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Although the topic of intermittent plastic flow manifesting as load fluctuations or displacement jumps in
nanoindentation (depths less than 100 nm) has attracted considerable attention, the existence of steps on load-
indentation (F -z) curves reported in microindentation (depths of several microns) of samples of dilute alloys of
varying concentrations and load dates, has received little attention from a modeling point of view. Following our
earlier approaches to nanoindentation instabilities and indentation size effect, we develop a minimal dislocation
mechanism based model that predicts all the generic experimental features by setting up time-evolution equations
for the mobile, the forest, dislocations with solute atmosphere, and the geometrically necessary dislocation
densities. The model includes basic dislocation mechanisms common to most plastic deformations, such as
dislocation multiplication, storage, and recovery mechanisms. We model the indentation instability as a variant of
the standard Portevin–Le Chatelier (PLC) effect seen in the constant strain rate condition by including collective
pinning and unpinning of dislocations from solute atmosphere. The instability mechanism is further generalized
to include concentration-dependent dislocation-solute interaction to capture both concentration dependence of
the indentation instability and strengthening of alloy samples. Based on recent experimental observations that
show small misorientation at small depths suggesting limited geometrically necessary dislocation density, we
model the growth of the geometrically necessary dislocation density by the number of loops that can be activated
under the contact area and the mean strain gradient. The equations are then coupled to the load rate equation.
The model predicts all the generic experimental features, such as (a) the stepped nature of the F -z curves,
(b) the existence of a critical load and critical indentation depth for the onset of the instability, (c) the decreasing
dependence of the maximum indentation depth with concentration of the alloying element, (d) the mean critical
indentation depth z∗ for the onset of the instability increasing with decreasing concentration with a concomitant
increase in levels of fluctuations, (e) the decreasing power-law dependence of the critical indentation depth
with concentration, (f) the manifestation of intermittent stepped response in a window of load rates, and (g) the
magnitude of the load steps scaling linearly with the load. In essence, the basic physical mechanisms responsible
for predicting all the experimental results (a)–(g) are the generalization of pinning and unpinning mechanism
(of dislocations from solute atmosphere) to include concentration-dependent dislocation-solute interaction and
solution hardening of alloy samples with concentration together with the inherent rate-dependent nature of the
PLC instability.
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I. INTRODUCTION

The inherently intermittent motion of dislocations is now
well recognized. Two types of intermittencies have been iden-
tified in the past few decades, one observed in small volume
systems and another in bulk systems. Examples of the first
type are seen in serrated stress-strain curves of micrometer
rods when their diameter is decreased below a fraction of a
micron [1]. In contrast, intermittent plastic flow also mani-
fests in bulk samples of dilute metallic alloys when they are
deformed at constant strain rate, known as the Portevin–Le
Chatelier (PLC) effect [2–5]. Clearly, the underlying disloca-
tion mechanisms in these two cases are very different.

Equivalent scenarios in indentation experiments are also
known. For instance, intermittent behavior is seen in nanoin-
dentation experiments (i.e., depths is less than 100 nm) of
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pure metals as load serrations in displacement controlled
(DC) experiments [6] or displacement jumps in the load con-
trolled (LC) experiments [7]. Then, the equivalent of the PLC
instability in indentation of bulk samples of dilute alloys is
the manifestation of steps on the F -z curve, a topic mainly
pursued by two groups [8–15]. The focus of these two groups
is different aspects of the instability. The Hungarian group [8–
13] reports detailed study of the nature and concentration de-
pendence of the stepped response whereas the Russian group
[14,15] reports characterization of different waveforms of the
stepped response by developing a high accuracy measurement
technique for depth and load for a fixed concentration. The
topic has received significantly less attention compared to
nanoindentation instabilities [6,7]. In particular, little attention
has been paid to model the phenomenon.

Detailed indentation experiments on dilute alloys of vary-
ing concentrations by Lendvai and co-workers has demon-
strated that most characteristic features expected of alloys
exhibiting the PLC effect, such as the negative strain rate
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sensitivity (SRS) of the flow stress are seen in these experi-
ments [8–13]. These are as follows: (a) Steps reflective of the
instability appear on the F -z curve, (b) there exists a critical
indentation depth z∗ for the onset of the instability, (c) the
maximum indentation depth of the stepped F -z curve (for a
fixed load) decreases with concentration c of the alloying ele-
ment, (d) the mean critical indentation depth z∗ for the onset of
the instability increases with decreasing concentration with a
concomitant increase in the magnitude of fluctuations, (e) the
critical indentation depth z∗ exhibits a decreasing power-law
dependence on concentration, (f) the stepped response is seen
only in a window of load rates, and (g) the magnitude of the
load steps scales linearly with the load. These features are
generic to several dilute alloys (such as Al-Mg and Al-Cu).
The stepped F -z response translates as oscillatory hardness in
the region of instability. Chinh et al. [13] propose a model
to explain the discontinuous flow by assuming a “N” shaped
hardness function to mimic the negative SRS feature of the
PLC effect. Although the model captures the stepped nature
of the F -z curve, the model does not predict other features.

Although these observations have been known for over 20
years, there is a total absence of any kind of simulations or
models that predict these results. The purpose of the paper
is to devise a dislocation mechanism based dynamical model
along the lines of the Ananthakrishna (AK) model for the
PLC effect [3,16–23], the two models of nanoindentation
instabilities [24–26], and the model for indentation size effect
(ISE) [27] with a view to predict all the generic features
(a)–(g).

Considering the fact that the stepped F -z curves is a
manifestation of the PLC effect in indentation experiments, it
is useful to recall the salient features and the basic instability
mechanism of the PLC effect. The PLC instability manifests
itself as irregular stress serrations seen in a window of strain
rates ε̇a and temperatures [3–5]. Three types of serrations,
namely, types C, B, and A, associated with static, partially, or
fully propagating bands have been identified [3–5,16,17,20–
23]. The physical mechanism attributed to the PLC instability
is the collective pinning and unpinning of dislocations from a
solute cloud. The instability arises as a competition between
the waiting time of dislocations temporarily arrested at obsta-
cles and diffusion timescale of the solute atoms, commonly
called dynamic strain aging. At lower ε̇a, there is sufficient
time for solutes to diffuse to dislocations implying higher
concentration at dislocation cores. Consequently, higher stress
is required to unpin dislocations from the solute atmosphere
resulting in large stress drops. Increasing ε̇a leaves less time
for solutes to diffuse thereby reducing the unpinning stress
and, hence, to smaller amplitude serrations. The slow pinning
of dislocations and their abrupt unpinning from solute atmo-
sphere induces negative SRS of the flow stress at macroscopic
scales [3,4,16,17,19]. Indeed, most models of the PLC effect
use negative SRS feature in some form [28–30].

Noting that the above experiments report a detailed study
of the influence of increasing concentration, the standard PLC
instability mechanism should now be generalized to include
concentration dependence of pinning and unpinning of dislo-
cations from a solute cloud. In addition, we need to devise
a way to include strengthening mechanism of alloys with
concentration. These two steps are essential since there are no

reports of concentration-dependent experimental studies on
the PLC effect. For the same reason, there has been neither
theoretical attempts to model concentration dependence of
pinning and unpinning of dislocations from the solute cloud
(including the AK model) nor modeling the influence of alloy
strengthening on the instability features [3,16,17,19,23].

Indeed, the absence of any model or simulation can be
attributed to the inability to model or simulate two basic
experimental features viz.: (a) concentration dependence of
the stepped response and (b) the indentation process is in-
termittent [8–13]. Neither including concentration-dependent
dislocation-solute interaction nor simulating displacement
jump instability is straightforward. These points need some
elaboration. As for point (a), we first recall that the underlying
mechanism of the PLC effect is the same as that for steps
on the F -z curve, and therefore, we can adopt the math-
ematical mechanism used in the AK model for explaining
the salient features of the PLC effect [3,16,17,19,23]). In
addition, we generalize the PLC instability mechanism to
include concentration dependence of dislocation-solute inter-
action to account for concentration-dependent experimental
features of the indentation instability. Noting that the PLC
effect is a rate-dependent instability, generalization of the PLC
instability mechanism is expected to automatically induce rate
dependence also. As for point (b), even in the case of LC
mode nanoindentation instability where a limited number of
displacement jumps are seen, only one simulation attempts to
predict the displacement jumps but manages to predict only
a slope change beyond the elastic limit corresponding to the
first displacement jump in experiments [31]. In contrast, our
recent model for LC mode instability not only predicts all
the generic experimental features, but also provides a good
fit to experimental data [24–26]. The fact that there are no
simulations (or models) so far to predict stepped response is
related to the inherent difficulty in simulating (or modeling)
jump instabilities.

The above discussion suggests that most appropriate tools
to model are those that can capture jump instabilities and
concentration-dependent features. Then, the nonlinear dy-
namical approach is the most appropriate platform for de-
scribing any instability, in particular, the displacement jumps.
Similarly, since plastic flow is completely determined by
dislocation mechanisms, the dislocation mechanism based ap-
proach provides a natural basis. Indeed, the AK model for the
PLC effect, the two models on nanoindentation instabilities
and the ISE model are all based on dislocation mechanisms. In
addition, considerable information on dislocation mechanisms
contributing to different types of deformation processes are
well documented in the literature [32].

The proposed model includes standard dislocation mech-
anisms, such as dislocation multiplication, storage, and re-
covery mechanisms [24,25,27]. In addition, we adopt the
collective pinning and unpinning mechanism of dislocations
from the solute cloud from the AK model [3,16,17,19,23]. We
also introduce concentration-dependent dislocation-solute in-
teraction to account for the concentration-dependent features.

Following our earlier work [24–27], we develop time-
evolution equations for the four types of (volume/sample
averaged) dislocation densities, namely, the mobile ρm,
the forest ρ f [identified with the statistically stored
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dislocations (SSD) in the standard notation], dislocations with
solute atoms ρc, and the geometrically necessary dislocations
(GNDs) ρG. Furthermore, following Ref. [27], we model the
growth of the GND density based on the recent experimental
observations [33–35] that show small misorientations at small
depths suggesting limited geometrically necessary dislocation
density. We also include solute diffusion to the GNDs that
are embedded in the solute environment. These equations are
coupled to the load rate equation. As we will show, the model
predicts all the generic experimental features listed as (a)–(g)
without exception. The most important conclusion emerging
from this paper is that concentration dependence of pinning
and unpinning of dislocations from the solute atmosphere and
strengthening mechanism of alloy samples with concentration
together with inherent rate dependence of the PLC instability
mechanism are responsible for predicting all the experimental
results (a)–(g).

II. APPROACH

The basic premise of our approach is that volume/space
averaged dislocation densities are adequate to predict the
time-dependent stepped response of the F -z curves. This
is based on the observation that the experimental load-
displacement F -z curve is also a specimen/volume averaged
response arising from dislocation activity in the sample.
Indeed, by itself, the F -z curve or the stress-strain curve
in the PLC instability contains no information about the
heterogeneous nature of the deformation. Furthermore, it is
a well known that averages are insensitive to the nature
of the distribution, a result applicable to spatial averages
as well. Indeed, even though the PLC effect is a complex
spatiotemporal phenomenon, the original AK model that uses
volume/space averaged densities successfully predicts several
generic features, such as the existence of the instability within
a window of strain rates, the existence of critical strain for
the onset of the instability, the different types of serrations
found with increasing strain rate, the negative SRS feature
[17,19], and the existence of chaos which has been subse-
quently verified [3,4,18,36,37]. Even our recent models on
LC mode nanoindentation instability [25,26] and the ISE [27]
not only predict all the generic experimental features, but
also provide good fits to experimental data. (See Fig. 2(a)
of Ref. [25], Fig. 7(b) of Ref. [26], and Figs. 8 and 12 of
Ref. [27]). Thus, the success of these models justifies using
sample/space averaged dislocation densities for describing
the stepped nature of load-displacement curves.

III. BACKGROUND

The total indentation depth z measured from the unde-
formed z = 0 surface to the tip of the indenter, is the sum of
the elastic ze and plastic displacement zp. Then, we have

z = ze + zp. (1)

As stated in the Introduction, our approach is fully dynamical
implying that all variables evolve with time in a coupled non-
linear manner. This means that z, ze, and zp are all dynamical
variables. The elastic displacement ze is easily determined
by inverting the indenter specific load-displacement function

F = F (ze). In contrast, calculating the plastic displacement
zp is not straightforward. The strength of our approach lies
in calculating the plastic strain rate ε̇p [24] using the Orowan
equation,

ε̇p = bV (σ )ρm (2)

to obtain zp. Here, b is the magnitude of the Burgers vector,
V (σ ) is the mean velocity of dislocations, and σ is the stress.
Since our approach uses strain as the basic variable, and since
plastic deformation occurs inside the sample of thickness T ,
a natural strain variable is ε = z/T . Then, the total strain ε is
given by

ε = z

T = ze

T + zp

T = εe + εp. (3)

Then, Eq. (1) reads

z(t ) = ze(t ) + T b
∫

V [σ (t )]ρm(t )dt . (4)

Note z is time dependent.
Equation (2) assumes that ρm(t ) can be calculated in some

way. Furthermore, since Eq. (2) is a function of stress (σ ),
it should be expressed in terms of the load F and area A.
The functional dependence of F and A on z are nonlinear
and indenter specific. This, in turn, enables us to abstract
the average stress under the indenter surface as indentation
proceeds. The most general form of F (ze) is given by

F = CE∗zq
e , (5)

where q and C are constants to be determined and E∗ is the
effective modulus of the indenter and the sample. q ranges
from 1.5 to 2 with q = 1.5 corresponding to a spherical
indenter and q = 2 corresponding to a Vickers or Berkovich
indenter. E∗ is given by

1

E∗ = 1 − ν2
s

Es
+ 1 − ν2

i

Ei
, (6)

where ν and E refer to Poisson’s ratio and Young’s modulus
of the sample and indenter, respectively. The constants C and
q in Eq. (5) depend on the material and indenter geometry
and, therefore, must be determined by fitting Eq. (5) to the
measured elastic F -ze curve.

Strictly speaking, contact area A is defined in the elastic
region and is expressed in terms of the elastic contact depth
zec , i.e., A = A(zec ). Furthermore, the contact area is generally
a complicated function of z since the shape of the indenter
is the composite shape of the Vickers and blunted indenter.
Approximate expressions have been suggested in literature
that can be fitted to measures shape of the blunted indenter
[38,39]. The leading contribution to A comes from the geom-
etry of an ideal indenter. For a Vickers or Berkovich indenter,
the area is given by A(zec ) = 24.54z2

ec
. However, real indenters

are always blunted. The shape of the blunted tip determined
by scanning electron microscopy or atomic force microscopy
measurements [38,39] can be approximated by a sphere of
nominal radius R with an area AH = 2πRzec . Then, the area
A(zec ) can be approximated by

A(zec ) = 24.54z2
ec

+ 2πRzec . (7)
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In general, the elastic depth ze is a function of the contact
depth zec , i.e., ze = ze(zec ). Then, the measured elastic contact
area when fitted with Eq. (7) determines ze = ze(zec ). Often, a
linear approximation zec ≈ sze is adequate. Although Eq. (7) is
strictly valid in the elastic region, we assume that it is valid in
the elastoplastic region also. This is based on the observation
that during the stepped F -z response seen in the elastoplastic
region, the load increases in a near-elastic manner following
displacement jumps. This can only happen if the increased
area (arising from bursts of plasticity) makes contact with the
indenter surface. Thus, we have

A(zc) = 24.54z2
c + 2πRzc, (8)

in the elastoplastic region. Here, zc = zec + zpc is the total
indentation depth from the contact point, and zpc is the plastic
component of zc. We also assume zc = sz is valid.

In the LC mode of indentation, the applied load rate is held
constant, i.e.,

d

dt
F [ze(t )] = Ḟ0 = constant. (9)

Noting that Eq. (4) is a function of σ and, hence, a function
of both F and A, it is clear from the above discussion that
both the experimentally measured F -ze curve and A(zec ) are
crucial inputs into our model. Since both these data sets are
not given, the scope of our model is limited to predicting the
generic features.

Since the plastic displacement zp should be obtained by
calculating the plastic strain rate ε̇p, the problem boils down to
setting up the time-evolution equations for the four dislocation
densities.

IV. DISLOCATION MECHANISMS BASED
DYNAMICAL MODEL

A. General form of time-evolution equations
for dislocation densities

Having identified the four types of dislocations, namely,
the mobile, the forest, dislocations with a solute cloud, and the
GNDs, we now consider the possible dislocation mechanisms
that transform one type of dislocation to another and use
them for developing time-evolution equations for the respec-
tive densities ρm, ρ f , ρc, and ρG. These mechanisms can
be broadly categorized into dislocation multiplication which
in the present case is concentration dependent, storage and
recovery mechanisms, and collective dislocation effects. Since
the latter is concentration dependent, it requires inclusion of
dislocation-solute interaction.

Three dislocation mechanisms determine the extent of
plastic flow, namely, dislocation multiplication, storage, and
recovery mechanisms. The growth of ρm is controlled by mul-
tiplication of initial dislocations. This is written as θVm(σ )ρm.
Here, Vm(σ ) is the average velocity of dislocations, and θ

is the inverse of an appropriate length scale (see for details
Refs. [3,23–25]). However, in the present context, concen-
tration dependence needs to be included [see the expression
for Vm(σ ) below]. Of the several the phenomenological ex-
pressions suggested in the literature for Vm(σ ) [40], we use a

power-law expression,

Vm(σ ) = V0

[
σeff

σm(c)

]m

= V0

[
[σ − h(ρ f + ρG)1/2]

σm(c)

]m

. (10)

Here, V0 is a reference velocity, σm(c) which, in the present
case, is a concentration-dependent dislocation multiplication
threshold, m is the velocity exponent, σeff = h(ρ f + ρG)1/2 is
the effective back stress, h = αGb, G is the shear modulus,
and α ∼ 0.3–0.5. Within the scope of our model, we regard
the line length increase due to Frank-Read source or cross slip,
etc., as dislocation multiplication processes.

To appreciate concentration dependence of dislocation
multiplication threshold σm(c), consider a pure metal. Recall
that dislocations move in the medium of other dislocations
and obstacles where they are arrested. As stress increases,
dislocation segments between pinning points bow out. Then,
dislocations surmount these obstacles only when the applied
stress exceeds breakaway stress. Then, dislocations multiply
rapidly, and hence, the breakaway stress is identified with
dislocation multiplication threshold stress σm.

However, introducing an alloying element into a pure metal
strengthens the alloy since the solute field impedes dislocation
motion [41]. Two types of dislocation-solute interactions are
relevant for our paper, namely: (a) One leading to an increase
in the yield stress σy and (b) the other leading to concentration
dependence of the unpinning stress of dislocations from the
solute cloud. Consider the first. Generally, dislocation mul-
tiplication threshold σm is a lower bound of σy, and for all
practical purposes, σy = σm [3,25,27]. For solid solutions, σy

and, hence, σm increase with concentration c, i.e., σm = σm(c)
increases. In indentation experiments [8–13], this feature is
reflected in zmax decreasing with concentration for a given
Fmax. The exact form of σm(c) needs to determined.

Two types of strengthening mechanisms have been iden-
tified in the literature [41,42]; weak pinning where disloca-
tions are pinned by isolated solute atoms and strong pinning
identified with pinning by closely spaced groups of solute
atoms [41]. For low concentrations, dislocations interact with
isolated solute atoms. Since the number of points at which
dislocations are pinned depends on solute concentration, the
flow stress depends on c. Expressions for critical resolved
shear stress τs for low c have been derived assuming that
solute atoms are uniformly dispersed. Later, it has been argued
that uniform dispersion is invalid except at very low c [41,42].

For higher concentrations relevant for our case, dislocation
pinning and break away involves groups of solute atoms
[41,42]. Then, the critical resolved shear stress is given by

τs = [ f 4
mc2w

ELb2 ]
1/3

, where w is an interaction length scale, EL

is the line tension, and fm is the maximum unpinning force
[42]. The change in the exponent value basically arises due to
statistical fluctuations in the local density of solutes that pin
the dislocation line [42].

Later, a correlation has been suggested between the yield
stress and the concentration of the form [43]

σy(c) = σy(0) + σsc
n. (11)

Here, σy(0) is the yield stress of the pure metal, and σs is
the increase in the yield stress per (at. % of solute)n [43]. The
strengthening exponent is n = 2/3. Often, n is taken to range
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from 0.5 to 0.75. Since σm is the lower bound of the yield
stress σy, we consider σm(c) follows a similar dependence on
c. Thus, we have

σm(c) = σm(0) + σsc
n. (12)

Here, σm(0) = σm is the multiplication stress of a pure metal
and, hence, known. σs is the stress per (at. % of solute)n, to be
determined by matching Eq. (12) with experiments.

We now consider concentration dependence of the insta-
bility mechanism underlying the stepped nature of the F -z
curves, namely, pinning and unpinning of dislocations from
the solute atmosphere, the same as that in the PLC effect.
Following the AK model, this mechanism is mimicked by
introducing dislocations with a solute cloud (with a density
ρc) based on the physical picture that solute atoms diffuse to
mobile dislocations temporarily arrested at obstacles. Then,
the corresponding loss rate to ρm is given by αmρm. The rate
constant αm depends on solute concentration c in the bulk, Dc

is the diffusion constant of the solutes, and λ is an effective
attractive length scale (see Ref. [23]). Then,

αm(c) = Dc(T )c/λ2 = αm(0)c. (13)

Then, the rate constant, that was originally considered as a
constant (in the AK model), acquires concentration depen-
dence. Thus, αm(0)cρm is the source term for the growth of ρc.
Within the scope of the AK model, we consider those mobile
dislocations that start acquiring solute atoms as dislocations
with solute atoms ρc. As dislocations progressively acquire
solute atoms, they are eventually immobilized and, therefore,
grouped under immobile forest dislocations. Therefore, αcρc

is a loss term to ρ̇c with a loss rate αcρc [44]. This term
acts as a source term to ρ̇ f . This also means that ρ f contains
those dislocations that have acquired a solute cloud. This is
in addition to the dislocation junctions that constitutes large
proportion of forest dislocations.

In the AK model, dislocations immobilized by solute cloud
can be reactivated. This term, represented by λ0ρ f , is a loss
term to ρ̇ f and a gain term to ρ̇m. Then, λ0ρ f represents
that fraction of ρm which has been immobilized due to solute
pinning. In this representation, the unpinning transformation
is represented in terms of the concentration-independent un-
pinning rate. However, in reality, unpinning of dislocations
should depend on concentration of solutes at the core of
dislocations. This, in turn, depends on solute concentration in
the bulk. As shown in Appendix C, concentration-dependent
unpinning stress σc can be written as

σc = e f c(t )

(
3

4b3

)(
R2

c

�b

)
Eb = σ ∗c. (14)

where Eb is the binding energy per solute atom, e f is the
enrichment factor in the core, Rc is the radius of the solute
cloud, and � is the distance by which the dislocation has
to be pulled before it is unpinned from the solute cloud
(typically � ≈ 2Rc). Clearly, σc depends on the nature of the
metal, the alloying element, and the binding energy between
the solute atoms and the dislocations. Recent studies on
Al-Mg alloys using atom probe tomography show that the
enrichment factor is 2.5 [45]. Using typical parameter values,
Rc = 5 b, � = 2, b = 2.85 nm, e f = 2, and Eb = 0.06 eV,

we get σc = 20 MPa per unit concentration. Then, the rate
of dislocations unpinned from the solute cloud is given by
λ0( σ

σc
)ρ f . This is a loss term for ρ̇ f and a gain term for ρ̇m.

We now consider various dislocation-dislocation interac-
tions that transform one type of dislocation to another. As
dislocations multiply, they begin to interact with other dis-
locations to form dipoles and junctions. Since these mecha-
nisms have been discussed in our recent papers [25–27], we
will be brief in explaining these mechanisms. Dipoles are
formed when two dislocations moving in nearby glide planes
approach a minimum distance (∼a few nanometers). This
mechanism contributes a loss term of βρ2

m to ρ̇m, which is a
storage (or a source) term for ρ̇ f . Here, β is a rate constant. A
more dominant contribution of the form δρmρ

1/2
f to ρ̇ f comes

from the intersection of dislocations moving on different glide
planes. This is a loss rate for ρm [3,24–27]. This is also called
the forest hardening term since the resolved shear stress is
large on several intersecting planes, a mechanism that begins
to contribute in stage II. Therefore. larger values of δ represent
higher work hardening rate dσ

dε
. Finally, a mobile dislocation

can also annihilate a forest dislocation. This produces a com-
mon loss (recovery) term f βρmρ f for both ρ̇m and ρ̇ f . Here,
f is a dimensionless constant. Higher values of f limit plastic
flow since the mechanism removes mobile dislocations which
otherwise would contribute to plastic deformation.

Now, consider dislocation mechanisms contributing to the
growth of the GND density. Here, we follow the physical
picture adopted in the ISE model [27], which itself was based
on recent experimental observations using electron backscat-
ter diffraction (EBSD) and transmission electron microscopy
(TEM) [33–35]. These experiments show only small misori-
entations at small depths implying low GND density [33,34].
These authors show that hardness at small depths is largely
determined by limited dislocation sources activated due to
small contact area. The subsequent decrease in H with z
is attributed to the increase in the number of dislocations
activated due to increased contact area A [27,33–35]. Thus,
the number of dislocation loops of a certain size activated is
proportional to A. As demonstrated in our ISE model [27], this
mechanism also removes the divergent nature of hardness H
for small z predicted by the Nix-Gao model [46].

Following this physical picture, we assume that mobile
dislocations are captured at a rate determined by the product
of the mean strain gradient and the number of loops of a
certain size (to be determined) that are activated under the
contact area. Thus, the growth rate for ρG is proportional
to: (a) ρm, (b) the strain gradient tan φ/a, where φ is the
angle between the indenter and the undeformed surface, and
a = √

A/π is the contact radius, and (c) the contact area A.
Note that the proportionality to A implies that the number of
loops remain small at small z increasing with z. The number
of loops punched out is estimated by noting that maximum
stress concentration occurs at the tip of the indenter that has
a nominal radius R. Then, the size of the loops punched
out is determined by the contact area of a spherical indenter
AH = πa2

H = πRz. Thus, the number of (half) loops activated
under the contact area is given by A(z)/0.5πRz. Then, the loss
rate for ρm is given by V ′

0ρmA(z) tan φ

a0.5πRz . Here, V ′
0 is a reference

velocity introduced for dimensional consistency. In principle,
V ′

0 is different from V0 used in Eq. (10). However, to minimize
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the number of parameters, we use V ′
0 = V0. Furthermore, the

growth rate of ρG is equal to the loss rate for ρm. In addition,
we assume that recovery processes can be ignored with-
out altering the basic conclusions for the following reasons.
(a) The recovery mechanism manifests only at high ρG, which,
however, is �1014/m2 as we will show. (b) In our approach,
hardness H is determined by the ratio of the load to the
residual imprint area and not by the SSD and GND densities
as in the hardness model based on the Taylor relation for the
flow stress [46]. (c) Finally, ignoring recovery mechanisms
helps to limit the number of parameters simplifying the model
without altering the basic conclusions.

Finally, noting that since the GNDs are in the solute
field, solute atoms also diffuse to the GNDs. Therefore, we
include αG(c)ρG as a loss term for ρ̇G. Following our earlier
arguments leading to Eq. (13), we write αG(c) = αG(0)c. This
constitutes a gain term for ρ̇c. Furthermore, since the GNDs
cannot be made mobile even with high stress, they will be
aged fully. Since we have ignored the recovery term in ρ̇G,
for the sake of consistency, we have dropped the loss term
αG(c)ρG in ρ̇G.

Collecting the loss and gain terms for ρm, ρ f , ρc, and ρG,
the time-evolution equations can be written as [47]

ρ̇m = θV0ρm

[
σ − h(ρ f + ρG)1/2

σm(c)

]m

− f βρmρ f − δρmρ
1/2
f

−βρ2
m − αm(c)ρm + λ0

σ

σc
ρ f

−V0
tan φ

a

A(z)

0.5πRz
ρm, (15)

ρ̇ f = βρ2
m − f βρmρ f − λ0

σ

σc
ρ f + δρmρ

1/2
f + αcρc, (16)

ρ̇c = αm(c)ρm − αcρc + αG(c)ρG, (17)

ρ̇G = V0
tan φ

a

A(z)

0.5πRz
ρm. (18)

Here, σm(c) is given by Eq. (12), αm(c) = αm(0)c, αG(c) =
αG(0)c, and σc = σ ∗c is given by Eq. (14).

B. Model equations for the Vickers indenter

Equations (15)–(18) are functions of stress. Noting that
both load F and area A evolve in time, σ should be expressed
in terms of F and A. Then, using indenter specific expressions
Eq. (5) for F , Eq. (8) for A, and Eqs. (12)–(14) defining
concentration-dependent rate constants in Eqs. (15)–(18), the
evolution equations for ρm, ρ f , ρc, and ρG take the form

ρ̇m = θV0ρm

⎡
⎣

CE∗zq
ec

24.5(zec +zpc )2+2πR(zec +zpc ) − h(ρ f + ρG)1/2

σm(0) + σsc2/3

⎤
⎦

m

−βρ2
m − δρmρ

1/2
f − f βρmρ f − αm(c)ρm

+ λ0

⎡
⎣

CE∗zq
ec

24.5(zec +zpc )2+2πR(zec +zpc )

σc

⎤
⎦ρ f

−V0ρm
tan φ[24.5(zec + zpc )2 + 2πR(zec + zpc )]1/2

0.5
√

πR(zec + zpc )
,

(19)

ρ̇ f = βρ2
m − f βρmρ f + δρmρ

1/2
f + αcρc

− λ0

⎡
⎣

CE∗zq
ec

24.5(zec +zpc )2+2πR(zec +zpc )

σc

⎤
⎦ρ f , (20)

ρ̇c = αm(c)ρm − αcρc + αG(c)ρG, (21)

ρ̇G = V0ρm
tan φ

[
24.5

(
zec + zpc

)2 + 2πR
(
zec + zpc

)]1/2

0.5
√

πR
(
zec + zpc

) .

(22)

These equations are coupled to the load rate Eq. (9). Note that
these equations include explicit concentration dependence of
several dislocation mechanisms contributing to the instabili-
ties that were originally constants in the AK model.

The plastic indentation depth zp is obtained by integrating

żp = T bV0ρm

⎡
⎣

CE∗zq
ec

24.5(zec +zpc )2+2πR(zec +zpc ) − h(ρ f + ρG)1/2

σm(0) + σsc2/3

⎤
⎦

m

.

(23)

Equations (19)–(23) and (9) constitute a set of coupled
nonlinear ordinary differential equations for microindenta-
tion of dilute alloys under a constant load rate condition.
Since the model equations include all relevant dislocation
mechanisms, such as pinning and unpinning of dislocations
from the solute cloud (as in the PLC effect) along with
concentration-dependent dislocation-solute interactions and
dislocation mechanisms drawn from the ISE model [27], we
expect the model to predict steps on the model F -z curves and
all the generic experimental features (a)–(g) [8–13].

C. Estimation of parameter values

It is clear that the solution of Eqs. (19)–(23) and (9)
depend on both experimental and theoretical parameters and,
therefore, the computed F -z curves. Thus, our first step is
to determine the ranges of parameters for which the model
F -z curves exhibit steps in a window of loading rates. This
implies that Eqs. (19)–(23) and (9) should exhibit instability
in a limited range of parameter values.

The model has two types of parameters, namely, experi-
mental and theoretical. The strength of dynamical approach
is that we can directly adopt experimental parameters, such
as E∗, Ḟ0, R, b, T , tan φ, and h = αGb and other shape pa-
rameters defining the indenter geometry [24–27]. Therefore,
these parameters can be taken to be given. However, some
experimental parameters, such as the nominal radius of the
blunted indenter tip, the load rate, etc., are not generally given.
Then, typical values are used. In the present case, the radius
of the blunted tip used is R = 100–1000 nm. The thickness of
the sample used in our numerical paper is 150 μm (typically
10 × zmax). (Note, however, that the choice of T does not
affect the results since, by definition, we have ε = z/T and,
therefore, z = T ε).

Furthermore, noting that we need to express σ as the ratio
of the load F to the area A, parameters (C, q) in Eq. (5)
for the force and (R, s) in Eq. (8) for the area should also
be determined. These parameters can only be determined
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TABLE I. Instability domain of model parameters. The range of
f = 1–5.

σm(c)/E∗ Ḟ0 (mN/s) m λ0 (s−1)

1/600–1/100 0.01–10 8–32 10−8–5 × 10−3

αm δ (m/s) αG (s−1) αc (s−1)
0.1–6.0 10−11–10−7 10−9–10−4 10−3–1

by fitting the measured elastic F -ze curve and the measured
area A(zec ) with Eqs. (5) and (8), respectively. However, both
F (ze) and A(ze) are not given [8–13]. Therefore, (C, q) and
(R, s) remain undermined. Since these four parameters are
crucial input data for the model, it rules out the possibility of
fitting a given experimental F -z curve. However, it is possible
to predict the generic features of the stepped response by
assuming a typical percentage of the maximum depth zmax as
the relaxed elastic component zer after unloading, for instance,
zer = 10–15%zmax. (zer = zmax − zpr where zpr is the residual
indentation depth after unloading the indenter). The exact
fraction of zmax used for fixing C and q in Eq. (5) does not
affect qualitative features. The results presented here are for
zer = 15%zmax [48].

Now, consider theoretical parameters. The number of theo-
retical parameters in a dislocation mechanism based model
is determined by the number of dislocation mechanisms
required to model the phenomenon. Thus, the more com-
plex the phenomenon, the more the number of dislocation
mechanisms, and the more the number of parameters. The
present model includes dislocation mechanisms that control
the extent of plasticity (defined by σ, ε or F, z), such as
dislocation multiplication, storage, and recovery mechanisms.
Furthermore, the model incorporates the instability mecha-
nism, namely, pinning and unpinning of dislocations from the
solute atmosphere and concentration dependence of the insta-
bility mechanism by including dislocation-solute interaction
to account for the solution for the hardening effect [Eq. (12)]
and concentration unpinning stress [Eq. (14)]. Each of these
mechanisms contribute in a specific way to the stress-strain
curves or load-indentation curves. The parameters associated
with dislocation multiplication [see the first term in Eq. (19)]
are θ,V0, σm(0), σs, m, n = 2/3. Similarly, the parameters as-
sociated with dislocation storage and recovery mechanisms
[the second, third, and fourth terms in Eq. (19)] are β, δ, and
f . Parameters associated with concentration-dependent pin-
ning and unpinning mechanisms are αm(0), αc, αG(0), λ0,
and σc. Although the ranges of several of these parameters
have already been reported in several of earlier papers [23,27],
in the present case, a great deal of simplification results from
the fact that we are dealing with an instability. Then, stability
analysis of Eqs. (19)–(23) and (9) provides an easy way of
determining the range of values of all these parameters as
discussed in detail in Appendix A. (A similar calculation has
been carried out in the DC controlled nanoindentation. See
the Appendix of Ref. [24]). The ranges of the parameters are
listed in Table I.

One important conclusion arising from the analysis pre-
sented in detail in Appendices A and B is that the ranges
of these parameters actually represent different alloys, their

concentration and rate dependencies. We illustrate this by
considering dislocation multiplication threshold σm(c), an
important parameter that controls dislocation multiplication.
We first note that it is well known that, even for pure metals,
the range of values of the yield stress σy (or σm) takes on
a range of values from E∗/10 000 to E∗/2000. σy for soft
metals, such as Ag, Al, and Cu, are at the lower end and
hard metals, such Ti, Ni, etc., are E/200. For alloys, as
discussed earlier, σm depends on the nature of the metal,
alloying element, and concentration. Indeed, Eq. (12) contains
dislocation multiplications stress for the pure metal σm(0) and
σs the prefactor for concentration dependence. Both σm(0) and
σs take on a range of values that define the alloy, and therefore,
the range of values of σm(c) represents different alloys. 4
on decimals The situation simplifies considerably for a given
alloy, say, Al-Mg since σm(0) = σy is known for Al and σs

is easily determined by fitting Eq. (12). Similar arguments
show that the ranges of several of the parameters associated
with other dislocation mechanisms represent different alloys
and their concentration dependence. For details we refer to
Appendix A.

V. RESULTS

Equations (19)–(23) and (9) are solved using adaptive
step size Runge-Kutta solver (MATLAB ODE15S) to ob-
tain the model F -z curves. The initial conditions used for
ρm(0), ρ f (0), and ρc(0) are ∼108–1010/m2 and ρG(0) = 0.
Note that ρG(0) = 0 for samples with no strain gradients
arising from inclusions and other defects.

As stated in the Introduction, our main goal is to predict
all the generic features (a)–(g) [8–13]. Of all the experimental
results, the plot of the mean critical onset depth of instability
z∗ = 〈z∗(c)〉 as a function of concentration needs a special
attention since the plot shows error bars on z∗ for each c value.
(See Fig. 10 of Ref. [12]). Since Eqs. (19)–(23) and (9) are a
set of coupled nonlinear ordinary equations, addressing such
fluctuations requires devising a novel method of calculating
such fluctuations. We will show that these error bars represent
sample-to-sample fluctuations in c.

Experimental features (a)–(g) can be classified into three
groups, namely, (i) characteristic features of the instability,
(ii) concentration, and (iii) rate-dependent features of the
instability. Therefore, we begin by calculating the model F -z
curves by varying concentration and load rate over ranges
similar to those in experiments. Recall that concentration
dependence appears in several model parameters. These are
σm(c), αm(c), αG(c), and σc. Due to concentration depen-
dence, these parameters are also rate dependent. However,
not all parameters are independent. For instance, the recovery
f β and storage parameters δ are not independent. This can
be seen as follows. Recall that for large f (for a fixed β)
the common loss term f βρmρ f reduces the extent of plastic
flow by limiting the growth rate of ρm which otherwise would
have contributed to plastic flow. On the other hand, as already
stated, the forest hardening term δρmρ

1/2
f determines the rate

of hardening ( dσ
dε

), and therefore, larger δ implies higher rate
of hardening. This illustrates that f and δ are not indepen-
dent. Furthermore, both δ and f are also material dependent.
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TABLE II. Selected set of parameter values used as reference
values for calibration studies of parameters on the model F -z curves.

σm/E∗ Ḟ0 (mN s−1) R (nm) λ0 (s−1) αG (s−1) θV0 (s−1)

1/200 1 400 5 × 10−5 5 × 10−5 1
β (m2/s) δ (m/s) f αc (s−1) αm (s−1) m
10−11 3.16 × 10−10 1.5 0.48 2.17 20

Similar observations hold with respect to several other param-
eters. See Appendix A for details.

A. Influence of parameter variation on model
load-displacement curves

Although stability analysis allows us to calculate the do-
main of parameters where stepped F -z curves are predicted
(see Table I) does not guarantee that the generic experimental
features (a)–(g) are also realized in the entire instability do-
main. Indeed, the instability range of parameters is larger than
the domain where features (a)–(g) are seen. We determine this
subdomain by calibrating the influence of each parameter on
the model F -z curve and helps us to locate the parameter space
where the model F -z curves are similar to the experimental
F -z curves for different concentrations and load rates. (See
the LC mode indentation model [25] and the ISE model
[27] for details). This procedure also establishes the relative
importance of the various dislocation mechanisms used in the
model.

Following Refs. [25,27], we begin calibrating the param-
eters by studying their influence on the model F -z curve. In
this paper, we vary one parameter keeping the rest at suitable
reference values listed in Table II.

The first step is to calibrate load F in Eq. (5) by deter-
mining the values of C and q. This is performed by assuming
10% of zmax is the elastic component. Using zmax = 12.54 μm
and Fmax = 2N , values drawn from a typical experimental
F -z curve (corresponding to 2.7 wt % Mg shown in Fig. 4
of Ref. [13]). Using these values and q = 1.7 in Eq. (5), we
get C = 0.146. (q = 1.7 is suggested in Ref. [11]). Here, we
have used s = 1 in zc = sz valid for no pile-up or sink-in
situation due to the absence of the measured area. However,
the predicted results are valid for zc 	= z expected of pile-
up/sink. (See supporting comments in Ref. [49]).

Noting that zmax (for a given Fmax) is the sum of elastic
and plastic contributions, the first check is to ensure that zmax

and Fmax values in the computed F -z curve match zmax =
12.54 μm at Fmax = 2N . Indeed, the computed model F -z
curve will yield zmax = 12.54 μm for Fmax = 2N only for
a specific value of σm(c). To check this, we have solved
Eqs. (19)–(23) and (9) using C = 0.146 and q = 1.7 by vary-
ing σm(c) such that the model predicts zmax = 12.54 μm and
Fmax = 2N . (Other parameters are as in Table II). This hap-
pens only when σm(c) = 443 MPa. In terms of E∗, σm(c) =
E∗/170.

We now consider the influence of the two interdependent
parameters σm(c) and m on the model F -z curve. Recall that,
in the ISE model [27], a systematic study of the influence of
the parameters on the model F -z curves showed that they are
sensitive only to dislocation multiplication mechanism, i.e.,
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FIG. 1. (a) Model F -z curves for σm(c) = E∗/150 [1], E∗/200
[2], E∗/250 [3], E∗/300 [4], and E∗/350 [5] for m = 20. The curve
[2] corresponds to the parameter values in Table II. (b) Model F -z
curves for m = 12[1], 20[2], and 28 [3].

to σm and m, and insensitive to recovery, storage mechanisms
( f and δ) and other instability parameters αm(c), αc, αG, and
λ0. In the present problem, although steps over-ride the F -z
curve (for parameters in Table I), we anticipate that zmax of
the model F -z curves would also be sensitive to σm(c) and m.

We first consider calibrating σm(c). Since experimen-
tal results are generic features of several alloys, such
as Al-Mg, Al-Cu, etc. [12], we express σm(c) in terms
of E∗. Then, the range of values of σm(c) to be an-
ticipated can be found by calculating stress at Fmax and
zmax values corresponding to the four experimental F -z
plots in Fig. 8 of Ref. [12] for the Al-Mg alloys. These
stress values range from E∗/350 for c = 0.45 wt % Mg to
E∗/110 for c = 4.5 wt % Mg. We have varied σm(c) from
E∗/110 to E∗/350. Figure 1(a) shows plots of the model F -z
curves for E∗/150, E∗/200, E∗/250, E∗/300, and E∗/350
labeled [1]–[5], respectively. Note that the F -z curve labeled
[2] corresponds to parameter values listed in Table II. There-
fore, curve [2] is taken as the reference model F -z curve with
respect to which calibration of all parameters is carried out.
Several feature are evident. All the F -z curves in Fig. 1(a)
show steps as expected since the parameters are in the instabil-
ity domain (Table I). Furthermore, increasing σm(c) decreases
zmax. These features are consistent with the experimental F -z
plots in Fig. 8 of Ref. [12]. (The decreasing zmax for a fixed
Fmax is predicted by the smooth F -z curves for pure metals
in our ISE model. See Fig. 2 of Ref. [27]). Another feature
seen from Fig. 1(a) is that the depth of onset of the steps z∗
decreases with increasing σm(c).
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Now consider the influence of the velocity exponent m on
the model F -z curve by varying m from 10 to 30. Figure 1(b)
shows plots of F -z curves for m = 12, 20, and 28 labeled [1],
[2], and [3], respectively. It is clear that, although increasing
m increases zmax, the change is marginal. Two other features
are also clear, namely, although increasing m does not affect
zmax much, the step size decreases with m and the onset of the
instability occurs at larger depths. Furthermore, increasing the
trend of zmax with m is opposite to the influence of σm(c), a
feature that was demonstrated in the ISE model also [27]. The
opposite trends of σm(c) and m is a direct consequence of the
expression for the velocity given by Vm = V0[(σeff )/σm(c)]m

in the dislocation multiplication mechanism that controls zmax.
Then, for fixed m, increasing σm decreases [σ/σm(c)]m and,
hence, decreases zmax, whereas increasing m for a fixed σm

increases zmax.
We have investigated the influence of other parameters,

such as αm(c), αG(c), and αc on the model F -z curve. We find
that each of these parameters affects the step size marginally
with very little influence on zmax. In most cases, the F -z curves
for two different parameter values almost overlap except for
the step sizes. For this reason, we summarize the influence of
each of these parameters without giving the relevant F -z plots.

We have studied the influence of αm(c) on the model F -z
curve by varying αm(c) = 0.1 to 6/s. Although the step size
is not affected much, the onset of the instability z∗ occurs for
smaller depths with increasing αm(c). We have varied αG(c)
from 10−8–10−4/s. At the lower end of αG, the steps are
small increasing with αG with no effect on z∗. Similarly, we
have varied αc from 10−3–1/s. The step size is large at the
lower end decreasing with αc with a concomitant decrease in
z∗. Again, note that the range of these parameters represent
different alloys since both diffusion constant and effective
attractive length scale λ in αm(0) = D/λ2 are alloy dependent
[see Eq. (13)].

We have investigated the influence of λ0 by varying it from
10−8 to 10−3/s. The load steps are largest at the lower end
decreasing with λ0 with little effect on the point of instability.

We have also investigated the influence of other model
parameters f and δ on the model F -z curve. Noting that
the AK model [3,16,17,19,23] uses f = 1, we use this as a
reference value and vary f from 0.1–5. The instability begins
beyond f = 0.5. For the reference value of f − 1, the step size
is fairly small (being close to the instability point) increasing
with f . The onset point of the instability z∗ also decreases
with f . We have also investigated the influence of the forest
hardening parameter δ on the model F -z curve by varying
δ from 10−11 to 10−7 m/s. Although the step size decreases
with increasing δ, the change is small. Clearly, the forest
hardening parameter δ and recovery parameter f are material
dependent as well.

Finally, experiments show that the instability is seen in a
window of load rates. We have verified this by varying the
load rate Ḟ0 over a wide range of values. Figure 2 shows F -z
curves for Ḟ0 = 0.175–5 mN/s keeping other parameters as
in Table II. Since these F -z curves overlap except for the
differing step sizes, we have displaced successive curves by
1 μm. Clearly, the step size is the largest for the smallest
rate decreasing with Ḟ0, and the instability starts at smaller
z∗ for smaller rates increasing with Ḟ0. These features are
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FIG. 2. Model F -z curves for Ḟ0 = 0.175, 0.35, 0.7, 1.75, 3,
and 5 mN/s labeled as [1–6], respectively, each shifted by 1 μm.

consistent with experiments on Al-Mg alloys (see Fig. 7 of
Ref. [12]).

Several important conclusions emerge from this paper.
(i) The paper demonstrates that the model predicts steps on
the model F -z curves for a wide range of values of the model
parameters representing different alloys or an alloy for differ-
ent concentrations and loading rates. Note that, at this point of
our analysis, increasing σm(c) may represent either a solution
hardening of an alloy by increasing concentration or different
alloys for a fixed concentration. The distinction between the
two cases depends on whether σm(0) and σs are fixed, and c
is varying or whether σm(0) and σs take on different values
keeping c fixed. [See Eq. (12)]. (ii) The maximum indentation
depth zmax of the model predicted stepped F -z curves is
controlled by a dislocation multiplication mechanism since
the F -z curves are sensitive only to σm(c) and to a lesser extent
on m. Noting that σm(c) increases with c [see Eq. (12)], we
see that zmax decreases with concentration for the given Fmax.
(iii) Although dislocation mechanisms contributing to collec-
tive dislocation pinning and unpinning from the solute cloud
determine the instability domain, the step size, a measure
of the instability, exhibits a weak dependence on instability
parameters. Since the model F -z curves are insensitive to the
storage and recovery mechanisms (δ and f β) are relatively
unimportant as in the ISE model [27].

VI. COMPARISON OF MODEL PREDICTED FEATURES
WITH EXPERIMENTS

Since the above features (i)–(iii) of the model F -z curves
are ubiquitous to a broad range of dilute alloys and load
rates, we now consider calculating the model F -z curves
corresponding to Al-Mg alloys used in experiments [8–13].
However, this requires that we first determine the values of
σm(0) and σs in Eq. (12) for σm(c) relevant for Al-Mg alloy.
As already discussed in the previous section, one easy way
to do this is to use the value the yield stress σy to be σm(0)
for Al and then use Eq. (12) for various concentrations to
find σs. However, as demonstrated by Spary et al. [50], σy

[or σm(0)] for a pure metal is size dependent, which, for
spherical indenters, manifests as larger yield stress values for
the smaller indenter radius. (See Table 2 of Ref. [50]). In our
case, the tip of the Vickers indenter is blunted with it effective
radius R in the range of 100–1000 nm. Even for R = 400 nm
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FIG. 3. Plots of model F -z curves for concentration values c =
0.09, 0.45, 0.95, 1.8, 2.7, and 4.5 wt % Mg labeled [1]–[6], re-
spectively. Note that the curves [2], [3], [5], and [6] correspond
to c = 0.45, 0.95, 2.7, and 4.5 used in experiments. See Fig. 8 of
Ref. [12]. The inset shows the onset of the instability occurring for
larger depths for low concentrations c = 0.45 and 0.09 wt % Mg.

used in our numerical calculation (see Table II, the value of σy

or σm(0) remains undetermined.
Here, we use a self-consistent way of evaluating σm(0) and

σs. This can be performed by finding the values of σm(c) for
two different concentrations such that the model F -z curves
have their zmax and Fmax values matching the experimental
values. Recall that we have already determined the value of
σm(c) = E/170 = 443 MPa for c = 2.7 wt % Mg. Further-
more, we have also verified that the corresponding zmax and
Fmax of the model F -z curve match the experimental values.
Then, what remains is to find σm(c) for another concentration
such that the model values of zmax and Fmax values match the
experimental values. A careful scrutiny of Fig. 1(a) shows that
the F -z curve labeled [3] corresponding to σm(c) = E∗/250 =
300 MPa has values of zmax and Fmax close to the experimental
F -z curve for c = 0.95 wt % Mg (see Fig. 8 of Ref. [12]).
Using the values of σm(c) for c = 2.7 and c = 0.95 wt % Mg
in Eq. (12), we get σm(0) = 160 and σs = 140 MPa.

A. Concentration dependence of load-displacement curves

Now, we consider computing the model F -z curves as a
function of concentration using Eq. (12) with σm(0) = 160
and σs = 140 MPa and then compare them with the exper-
imental curves (Fig. 8 of Ref. [12]). Similarly, we use the
linear dependence of αm(c), αG(c), and σc on concentration
for computing the model F -z curves. (To compare the model
F -z curves with experimental plots for various concentrations,
we express c in wt % Mg).

Figure 3 shows the model c = 0.09, 0.45, 0.95, 1.8, 2.7,
and 4.5 wt % Mg (corresponding to 0.1, 0.49, 1.05, 2.0,
3.0, and 4.97 at. % Mg) labeled [1]–[6], respectively. The
concentration values c = 0.45, 0.95, 2.7, and 4.5 wt % Mg
are chosen to facilitate comparison with the corresponding
experimental curves (see Fig. 8 of Ref. [12]). Comparison
shows that the model F -z curves predict the three features
of experimental F -z curves (Fig. 8 of Ref. [12]), namely,
decreasing zmax for a fixed Fmax with increasing c or σm(c),
increasing step size with c and decreasing depth of onset of
steps z∗ with c. Even the Fmax and zmax values are close to the
experimental values. Even the Fmax and zmax values are close
to the experimental values.

Note also that the predicted F -z curve for c =
0.45 wt % Mg labeled [2] remains smooth until zmax =
13 μm as the corresponding experimental F -z curve. How-
ever, when indentation is carried out for larger depths, we
do find that the instability begins just beyond z = 13 μm.
We have verified that the instability starts at larger inden-
tation depths for concentrations down to c = 0.09 wt % Mg
(or 0.1 at. % Mg). Thus, we conclude that there is no lower
limit in concentration for the manifestation of the instability.
Indeed, there are no reports of the existence of a minimum
concentration for the onset of the PLC instability [3,5]. This
result is, however, at variance with the authors’ claim that
there is a lower bound in concentration for the onset of the
instability [12]. The authors’ conclusion appears to be based
on the fact that the F -z curve for the lowest concentration c =
0.45 wt % Mg studied does not show any instability within
zmax � 13 μm indented (see Fig. 8 of Ref. [12]). To summa-
rize, the predicted F -z curves for various concentrations are
very similar to the experimental curves.

B. Concentration dependence of the depth of
onset of the instability

Now, we consider predicting the only experimental result
that shows fluctuations. Figure 10 of Ref. [12] shows error
bars on the mean critical indentation depth z∗ = 〈z∗(c)〉 for the
onset of steps as a function of concentration with two distinct
feature, namely, the mean 〈z∗(c)〉 increases with decreasing
concentration, and concomitantly, the magnitude of the error
bars also increase. However, the basic question here is: What
kind of fluctuations are these? To understand this, we note that
increasing fluctuations in z∗(c) is similar to increasing con-
centration fluctuations in equilibrium statistical mechanics.
Indeed, according to equilibrium statistical mechanics, con-
centration fluctuations are Gaussian with a standard deviation
[〈(c′ − 〈c′〉)2〉]1/2 = √〈c′〉 = √

c. (Here, we use c′ to denote
the fluctuating concentration variable to avoid any confusion.
Thus, 〈c′〉 = c, the mean concentration). This coupled with the
fact that indentation is carried out on concentration-dependent
samples suggests that the reported fluctuations in z∗ are due to
sample-to-sample fluctuations in concentration.

However, even predicting sample-to sample fluctuations
is not straightforward since Eqs. (19)–(23) and (9) are a
coupled set of nonlinear ordinary differential equations. Such
equations evolve to the same state for identical initial con-
ditions [51]. This may suggest that predicting the stochastic
spread is beyond the scope of nonlinear dynamical approach.
However, such equations also exhibit sensitive dependence on
initial conditions. Then, our idea is to combine the inherent
sample-to-sample fluctuations in concentration with sensitive
dependence on initial conditions of Eqs. (19)–(23) and (9) to
calculate the stochastic spread in the values of z∗(c).

Sensitivity to initial conditions implies that any two tra-
jectories corresponding to two closely separated sets of initial
conditions quickly diverge in the phase space. For illustration,
consider the solutions of Eqs. (19)–(23) and (9) evolved for
the same time duration using two initial values of concen-
tration c′ that are close to each other, say, c′ = 3.29 and
3.31 wt % Mg, and ρm(0) = 5 × 108, ρ f (0) = 108, ρc(0) =
109, ρG(0) = 0(m−2) fixed. The divergence of the two
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FIG. 4. (a) Phase plot obtained by solving Eqs. (19)–(23)
and (9) for the same time duration using initial conditions
c = 3.2 and 3.31 wt % Mg keeping ρm(0) = 5 × 108, ρ f (0) =
108, ρc(0) = 109, ρG(0) = 0(m−2) fixed. Note the widely separated
end points of the two orbits, a reflection of sensitive dependence on
initial conditions typical of chaotic nature of the orbits. (b) A plot of
the mean onset depth of instability z∗ as a function of concentration
along with the standard deviation. Compare Fig. 10 of Ref. [12]. The
inset shows log-log plot of z∗ as a function of c giving the exponent
value ξ = 0.59.

trajectories in the phase space of ρm, ρc, and ρ f is shown in
Fig. 4(a). As is clear from Fig. 4(a), even though the two initial
concentration values are very close, the trajectories quickly
diverge from each other. This sensitive dependence on initial
conditions also implies spread in the values of z∗ even for
small changes in the initial values of c′. Sample-to-sample
fluctuations in concentrations are mimicked by random sam-
pling from a Gaussian distribution with a standard deviation
equal to

√〈c′〉 = √
c. Using c′ values in this range as initial

conditions, we obtain a range of z∗(c′) values by solving
Eqs. (19)–(23) and (9).

Following this method, we have calculated both the mean
〈z∗(c′)〉 and the variance [〈z∗(c′)2〉 − 〈z∗(c′)〉2] of the onset
point of instability. A plot of mean z∗ = 〈z∗(c′)〉 along with
the standard deviation [〈z∗(c′)2〉 − 〈z∗(c′)〉2]1/2 are shown as
a function of mean concentration c in Fig. 4(b). This plot
may be compared with the experimental plot for 3.3 wt % Mg
concentration (see Fig. 10 of Ref. [12]). It is clear that the
dependence of the calculated z∗ = 〈z∗(c′)〉 (•) on concentra-
tion is similar to the experimental plot. Indeed, the values of
〈z∗(c′)〉 show a good fit to a power-law dependence on c of
the form 〈z∗〉 = Bc−ξ . The inset shows a log-log plot of z∗
as a function of c with ξ = 0.59. Note also that the exponent
value of ξ = 0.59 is close to the solution hardening exponent
value in Eq. (12).
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FIG. 5. Influence of the load rate on the model indentation
depth—load plot for 3.3 wt % Mg or c = 3.65 at. % Mg. Compare
Fig. 5(b) of Ref. [8]. The load rates are 0.35, 0.7, 1.75, 3.0, 6.0, and
10 mN/s labeled as [1]–[6], respectively, each shifted by 1 μm.

Sensitivity to initial conditions can also be exploited to
calculate the “stochastic spread of the magnitudes and fre-
quencies of the displacement bursts” arising from sample-to-
sample fluctuations in concentration.

C. Load rate dependence of the instability

One important experimental feature is that the instability
manifests in a window of load rates. Indeed, experiments
carried out on Al 3 wt % Mg alloys [9,12] show that the
instability is seen from 1.4 to 70 mN/s. To check this, we
have varied the load rates over a wide range of values and
found that the stepped response is seen in the window 0.35–
10 mN/s for c = 3.3 wt %, a range that is slightly different
from that reported in experiments. [This difference can be
attributed to the assumptions made in evaluating C in Eq. (5)].
Figure 5 shows plots of model z-F curves for six different load
rates labeled [1]–[6]. Note that we have plotted z-F curves
instead of standard F -z curves to facilitate comparison with
experimental plots (see Fig. 7 of Ref. [12]). Clearly, the step
size is largest for the lowest rate decreasing with load rate.
Concomitantly, the onset depth of the instability moves to
larger values. It is clear that the predicted rate dependence of
F -z curves is very similar to experiments.

Our detailed studies also show that the instability range of
load rates is concentration dependent. For instance, the rate
dependence shown in Fig. 2 for σm(c) = E∗/200, corresponds
to c = 1.98 wt % Mg [using σm(0) = 160 and σs = 140 MPa
for Al-Mg alloys]. Furthermore, note that the instability range
is from 0.1 to 7 mN/s, a range that is different and larger than
that for c = 3.3 wt % Mg. The concentration dependence of
the instability window of load rates is physically understand-
able since pinning and unpinning dynamics of dislocations
from the solute atmosphere depends on the imposed rate.
However, this feature has not been reported in these experi-
ments [12,13].

D. Oscillatory hardness in the instability range

Now, consider the oscillatory nature of hardness reported
in experiments [12]. In our recent paper on LC mode
nanoindentation instability where (limited) displacement
jumps are seen, we demonstrated that hardness assumes two

064102-11



G. ANANTHAKRISHNA AND SRIKANTH K PHYSICAL REVIEW B 100, 064102 (2019)

0 0.5 1 1.5 2F (N)
0

50

100

150
Δ

F
 (

m
N

)
(a)

FIG. 6. Plot of �F versus F for concentration c = 3.3 wt % Mg
for load rates Ḟ0 = 0.35 (�), 0.7 (�), 1.75 (�), 3 (∗), 6 (•), and
10.0(+) mN/s, respectively.

values [25]. It was shown that the residual indentation depth
zpr corresponding to the bottom and top of a load step is nearly
the same. In contrast, two distinct values of zpr are realized
across a displacement jump. Clearly, the same argument holds
for the present case where displacement jumps are seen in
the instability range. Consequently, hardness fluctuates in the
region of the instability.

E. Linear scaling relation between load steps and load

One characteristic feature of all the load-indentation curves
(both experimental and model curves) is the increasing mag-
nitudes of the load steps and displacement jumps with depth.
Indeed, experiments show that �F increases linearly with F
(see Fig. 9 of Ref. [8]). This features is a direct consequence
of the constant load rate condition employed in indentation
experiments in contrast to the constant strain rate in standard
PLC experiments. Then, the corresponding effective strain
rate ε̇eff is given by ε̇eff = Ḟ0

F ∝ 1/t (or ż
z ). This decreases

with time as indentation proceeds. Noting that the stress drop
magnitudes decrease with increasing strain rate in the PLC
effect, the decreasing ε̇eff implies decreasing waiting time of
dislocations at obstacles and, hence, increasing magnitudes of
stress drops. This translates to linearly increasing magnitudes
of load steps and displacement jumps with time or load. This
prediction has been verified by computing �F as a function
of F for different load rates as shown in Fig. 6. Furthermore,
the fact that the slope is highest for the smallest load rate is
consistent with ε̇eff ∝ 1/t . These results are consistent with
experiments (see Fig. 9 of Ref. [8]). However, the plot for
the lowest load rate 0.35 mN/s shows noticeable deviation
from linearity for small F . This feature can be ascribed to
the fact that 0.35 mN/s is close to the boundary of the
instability.

F. Behavior of dislocation densities

Our approach automatically allows us to compute the four
dislocation densities as a function of indentation depth or
time. As in the case of the AK model, ρm, ρ f , and ρc all
exhibit oscillatory behavior. For illustration, we present a plot
of ρm as a function of z in Fig. 7. Also shown in the same plot
is ρG, which increases monotonically starting from a small
value. This feature is in sharp contrast with the predicted
divergent nature of ρG for z by the Nix-Gao model [46]. But
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FIG. 7. Plots of ρm and ρG, respectively, as a function of z for
c = 3.3 wt % Mg.

this feature is consistent with the measured low misorientation
(in EBSD and TEM) seen at small z or equivalently low GND
density [33–35]. The monotonically increasing nature of ρG

also suggests limited dislocation sources at small depths, a
feature that is also consistent with the experimentally mea-
sured GND density (see Figs. 7 and 10 in Ref. [35]). One
other feature that may be noted from Fig. 7 is the existence of
tiny undulations over riding the steadily increasing ρG. This
feature is clearly due to the fact that the growth rate of ρG is
proportional to ρm, which is oscillatory.

VII. SUMMARY, DISCUSSION, AND CONCLUSIONS

The present paper is motivated by the absence of any kind
of simulations or models that explain the results reported
20 years ago on microindentation of dilute metallic alloys.
These studies report steps on the load-indentation curve for a
range of concentrations and loading rates. The fact that neither
simulating displacement jumps nor including concentration-
dependent dislocation solute interaction is straightforward
appears to be the reason for the absence of simulations or
models.

Our approach is designed to address these features by
combining the power of nonlinear dynamical methods, a nat-
ural mathematical platform for describing the jump instability
with the dislocation mechanism based evolution equations for
the four dislocation densities ρm, ρ f , ρc, and ρg. The model
includes two types of dislocation mechanisms. The first set in-
cludes dislocation multiplication, storage, and recovery mech-
anisms that are common to most plastically deforming situ-
ations. The second set accounts for dislocation pinning and
unpinning from the solute atmosphere, the basic instability
mechanism responsible for the stepped response. Both types
of mechanisms require generalization to include concentration
dependence. Three types of concentration-dependent effects
are introduced to account for concentration-dependent results.
First, the basic PLC instability mechanism is generalized
to include concentration-dependent dislocation-solute inter-
action. Second, dislocation multiplication threshold stress is
modified to include concentration dependence to account
for solid solution hardening with concentration, and third,
inclusion of concentration-dependent unpinning stress of dis-
locations from the solute cloud. It may be noted here that
the latter two mechanisms have not been used in any PLC
type of instability so far. The growth of GNDs is drawn from
the hardness model for ISE [27]. To summarize, the physical
mechanisms responsible for predicting all the experimental

064102-12



DISLOCATION MECHANISM BASED MODEL FOR … PHYSICAL REVIEW B 100, 064102 (2019)

results (a)–(g) are the generalization of pinning and unpinning
mechanisms to include concentration dependence, solution
hardening with concentration together with the inherent rate-
dependent nature of PLC instability.

The main results and conclusions predicted by the model
are summarized below. The model predicts:

(1a) Steps on the F -z curves for a range of concentrations
and loading rates.

(1b) The decreasing nature of zmax for a given Fmax as a
function of concentration, a manifestation of solid solution
hardening.

(1c) The existence of a critical indentation depth z∗ for the
onset of the instability.

(1d) The increasing nature of z∗ and its standard deviation
with decreasing concentration.

(1e) The power-law dependence of z∗ on concentration
with an exponent ξ ≈ 0.6.

(1f) The existence of a stepped response in a window of
(concentration-dependent) load rates.

(1g) The linear dependence of the load steps with load.
To summarize, the model predicts all experimental features

without exception.
Two results deserve some comments. Recall that a novel

method was devised to predict error bars on the onset point of
the instability z∗c as a function of concentration as shown in
Figs. 4(a) and 4(b). This has been made possible by exploiting
the sensitive dependence of the set of nonlinear differential
evolution equations for the four dislocation densities on ini-
tial conditions together with the inherent sample-to-sample
fluctuations in concentration. This result also demonstrates
the power of the nonlinear dynamical method when applied
to problems in plasticity that are inherently nonlinear.

Second, since there are no PLC models that include
concentration-dependent features, the theoretical basis devel-
oped here to model concentration-dependent effects can be di-
rectly adopted for modeling concentration dependence of the
PLC instability. Then, the predicted results can then be used
to perform experiments on a sample of varying concentrations
and compare the model results with experiments.

(2) As demonstrated, since the range of the parameters
physically represent different alloys and loading rates, the
model predicts that the stepped response should be seen for
a wide range of dilute alloys and loading rates.

(3) The steps on the F -z are sensitive only to dislocation
multiplication mechanism determined by σm(c) and to a lesser
extent by the velocity exponent m and, are insensitive to
storage, recovery, and other instability related mechanisms.

Finally, a major advantage of our approach is that the
model equations can be solved on a desktop computer unlike
simulations that require heavy computational resources, even
if such simulations can be developed.

Even though our approach uses sample/volume averaged
dislocation densities, our model exhibits all the experimental
features (a)–(g) without exception for a range of parameter
values representing different alloys, alloys of varying concen-
trations, and loading rates. This may come as a surprise. To
appreciate this, it is important to recognize that as much as the
dislocation densities are volume/sample averaged quantities,
all experimentally measured quantities, such as the load, depth
of indentation, residual indentation depth after unloading, etc.,

are also volume averages of the dislocation activity in the
sample. Since both theoretically computed and experimen-
tally measured quantities represent sample averages, the good
match is not all that surprising. Moreover, it is well known that
averages, including spatial averages, are quite insensitive to
the details of the distribution. Viewed differently, the fact that
the model predicts all experimental results without exception
is clearly a validation of the mathematical tools used to
describe the instability and the dislocation mechanisms used
to model the physical process.

Furthermore, in the context of modeling instabilities, it is
a standard practice in nonlinear dynamics to capture the time-
dependent features of spatiotemporal instability as a first step.
However, when spatial coupling appropriate to the problem
is introduced, most features of spatiotemporal instability are
usually captured. Indeed, the original AK model attempted
only time-dependent features of the PLC instability [3,4,16–
19]. (See also the Introduction). Once spatial coupling was in-
cluded, the model predicted all the band types (the static type
C, hopping type B, and propagating type A) [3,4,20,22,23]. It
may be noted here that the heterogeneity of the three band
types of bands is considerably more complex than that in
indentation experiments where there is, at least, an (sectoral)
angular symmetry.

From this point of view, it would be interesting to explore
the possibility of using the current approach along with finite
element methods to calculate the stress distribution under the
indenter and then use it in our model equations to obtain
spatial distribution of the dislocation activity in the sample.
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APPENDIX A: ESTIMATION OF RANGES OF MODEL
PARAMETERS

This Appendix is devoted to estimating the range of
values of the model parameters θ,V0, σm(0), σs, m, n =
2/3β, δ, f , αm(0), αc, αG(0), λ0, and σc associated with
the ten dislocation mechanisms used in the model and to de-
termine the subdomain of parameters where stepped response
is expected.

Three dislocation mechanisms determine the extent of
plastic flow, namely, dislocation multiplication, storage, and
recovery mechanisms, which are also material specific. There-
fore, the ranges of the associated parameters represent dif-
ferent alloys and their concentration and rate dependen-
cies. To see this, consider the dislocation multiplication
mechanism, which is controlled by Vm(σ ) = V0{[σ − h(ρ f +
ρG)1/2]/σm(c)}m given by Eq. (10). Dislocation multiplication
threshold stress σm(c) is taken to be the lower bound of the
yield stress σy. This is clear from the fact that, for pure metals,
σy (or σm) can range from ∼E /8000 for soft metals (such
as Ag, Au, and Al) to E∗/1500 for hard metals, such as
Ni and Ti, and hence, σm is a material-dependent parameter.
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Furthermore, since even pure metals are rate sensitive, the
additional concentration dependence of alloys induces rate
dependence. Thus, the range of values of σm(c) represents
different alloys and their rate dependencies.

For dilute alloys (Al-Mg, Al-Cu, etc.), the extent of
strengthening depends on the nature of the pure metal,
the alloying element, and its concentration [43,52]. Indeed,
σm(c) given by σm(c) = σm(0) + σscn depends on the dis-
location multiplication stress for the pure metal σm(0), and
σs is the stress prefactor for concentration dependence.
For alloys used in experiments, σm(c) is in the range of
∼E∗/800–E∗/100 GPa. Thus, the range of values of σm(c)
represent different alloys and their concentration depen-
dences.

Now, consider other parameters in the dislocation mul-
tiplication mechanism, namely, θV0, and the velocity expo-
nent m. θV0 constitutes a timescale, which, in our approach,
is set to unity (1 s) to match the experimental timescale
[3,4,23,25,27]. θ has an inverse dimension of length. Such a
length scale in plasticity is usually taken to be the mean sepa-
ration between dislocations given by θ ∼ ρ

−1/2
f . In the present

case, ρ f is typically 1012–1014/m2 and θ ∼ 106–107m. Thus,
V0 ∼ 10−6–10−7 m/s.

In the velocity of dislocations V (σ ), both single and groups
of dislocations have been measured for several metals, such as
Cu, Al, Ag, and Zn and a few alloys, such as Cu-Al, Cu-Ge,
etc. (see Fig. 19 of Ref. [40]). The measured mean velocity of
dislocations fits the power-law expression given by Eq. (10)
[40]. For pure metals (such as Cu, Al), m is close to unity,
whereas it is typically ∼20 for the reported alloys. In addition,
m also depends on the nature of metal and the alloying element
as is clear from different values of m for different alloys.
Therefore, m can vary considerably. Thus, m is taken to be
in the range of m = 12–30.

Now, consider the parameters β, f , and δ associated
with storage and recovery mechanisms. A standard way of
estimating the allowed values of these rate constants has
been discussed in a number of our earlier papers [3,19,23–
25,27]. Noting that the extent of plasticity is controlled by
the relative strengths of dislocation multiplication, storage,
and recovery mechanisms, the values of β, f , and δ are
essentially determined by the asymptotic values of ρm and
ρ f . Noting that Eq. (22) for ρG is decoupled from Eqs. (19)–
(21) (due to the absence of a gain term for ρG), we may
drop last term in Eq. (19). Then, assuming steady (asymp-
totic) values of ρm, ρ f , and ρc, it is easy to show that β ∼
1/ρm, f β ∼ 1/ρ f , and δ ∼ 1/

√
ρ f . The magnitudes of the

dislocation densities also depend on the nature of the material,
history of the sample, and the loading conditions. Assuming
ρ f ∼ 1012–1013/m2 and ρm ∼ 1011–1012/m2, we get β =
10−11–10−12 m2/s and f β = 10−11 and δ ∼ 10−9–10−6 m/s
[3,4,23,25,27]. As for the range of f , we use the range of
values where the instability manifest itself, which has been
shown to be f = 0.5–5 (see Appendix B).

Now, consider the rate parameters αm(c), αG(c), and
αc. Of these, αm and αc are used in the AK model
[3,16,17,20,21,23]. However, concentration dependence of αm

was not considered. From Eq. (13), αm(c) = Dc
λ2 c = αm(0)c

[23]. Note that αm(0) is a material-dependent parameter since

both the diffusion constant Dc and the effective attractive
length scale λ depend on the alloy. Following our earlier work,
we take αm(c) to vary from 0.1 to 6.

A similar linear concentration dependence holds for αG(c)
also, i.e., αG(c) = Dc

λ2 c = αG(0)c. However, since solutes dif-
fuse to GNDs in regions of strain gradients, Dc and λ can be
significantly different. This effect is similar to the diffusion
of solutes in the presence of elastic strain gradients that
goes by the name of Gorsky relaxation for small interstitial
atoms, such as hydrogen [53]. In the absence of any quan-
titative information, we have taken αG to be in the range of
10−8–10−3/s, which is the region of instability.

As for αc, the range of αc was shown to be 10−4–1/s for
the AK model [3,16,17,20,21,23]. We use the same range here
also. As for the reactivation timescale λ0, again borrowing
from our earlier work, we take the range to be 10−8–10−3/s
[23].

One important conclusion emerging from the above discus-
sion is that the ranges of the parameters physically represent
different alloys and different loading rates.

APPENDIX B: INSTABILITY DOMAIN
OF PARAMETER VALUES

A standard approach to determine the instability domain of
parameters is to carry out a stability analysis of the relevant
equations, here, Eqs. (19)–(23) and (9). In the present case,
this is not straightforward as in the case of the AK model
since the indentation is carried out under a constant load rate
condition unlike the AK model where the constant strain rate
condition is valid. (Note that, in the constant strain rate, load-
ing a steady-state condition is reached and stability analysis
is carried out in the steady state). In the present case, ε̇eff =
dF
dt
F ∼ 1/t (or, equivalently, ε̇eff = dz

dt
z ), which decreases as

indentation proceeds. Thus, the steady state is never reached.
Therefore, the stability analysis needs to be carried out at each
point along the F -z curve. This turns out to be an involved
exercise even numerically.

An alternate and simpler way to find the instability domain
is to sweep the parameters in the physically allowed range
of values. This, however, presumes prior knowledge of the
approximate instability domain. Fortunately, since most dis-
location mechanisms contributing to the PLC instability are
drawn from the AK model, we are guided by the instability
domain of the AK model. (A note of caution. The inclusion
of dislocation mechanisms related to GNDs [27] can alter
the instability domain). We have swept the parameters in a
broad range of values around the instability domain of the
AK model. The domain of instability of parameters is listed
in Table I. Note the wide range of values for each of the
parameters listed.

APPENDIX C: STRESS-DEPENDENT UNPINNING OF
DISLOCATIONS FROM THE SOLUTE ATMOSPHERE

In general, a solute cloud formed around the core of
dislocations will depend on the concentration in the bulk.
Therefore, the stress required to unpin dislocations depends on
concentration. This needs to be included since concentration-
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dependent unpinning is not included in the AK model
[3,16,17,23].

In the AK model, the pinning and unpinning processes are
accomplished as a two-step transformation process with rate
constants that are independent of concentration. As disloca-
tions progressively acquire solute atoms, they are eventually
immobilized at which point they are considered as immobile
and, therefore, grouped with immobile forest dislocations.
Therefore, the loss rate for ρ̇c is αcρc. This term is the
source term for ρ̇ f Then, these dislocations with the so-
lute cloud can be reactivated. This is represented by λ0ρ f

with a concentration-independent rate constant λ0. In reality,
the unpinning rate should be the function of concentration-
dependent stress. We, therefore, replace λ0ρ f by λ0

σ
σc

ρ f ,
where σc is the critical stress required for unpinning dislo-
cations from the solute atmosphere. Thus, our first job is
to derive an approximate expression for the concentration-
dependent unpinning stress.

Consider a straight dislocation of length l . Let Nc be the
maximum number of sites in a cylindrical core of radius Rc of
the dislocation for solute atoms to aggregate. This is given

by Nc = πR2
c l

Vc
, where Vc = ( 4πb3

3 ) is the volume of a solute
atom. Similarly, let the maximum number of sites available in
an equivalent cylinder in bulk be Nb. Noting that the concen-
tration of solutes in the core of dislocations is always higher
than in the bulk, we may write the number of solute atoms
in the cylindrical core of the dislocation nc = e f nb, where nb

is the number of atoms in an equivalent cylinder in the bulk
and e f is the enrichment factor in the core. Then, nc = e f cNc

and nb = cNb. The total binding energy of nc solute atoms is
Et = e f c(t )NcEb, where Eb is the binding energy per solute
atom. Equating Et with the work performed to unpin a straight
dislocation of length l with a solute cloud of radius Rc, we
have

σbl� = e f c(t )NcEb, (C1)

where � is the displacement that must be accomplished to
unpin the dislocation from the solute cloud. The unpinning
distance is typically � = qRc with q ∼ 2. Using the expres-
sion for Nc, we get the unpinning stress,

σc = e f c(t )

(
3

4b3

)(
R2

c

b�

)
Eb. (C2)

Clearly, σc depends on the nature of the metal, the alloying
element, and the binding energy between solute atoms and
dislocations. Although this expression is approximate, the
linear dependence of σc on concentration is consistent with
Ref. [54]. Recent studies on Al-Mg alloys using atom probe
tomography show that the enrichment factor is 2.5 [45].
Using typical parameter values of Rc = 5b, � = 2Rc, b =
2.85 nm, e f = 2, and Eb = 0.06 eV, we get σc = 20 MPa
per unit concentration. (Note that we use concentration in
atomic percent. However, while comparing with Al-Mg al-
loys, we convert it to weight percent).

Then, the fraction of ρ f unpinned from the solute atmo-
sphere (representing the release of mobile dislocations from
the solute cloud) is given by λ0(σ/σc)ρ f . This is a loss term
for ρ̇ f and a gain term for ρ̇m.
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αm(0)cρm − αG(0)cρG. The full set of equations can be easily
solved but at the cost of complicating the model equations and,
hence, not considered here.

[48] Unlike the present problem, both the F -ze curve and the exper-
imentally measured area were given for the two hardness data.
This information was used to fit the predicted hardness in our
ISE model [27].

[49] A simple argument is adequate to show that pile-up or sink-in
situations tend to shift the multiplication threshold σm(c) to
smaller or larger values, respectively. To see this, consider
σ/σm(c) = F (ze)/σm(c)A(zc ). Noting that the contact area is
larger for the pile-up case compared to the ideal case, σm(c)
corresponding to the pile-up case should be smaller than the
ideal case for the same load. The opposite holds for the sink-in
case. This amounts to just a change in the σm(c) value and,
hence, the conclusion. Furthermore, since the range of σm(c)
is large, the changed values remain inside the range of values
of σm(c), the predicted generic features for the no pile-up or
sink-in case remain unaffected.

[50] I. J. Spary, A. J. Bushby, and N. M. Jennett, Philos. Mag. 86,
5581 (2006).

[51] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Ap-
plications to Physics, Biology, Chemistry, and Engineering
(Westview Press, Boulder, CO, 2001).

[52] R. A. Ayres, Metall. Trans. A 10, 41 (1979).
[53] A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crys-

talline Solids, Materials Science Series (Academic, New York,
1972).

[54] W. A. Curtin, D. L. Olmsted, and L. G. Hector, Jr., Nature
Mater. 5, 875 (2006).

064102-16

https://doi.org/10.1103/PhysRevB.97.104103
https://doi.org/10.1103/PhysRevB.97.104103
https://doi.org/10.1103/PhysRevB.97.104103
https://doi.org/10.1103/PhysRevB.97.104103
https://doi.org/10.1016/0001-6160(72)90165-4
https://doi.org/10.1016/0001-6160(72)90165-4
https://doi.org/10.1016/0001-6160(72)90165-4
https://doi.org/10.1016/0001-6160(72)90165-4
https://doi.org/10.1103/PhysRevB.65.134109
https://doi.org/10.1103/PhysRevB.65.134109
https://doi.org/10.1103/PhysRevB.65.134109
https://doi.org/10.1103/PhysRevB.65.134109
https://doi.org/10.1016/S1359-6454(03)00114-9
https://doi.org/10.1016/S1359-6454(03)00114-9
https://doi.org/10.1016/S1359-6454(03)00114-9
https://doi.org/10.1016/S1359-6454(03)00114-9
https://doi.org/10.1016/S1359-6454(98)00278-X
https://doi.org/10.1016/S1359-6454(98)00278-X
https://doi.org/10.1016/S1359-6454(98)00278-X
https://doi.org/10.1016/S1359-6454(98)00278-X
https://doi.org/10.1016/j.scriptamat.2008.06.003
https://doi.org/10.1016/j.scriptamat.2008.06.003
https://doi.org/10.1016/j.scriptamat.2008.06.003
https://doi.org/10.1016/j.scriptamat.2008.06.003
https://doi.org/10.1557/jmr.2009.0131
https://doi.org/10.1557/jmr.2009.0131
https://doi.org/10.1557/jmr.2009.0131
https://doi.org/10.1557/jmr.2009.0131
https://doi.org/10.1016/j.actamat.2008.09.039
https://doi.org/10.1016/j.actamat.2008.09.039
https://doi.org/10.1016/j.actamat.2008.09.039
https://doi.org/10.1016/j.actamat.2008.09.039
https://doi.org/10.1103/PhysRevE.60.5455
https://doi.org/10.1103/PhysRevE.60.5455
https://doi.org/10.1103/PhysRevE.60.5455
https://doi.org/10.1103/PhysRevE.60.5455
https://doi.org/10.1557/jmr.2004.19.1.3
https://doi.org/10.1557/jmr.2004.19.1.3
https://doi.org/10.1557/jmr.2004.19.1.3
https://doi.org/10.1557/jmr.2004.19.1.3
https://doi.org/10.1016/j.ijsolstr.2008.10.032
https://doi.org/10.1016/j.ijsolstr.2008.10.032
https://doi.org/10.1016/j.ijsolstr.2008.10.032
https://doi.org/10.1016/j.ijsolstr.2008.10.032
https://doi.org/10.1002/pssb.19700410221
https://doi.org/10.1002/pssb.19700410221
https://doi.org/10.1002/pssb.19700410221
https://doi.org/10.1002/pssb.19700410221
https://doi.org/10.1007/s11661-006-0142-7
https://doi.org/10.1007/s11661-006-0142-7
https://doi.org/10.1007/s11661-006-0142-7
https://doi.org/10.1007/s11661-006-0142-7
https://doi.org/10.1016/j.actamat.2014.12.028
https://doi.org/10.1016/j.actamat.2014.12.028
https://doi.org/10.1016/j.actamat.2014.12.028
https://doi.org/10.1016/j.actamat.2014.12.028
https://doi.org/10.1016/S0022-5096(97)00086-0
https://doi.org/10.1016/S0022-5096(97)00086-0
https://doi.org/10.1016/S0022-5096(97)00086-0
https://doi.org/10.1016/S0022-5096(97)00086-0
https://doi.org/10.1080/14786430600854988
https://doi.org/10.1080/14786430600854988
https://doi.org/10.1080/14786430600854988
https://doi.org/10.1080/14786430600854988
https://doi.org/10.1007/BF02686404
https://doi.org/10.1007/BF02686404
https://doi.org/10.1007/BF02686404
https://doi.org/10.1007/BF02686404
https://doi.org/10.1038/nmat1765
https://doi.org/10.1038/nmat1765
https://doi.org/10.1038/nmat1765
https://doi.org/10.1038/nmat1765

