
245143 (2018).

[30] S. R. Panday, S. Barraza-Lopez, T. Rangel, and B. M. Fregoso,
arXiv:1811.06474.

[31] H. Wang and X. Qian, arXiv:1811.03133.
[32] B. M. Fregoso, T. Morimoto, and J. E. Moore, Phys. Rev. B 96,

075421 (2017).
[33] K. Kushnir, M. Wang, P. D. Fitzgerald, K. J. Koski, and L. V.

Titova, ACS Energy Lett. 2, 1429 (2017).
[34] M. Nakamura, S. Horiuchi, F. Kagawa, N. Ogawa, T. Kurumaji,

Y. Tokura, and M. Kawasaki, Nat. Commun. 8, 281 (2017).
[35] N. Ogawa, M. Sotome, Y. Kaneko, M. Ogino, and Y. Tokura,

Phys. Rev. B 96, 241203(R) (2017).
[36] K. Kushnir, Y. Qin, Y. Shen, G. Li, B. M. Fregoso, S. Tongay,

and L. V. Titova, ACS Appl. Mater. Interfaces 11, 5492 (2019).
[37] A. M. Burger, R. Agarwal, A. Aprelev, E. Schruba, A.

Gutierrez-Perez, V. M. Fridkin, and J. E. Spanier, Science Adv.
5, eaau5588 (2019).

[38] M. Sotome, M. Nakamura, J. Fujioka, M. Ogino, Y. Kaneko, T.
Morimoto, Y. Zhang, M. Kawasaki, N. Nagaosa, Y. Tokura, and
N. Ogawa, Appl. Phys. Lett. 114, 151101 2019).

[39] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Nat.
Commun. 8, 15995 (2017).

[40] D. Rees, K. Manna, B. Lu, T. Morimoto, H. Borrmann,
C. Felser, J. Moore, D. H. Torchinsky, and J. Orenstein,
arXiv:1902.03230.

[41] R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San
Diego, 2003).

[42] C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995).

[43] B. M. Fregoso, R. A. Muniz, and J. E. Sipe, Phys. Rev. Lett.
121, 176604 (2018).

[44] C. Aversa and J. E. Sipe, IEEE J. Quantum Electron. 32, 1570
(1996).

[45] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651
(1993).

[46] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[47] In the standard notation of susceptibilities [41] a permittivity of

free space, ε0, is factored out of χn. For clarity of notation we
do not factor this term.

[48] D. E. Aspnes, Phys. Rev. B 6, 4648 (1972).
[49] D. Culcer, A. Sekine, and A. H. MacDonald, Phys. Rev. B 96,

035106 (2017).
[50] M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys.

Rev. Lett. 9, 446 (1962).
[51] F. Nastos and J. E. Sipe, Phys. Rev. B 82, 235204 (2010).
[52] P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc.

Am. B 13, 2424 (1996).
[53] G. Li, K. Kushnir, M. Wang, Y. Dong, S. Chertopalov, A. M.

Rao, V. N. Mochalin, R. Podila, K. Koski, and L. V. Titova, in
2018 43rd International Conference on Infrared, Millimeter, and
Terahertz Waves (IRMMW-THz) (2018).

[54] E. I. Blount, Solid State Physics: Advances in Research and
Applications (Academic Press, London, 1962), Vol. 13.

[55] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[56] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
[57] J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805

(2010).
[58] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[59] O. Matsyshyn and I. Sodemann, arXiv:1907.02532 [cond-

mat.mes-hall].
[60] L. C. Gomes and A. Carvalho, Phys. Rev. B 92, 085406 (2015).
[61] A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, and J. E. Moore,

Nat. Commun. 8, 14176 (2017).
[62] S. R. Panday and B. M. Fregoso, J. Phys.: Condens. Matter 29,

43LT01 (2017).
[63] H. Wang and X. Qian, Nano Lett. 17, 5027 (2017).
[64] D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer,

P. N. First, and T. B. Norris, Nano Lett. 10, 1293 (2010).
[65] D. A. Bas, K. Vargas-Velez, S. Babakiray, T. A. Johnson, P.

Borisov, T. D. Stanescu, D. Lederman, and A. D. Bristow, Appl.
Phys. Lett. 106, 041109 (2015).

[66] D. A. Bas, R. A. Muniz, S. Babakiray, D. Lederman, J. E. Sipe,
and A. D. Bristow, Opt. Express 24, 23583 (2016).

[67] R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and
J. E. Sipe, Phys. Rev. Lett. 76, 1703 (1996).

064301-27

https://doi.org/10.1016/j.physe.2012.07.004
https://doi.org/10.1016/j.physe.2012.07.004
https://doi.org/10.1016/j.physe.2012.07.004
https://doi.org/10.1016/j.physe.2012.07.004
https://doi.org/10.1103/PhysRevLett.112.146602
https://doi.org/10.1103/PhysRevLett.112.146602
https://doi.org/10.1103/PhysRevLett.112.146602
https://doi.org/10.1103/PhysRevLett.112.146602
https://doi.org/10.1103/PhysRevLett.116.156801
https://doi.org/10.1103/PhysRevLett.116.156801
https://doi.org/10.1103/PhysRevLett.116.156801
https://doi.org/10.1103/PhysRevLett.116.156801
https://doi.org/10.1103/PhysRevB.94.104302
https://doi.org/10.1103/PhysRevB.94.104302
https://doi.org/10.1103/PhysRevB.94.104302
https://doi.org/10.1103/PhysRevB.94.104302
https://doi.org/10.1073/pnas.1708154114
https://doi.org/10.1073/pnas.1708154114
https://doi.org/10.1073/pnas.1708154114
https://doi.org/10.1073/pnas.1708154114
https://doi.org/10.1038/nphoton.2016.143
https://doi.org/10.1038/nphoton.2016.143
https://doi.org/10.1038/nphoton.2016.143
https://doi.org/10.1038/nphoton.2016.143
https://doi.org/10.1038/npjcompumats.2016.26
https://doi.org/10.1038/npjcompumats.2016.26
https://doi.org/10.1038/npjcompumats.2016.26
https://doi.org/10.1038/npjcompumats.2016.26
https://doi.org/10.1103/PhysRevLett.119.067402
https://doi.org/10.1103/PhysRevLett.119.067402
https://doi.org/10.1103/PhysRevLett.119.067402
https://doi.org/10.1103/PhysRevLett.119.067402
https://doi.org/10.1103/PhysRevB.97.245143
https://doi.org/10.1103/PhysRevB.97.245143
https://doi.org/10.1103/PhysRevB.97.245143
https://doi.org/10.1103/PhysRevB.97.245143
http://arxiv.org/abs/arXiv:1811.06474
http://arxiv.org/abs/arXiv:1811.03133
https://doi.org/10.1103/PhysRevB.96.075421
https://doi.org/10.1103/PhysRevB.96.075421
https://doi.org/10.1103/PhysRevB.96.075421
https://doi.org/10.1103/PhysRevB.96.075421
https://doi.org/10.1021/acsenergylett.7b00330
https://doi.org/10.1021/acsenergylett.7b00330
https://doi.org/10.1021/acsenergylett.7b00330
https://doi.org/10.1021/acsenergylett.7b00330
https://doi.org/10.1038/s41467-017-00250-y
https://doi.org/10.1038/s41467-017-00250-y
https://doi.org/10.1038/s41467-017-00250-y
https://doi.org/10.1038/s41467-017-00250-y
https://doi.org/10.1103/PhysRevB.96.241203
https://doi.org/10.1103/PhysRevB.96.241203
https://doi.org/10.1103/PhysRevB.96.241203
https://doi.org/10.1103/PhysRevB.96.241203
https://doi.org/10.1021/acsami.8b17225
https://doi.org/10.1021/acsami.8b17225
https://doi.org/10.1021/acsami.8b17225
https://doi.org/10.1021/acsami.8b17225
https://doi.org/10.1126/sciadv.aau5588
https://doi.org/10.1126/sciadv.aau5588
https://doi.org/10.1126/sciadv.aau5588
https://doi.org/10.1126/sciadv.aau5588
https://doi.org/10.1063/1.5087960
https://doi.org/10.1063/1.5087960
https://doi.org/10.1063/1.5087960
https://doi.org/10.1063/1.5087960
https://doi.org/10.1038/ncomms15995
https://doi.org/10.1038/ncomms15995
https://doi.org/10.1038/ncomms15995
https://doi.org/10.1038/ncomms15995
http://arxiv.org/abs/arXiv:1902.03230
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevLett.121.176604
https://doi.org/10.1103/PhysRevLett.121.176604
https://doi.org/10.1103/PhysRevLett.121.176604
https://doi.org/10.1103/PhysRevLett.121.176604
https://doi.org/10.1109/3.535360
https://doi.org/10.1109/3.535360
https://doi.org/10.1109/3.535360
https://doi.org/10.1109/3.535360
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/PhysRevB.6.4648
https://doi.org/10.1103/PhysRevB.6.4648
https://doi.org/10.1103/PhysRevB.6.4648
https://doi.org/10.1103/PhysRevB.6.4648
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRevB.96.035106
https://doi.org/10.1103/PhysRevLett.9.446
https://doi.org/10.1103/PhysRevLett.9.446
https://doi.org/10.1103/PhysRevLett.9.446
https://doi.org/10.1103/PhysRevLett.9.446
https://doi.org/10.1103/PhysRevB.82.235204
https://doi.org/10.1103/PhysRevB.82.235204
https://doi.org/10.1103/PhysRevB.82.235204
https://doi.org/10.1103/PhysRevB.82.235204
https://doi.org/10.1364/JOSAB.13.002424
https://doi.org/10.1364/JOSAB.13.002424
https://doi.org/10.1364/JOSAB.13.002424
https://doi.org/10.1364/JOSAB.13.002424
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.105.026805
https://doi.org/10.1103/PhysRevLett.105.026805
https://doi.org/10.1103/PhysRevLett.105.026805
https://doi.org/10.1103/PhysRevLett.105.026805
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
http://arxiv.org/abs/arXiv:1907.02532
https://doi.org/10.1103/PhysRevB.92.085406
https://doi.org/10.1103/PhysRevB.92.085406
https://doi.org/10.1103/PhysRevB.92.085406
https://doi.org/10.1103/PhysRevB.92.085406
https://doi.org/10.1038/ncomms14176
https://doi.org/10.1038/ncomms14176
https://doi.org/10.1038/ncomms14176
https://doi.org/10.1038/ncomms14176
https://doi.org/10.1088/1361-648X/aa8bfc
https://doi.org/10.1088/1361-648X/aa8bfc
https://doi.org/10.1088/1361-648X/aa8bfc
https://doi.org/10.1088/1361-648X/aa8bfc
https://doi.org/10.1021/acs.nanolett.7b02268
https://doi.org/10.1021/acs.nanolett.7b02268
https://doi.org/10.1021/acs.nanolett.7b02268
https://doi.org/10.1021/acs.nanolett.7b02268
https://doi.org/10.1021/nl9040737
https://doi.org/10.1021/nl9040737
https://doi.org/10.1021/nl9040737
https://doi.org/10.1021/nl9040737
https://doi.org/10.1063/1.4907004
https://doi.org/10.1063/1.4907004
https://doi.org/10.1063/1.4907004
https://doi.org/10.1063/1.4907004
https://doi.org/10.1364/OE.24.023583
https://doi.org/10.1364/OE.24.023583
https://doi.org/10.1364/OE.24.023583
https://doi.org/10.1364/OE.24.023583
https://doi.org/10.1103/PhysRevLett.76.1703
https://doi.org/10.1103/PhysRevLett.76.1703
https://doi.org/10.1103/PhysRevLett.76.1703
https://doi.org/10.1103/PhysRevLett.76.1703

