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Steady-state superconductivity in electronic materials with repulsive interactions
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We study the effect of laser driving on a minimal model for a hexagonal two-dimensional material with
broken inversion symmetry. Through the application of circularly polarized light and coupling to a thermal
free electron bath, the system is driven into a nonequilibrium steady state with asymmetric, nonthermal carrier
populations in the two valleys. We show that, in this steady state, interband superconducting correlations between
electrons can develop independent of the sign of the electronic interactions. We discuss how our results apply,
for example, to transition metal dichalcogenides. This work opens the door to technological applications of
superconductivity in a range of materials that were hitherto precluded from it.
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The use of light to manipulate quantum matter, or even
induce phases not present in a given system in equilibrium,
is a long-standing area of research that has received renewed
attention due to recent theoretical and experimental advances.
Notable examples include ultrafast pump-probe spectroscopy
[1] and periodic Floquet driving [2–4]. The investigation of
superconductivity in particular has often been at the forefront
of these efforts [5], beginning in the 1960s with the Wyatt–
Dayem effect: experiments on thin metallic films showed
that irradiation with subgap microwaves gives rise to an
increase in the superconducting gap, the critical current, and
the critical temperature [6,7]. Eliashberg [8] showed that
these effects could be attributed to a redistribution of quasi-
particles in response to the driving. Subsequent experiments
showed that this mechanism could in fact lead to super-
conducting gaps considerably in excess of their equilibrium
values [9–12]. In recent years, superconducting order has
been shown to develop following femtosecond laser pulses
in the cuprates [13–16] and in K3C60 [17] (for an overview,
see Ref. [18]).

Photoinduced superconductivity in undoped semiconduc-
tors, in which the phenomenon is absent in equilibrium, has
been proposed for intraband [20–24] and interband [25] pair-
ing; in the former, the superconducting pairing is unstable, and
in the latter a delicate fine-tuning and assumptions about the
electronic dispersion are needed. In this Rapid Communica-
tion we propose a robust mechanism for interband supercon-
ductivity which leads to nonzero superconducting correlations
without such restrictive requirements, and irrespective of the
sign of the interactions between the constituent particles. The
mechanism relies only on a few simple ingredients: (i) a band
structure with two valleys that may be driven independently;
(ii) an interband pairing interaction; and (iii) some form of
dissipation to reach a nonequilibrium steady state (Fig. 1).

These ingredients are naturally realized, for example,
in systems with a gapped, graphenelike dispersion [26],
such as monolayer group-VI transition metal dichalco-
genides (TMDs) in the 2H phase. These materials host two

inequivalent but degenerate (due to time-reversal symmetry)
valleys at opposite edges of their hexagonal Brillouin zone
(BZ) [27]. It was shown experimentally that the carrier pop-
ulations in the two valleys can be tuned individually using
circularly polarized light [28–30], an effect known as circular
dichroism. We argue that photoinduced superconductivity is
within reach of state of the art experiments on TMDs and
related materials, irrespective of whether it is present in
equilibrium. This provides the enticing opportunity to realize
superconductivity in an altogether new setting.
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FIG. 1. Schematic illustration of the pairing mechanism. The
valley K+ is driven with σ+ polarized light of frequency ω0 � δ, the
band gap, leading to a nonthermal population of the single-particle
states near the center of the valley. By virtue of broken inversion
symmetry, the valley K− is left unaffected by the laser. This induces
a nontrivial population difference between the upper and lower bands
at ±k. The corresponding occupations of the two valleys, n(E ),
are illustrated qualitatively on their respective sides of the figure
[19]. Our results show that one of the two pairing channels, �+ or
�−, represented symbolically by the solid lines connecting the open
circles, is always nonvanishing for sufficiently large driving �.
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FIG. 2. The asymmetry, quantified by η(k), between absorption
of light with circular polarization σ+ (η = 1) and σ− (η = −1). The
valleys K±, centered on K± = ± 4π

3
√

3
x, couple only to σ± polariza-

tions, respectively. The plot is calculated for hexagonal materials
described by the Hamiltonian (1) (see Supplemental Material [32]).

Model. We focus on the relevant nearest-neighbor tight-
binding model on a hexagonal lattice with Hamiltonian

H (k) =
(

δ/2 h(k)

h∗(k) −δ/2

)
, (1)

where h(k) = −t
∑

i eik·di , the vectors d1,2 = a
2 y ±

√
3a
2 x,

d3 = −ay connect nearest neighbors [26], and δ > 0 rep-
resents a staggered chemical potential. We henceforth set
the distance between neighboring atoms a = 1. The band
structure Ekα corresponding to (1) has two bands (α = 1, 2,
valence and conduction) separated by a gap δ. The familiar
Dirac cones of graphene, centered at K± = ± 4π

3
√

3
x, become

gapped valleys in the presence of the staggered chemical po-
tential. At the Dirac points K±, there is an exact selection rule
for optical band-edge transitions: circularly polarized light
with polarization σ± couples only to transitions within the K±
valley [31]. Hence, each valley can be driven independently.

This asymmetry between absorption of σ± polarizations is
quantified by the degree of circular polarization [30,31],

η(k) = |P21
+ (k)|2 − |P21

− (k)|2
|P21+ (k)|2 + |P21− (k)|2 , (2)

where P21
± (k) = 〈ψ2k|p±|ψ1k〉 and p± = px ± ipy describe

optical transitions between the two bands. The asymmetry,
calculated using (1), is plotted for various staggered chemical
potentials over the first BZ in Fig. 2. It is exact (η = ±1) at
K± [31], and spreads towards the center of the BZ for δ � t .
The driving strength is parametrized in terms of the Rabi
frequency �k = (eE0/2mω0)P21

± (k). E0, e, and m describe
the strength of the electric field and the electronic charge and
mass, respectively.

We study two limiting cases: (i) when relaxation occurs
exclusively through tunnel coupling to a three-dimensional
substrate, and (ii) when fast intraband relaxation establishes a
local equilibrium in the upper and lower bands separately. The
latter case is important for its closer connection to experiment,
but the derivation of the results uses a more phenomenological
approach that is easier to follow after exposure to the results of
the former. Hence, we focus first on case (i) where we are able
to confirm our results using two separate methods. The details
of case (ii) are presented in the Supplemental Material [32].

We assume a simplified driving pattern as a minimal model
of σ+ polarized driving in which �k = � in the regions
of the first BZ where η(k) > 0 in Fig. 2(c), and �k = 0
where η(k) < 0. These two regions will be referred to as

k ∈ K±, respectively. Although the Rabi frequency in any real
material depends continuously on momentum, in practice this
dependence may be neglected since the dominant contribution
to the superconducting gap equation comes from the vicinity
of the surface Sω0 = {k : Ek2 − Ek1 = ω0} where the laser is
resonant.

Our complete model Hamiltonian is composed of an in-
teracting system (S), a bath (B), and a system–bath (S–B)
interaction H = HS + Hint + HS–B + HB, where

HS =
∑

λ

Eλc†
λcλ +

∑
k

�k(eiω0t c†
k2ck1 + e−iω0t c†

k1ck2), (3)

Hint = 1

N

∑
k,k′

Vkk′c†
k2c†

−k1c−k′1ck′2, (4)

HS–B =
∑
λ,n

tλ(c†
λaλn + a†

λncλ), (5)

HB =
∑
λ,n

ωλna†
λnaλn. (6)

The index λ = (k, α) labels the noninteracting system modes,
and N is the number of unit cells. Both the system and the
bath are composed of spinless fermions: {cλ, c†

λ′ } = δλλ′ and
{aλn, a†

λ′m} = δλλ′δnm [33]. The system is driven by a laser of
frequency ω0, and interacts via the scattering of interband
pairs [34]. Coupling the system to a bath with which it can
exchange both energy and particles brings our system toward
a unique nonequilibrium steady state [35].

Born–Markov approximation. The simplest possible anal-
ysis of our time-dependent Hamiltonian can be performed
by moving into the frame rotating at ω0 and applying the
Born–Markov approximation. In this approach, we assume
that the baths have a continuous density of states νλ(ε), and
that they interact weakly with the system: |tλ|2νλ 	 δ. The
dynamics of the system S, described by its reduced density
matrix ρS = TrB ρ, is then determined approximately [36] by
the master equation [37]

dρS

dt
= −i[HS, ρS] +

∑
λ

�λ{nF(ξλ)D[c†
λ]ρS

+ [1 − nF(ξλ)]D[cλ]ρS}, (7)

where nF(ξ ) = (1 + eβξ )−1 is the Fermi–Dirac distribution,
ξλ = Eλ − μ, and the rates �λ = 2π |tλ|2νλ(ξλ) are given by
Fermi’s golden rule. The Lindbladian dissipators D are de-
fined as D[X ]ρ = (2XρX † − X †Xρ − ρX †X )/2. We have
neglected any Lamb shift corrections to (7) which renormalize
the band structure Eλ [38]. We will henceforth assume that
both bands are characterized by momentum-independent rates
�λ → �α , α = 1, 2.

After making a mean-field approximation for the supercon-
ducting order parameter in (4), we can write down the equa-
tions of motion for the populations and correlators, nαβ

k (t ) =
〈c†

kαckβ
〉 and sαβ

k (t ) = 〈c†
kαc†

−kβ〉, and solve for the steady

state in the long-time limit (typically, t � �−1
1 , �−1

2 ). One
may then substitute the steady-state value for the anomalous
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correlator s21
k into the self-consistency condition

�k = 1

N

∑
k′

Vkk′ 〈c−k′1ck′2〉. (8)

We make the following simplifying assumption about the scat-
tering amplitudes Vkk′ : there exist only two relevant average
scattering amplitudes V and V ′ = veiφ which, respectively,
correspond to intra- (K± → K±) and intervalley (K∓ → K±)
scattering events. This in turn implies that there are only two
momentum components of the gap, �±, corresponding to
momenta in the vicinity of valley K±. These two amplitudes
will satisfy |V | � |V ′|; since the two valleys are separated by
a large momentum transfer, intervalley scattering events are
strongly suppressed with respect to intravalley events [indeed,
one may show that V ′ = V

∑
d e2iK·d/3 = 0 identically using

the eigenstates of H (k) in (1) for scattering between the valley
centers]. Using the Born–Markov equations of motion derived
from (7), we obtain that

�̄± = −�̄±
V

N

∑
k∈K±

Ek

E2
k + �2

(
1 − n22

k − n11
−k

)

− �̄∓
ve±iφ

N

∑
k∈K∓

Ek

E2
k + �2

(
1 − n22

k − n11
−k

)
, (9)

which is to be contrasted with the standard BCS self-
consistency condition [39]; the equilibrium populations have
been replaced by their nonequilibrium counterparts. We have
defined Ek = ξk1 + ξk2, εk = ξk2 − ξk1 − ω0, and � = �1 +
�2. Note that (9) reduces to the standard self-consistency
condition when � → 0+, as it must.

In writing down (9), we have made the assumption that
the damping � is small. If � is increased in magnitude,
the gap parameters acquire an oscillatory time dependence,
i.e., a modification of the effective system chemical potential
[40,41]. If � is made sufficiently large, superconducting order
is eventually destroyed [42]. Driving the valley K+ with cir-
cularly polarized light σ+, we find the following steady-state
populations for momenta k ∈ K+ and �± = 0:

n22
−k = n2

F, n22
k = n2

F + �̃2
k

(
n1

F/γ2 + n2
F/γ1

)
1 + �̃2

k(1/γ2 + 1/γ1)
, (10)

n11
−k = n1

F, n11
k = n1

F + �̃2
k

(
n1

F/γ2 + n2
F/γ1

)
1 + �̃2

k(1/γ2 + 1/γ1)
, (11)

where nα
F ≡ nF(ξkα ), �̃2

k ≡ �2/(ε2
k + �2), and γα = �α/�.

That is, the valley K− is unaffected by the laser drive, while
the populations in the valley K+ are nonthermal. We note
that adding an intervalley scattering term to the equations
of motion (7), in which intervalley scattering events occur
with rate �s, does not significantly alter the nonequilibrium
populations as long as �s 	 �, as shown in the Supplemental
Material [32].

The nonequilibrium gap equation (9) may be written in
matrix form as(

�+
�−

)
=

(
V F+ veiφF−

ve−iφF+ V F−

)(
�+
�−

)
. (12)

Including further scattering amplitudes simply increases the
dimensionality of this matrix. To zeroth order in |V ′/V |,

the onset of superconductivity is determined solely by the
behavior of the two functions F± with increasing driving
strength

F± ≡ − 1

N

∑
k∈K±

Ek

E2
k + �2

(
1 − n22

k − n11
−k

)
. (13)

The induced population differences 1 − n22
k − n11

−k for k ∈ K+
and k ∈ K− have opposite sign, which is inherited by the
functions F+ and F−. Equation (13) justifies our focus on
interband pairing. In equilibrium, at temperatures T 	 δ, the
population difference 1 − n22

k − n11
−k approximately vanishes.

Therefore the occupations, nαα
k , need only be modified slightly

by driving in order to change the sign of the nonequilibrium
population difference, allowing for the possibility of super-
conductivity in the presence of repulsive interactions [43].
Further, the electronic bands satisfy the resonance condition
Ek � 0. Substituting in the steady-state values of the popula-
tions and defining γ̄ −1 = γ −1

1 + γ −1
2 , we arrive at

F+ = 1

2γ2

−μ

μ2 + (�/2)2

∫
dE ρ(E )

�2

ε(E )2 + �2/γ̄ + �2
,

(14)
F− = −γ2

γ1
F+, (15)

for temperatures T 	 δ. The domain of integration extends
over positive energies only. The density of states per unit cell
ρ(E ) for hexagonal materials described by Eq. (1) can be eval-
uated exactly in terms of the corresponding gapless density of
states ρ0: ρ(E ) = (E/Ẽ )ρ0(Ẽ )/4, where Ẽ =

√
E2 − (δ/2)2

[44] (the factor of 4 removes spin and valley degeneracy).
Hereafter we will simplify to the symmetric choice γ1 = γ2,
in which case we find that F− = −F+. In the presence of a
finite intervalley coupling v = |V ′|, the equation determining
the onset of superconductivity reads

1 = (V 2 − v2)F 2
+ . (16)

This expression represents our central result: (16) is insen-
sitive to the sign of V , and therefore always has a solution
as long as the driving is sufficiently strong. This result is
illustrated by the phase diagram in Fig. 3(a). The two branches
with opposite signs indicate that a solution is possible for both
attractive and repulsive V [45]. For nonzero V ′, the critical |V |
does not tend to zero in the limit of large driving strengths, but
instead saturates at a value Vc = ±|V ′|. Evidently, then, it is
desirable for |V ′| to be as small as possible, which, as we have
discussed, is automatically the case in real materials.

Ideal parameters. The benefit of the simplified Born–
Markov approach is that we are able to evaluate expressions
explicitly, which allows us to make concrete statements about
optimizing the system parameters in order to minimize Vc. It is
evident from (14) that the chemical potential should be chosen
to be as close to ±�/2 as possible. Assuming this optimal
setup μ = −�/2, F± in (14) evaluates approximately to

F± � ± Ac

36t

δ

t

(�/�)2√
1 + 4(�/�)2

, (17)

for t � δ � �,�, neglecting subleading corrections. Ac =
3
√

3/2 is the area of one unit cell. This expression suggests
that one should (i) maximize the ratio δ/t , which has the
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FIG. 3. (a) Critical coupling Vc, in units of the hopping integral t , as a function of driving strength, parametrized by the Rabi frequency �.
There are two branches: one positive and one negative, which means that superconductivity may develop irrespective of the sign of interactions
V . For sufficiently large driving (with respect to the damping �), the critical coupling saturates to |V ′|, the intervalley scattering matrix element.
V ′/t = 0, 1/2, 1 correspond to the solid, dashed, and dotted lines, respectively. If V ′ = 0 (the value used for the colormap), then only one of
�+ or �− is nonzero. A band gap of δ/t = 5, damping rates �1 = �2 = 10−3t , and chemical potential μ = −�/2 were used for the plot.
(b) The equivalent plot for the case of fast intraband relaxation with rate �12. The population difference 1 − n22

k − n11
−k is now controlled by

μ2, an effective chemical potential which determines the nonequilbrium populations of the K+ valley. The parameters used for the plot are
δ/t = 1/4, �12 = 10−3t , and μ = −�12/2, implying that μ2/t � 0.2 corresponds to 2.6% polarization of the K+ valley.

additional benefit of increasing the validity of our assumption
about the driving pattern (see Fig. 2); and (ii) minimize �

so that the physics of interest occurs at a lower laser power.
It should be noted, however, that the magnitude of the gap
also depends on � (through �/� ∼ √

�/� for � � �) so a
smaller damping rate also corresponds to a smaller supercon-
ducting gap.

Fast intraband relaxation. When the interband relaxation
rate is slow with respect to the intraband rate �12, the upper
and lower bands (in the valley K+) will separately equilibrate
to quasithermal distributions with effective chemical poten-
tials μ2 and μ1, respectively. These are determined by the
driving strength in addition to the intraband relaxation rate
and particle number conservation. (The gap equations for this
regime are presented in the Supplemental Material [32].) The
phase diagram for this limiting case is shown in Fig. 3(b), and
is to be contrasted with its counterpart, Fig. 3(a). Importantly,
the two branches for Vc with opposite sign persist in this
limit. Quantitatively, however, the critical coupling strengths
are significantly smaller by virtue of a larger induced pop-
ulation difference (for the expected experimentally relevant
parameter regimes). Therefore, this regime where interband
relaxation is slower than intraband relaxation, which is closer

to the situation in real experiments, coincides with the case
where superconductivity with repulsive interactions is most
favorable.

Outlook. We have shown that two-dimensional materials
exhibiting circular dichroism can be driven to a superconduct-
ing instability due to interband pairing, regardless of the sign
of electronic interactions. We demonstrated this mechanism
for two limiting cases of dissipation. We also showed in the
Supplemental Material [32] that qualitatively similar results
are obtained using a more complete Keldysh description of the
problem. Our results are of direct relevance to the monolayer
transition metal dichalcogenides, which satisfy the criteria
outlined in this Rapid Communication.

This opens the possibility of turning a range of insulating
materials into superconductors at the flip of a switch.
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