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We consider a fluctuating superconductor in the vicinity of the transition temperature, Tc. The fluctuation
shear viscosity is calculated. In two dimensions, the leading correction to viscosity is negative and scales as
δη(T ) ∝ ln(T − Tc ). Critical hydrodynamics of the fluctuating superconductor involves two fluids: a fluid of
fluctuating pairs and a quasiparticle fluid of single-electron excitations. The pair viscosity (Aslamazov-Larkin)
term is shown to be zero. The (density of states) correction to viscosity of single-electron excitations is negative,
which is due to fluctuating pairing that results in a reduction of electron density. Scattering of electrons off
of the fluctuations gives rise to an enhanced quasiparticle scattering and another (Maki-Thomson) negative
correction to viscosity. Our results suggest that fluctuating superconductors provide a promising platform to
investigate low-viscosity electronic media and may potentially host fermionic/electronic turbulence. Some
experimental probes of two-fluid critical hydrodynamics are proposed such as time-of-flight measurement
of turbulent energy cascades in critical cold atom superfluids and magnetic dynamos in three-dimensional
fluctuating superconductors.

DOI: 10.1103/PhysRevB.100.060501

Motion of classical fluids and astrophysical gases and
plasmas is usually described by hydrodynamics. The central
equation of hydrodynamics is the Navier-Stokes equation,
which represents a momentum conservation law. In weakly
interacting electronic systems, disorder is the dominant mech-
anism of momentum relaxation. It strongly breaks the trans-
lational invariance, and the hydrodynamic description, that
hinges on the conservation of momentum, is not applicable. In
clean and strongly correlated materials, where the dominant
relaxation mechanism is due to interactions, the hydrody-
namic description of the electron fluid becomes relevant.
This hydrodynamic transport regime has been the subject of
much research and interest recently [1–8]. In particular, hy-
drodynamic electron flows have been reported in experimental
studies of graphene [9,10], Weyl semimetals [11–13], and
other materials [14,15].

Viscosity is a central quantity in hydrodynamic theories.
It determines the Reynolds number of the flow, which in
turn determines its qualitative type—laminar or turbulent. The
latter turbulent regime is rich with a variety of complicated
nonlinear phenomena, such as energy cascades [16,17]. Tur-
bulence requires large Reynolds numbers and a low kinematic
viscosity. Electron liquids considered so far all have relatively
high viscosity and are far from turbulence regime. On the
theory side, a bound on shear viscosity to entropy ratio has
been conjectured [18], which would limit from below viscos-
ity values possible in electron fluids.

Here we point out a class of material—fluctuating super-
conductors [19]—where it appears possible to achieve a small
shear viscosity and that may be promising candidates for tur-
bulent electronic media. Indeed, a charged superfluid has zero
shear viscosity and infinite conductivity. The transition into a
superconductor is usually second order and a critical theory
applies in its vicinity, where conductivity [20–33], thermal

conductivity [34,35], Nernst coefficient [35–37], diamagnetic
susceptibility [38], etc., exhibit a singular critical behavior.
This Rapid Communication calculates critical shear viscosity
in a clean, fluctuating two-dimensional superconductor in
the vicinity of the superconducting transition temperature,
Tc. It is shown that the shear viscosity is suppressed by
fluctuations.

It is usually not possible to calculate exactly the critical
behavior due to fluctuations all the way from high temper-
atures down to Tc (except in effectively four-dimensional
theories, where the parquet/renormalization group technique
is asymptotically exact [38]). However, the Aslamazov-Larkin
theory of Gaussian superconducting fluctuations has a wide
regime of formal applicability and has been shown to be ex-
tremely useful in quantitatively explaining experimental data
in a variety of fluctuating superconductors. Qualitatively, the
Aslamazov-Larkin theory is a two-fluid model involving fluc-
tuating Cooper pairs and electron excitations. The fluctuating
Cooper pairs are not condensed and have a finite lifetime,
but behave much like independent carriers, albeit with a com-
posite structure that is important in correctly evaluating their
response to external fields. The Aslamazov-Larkin theory [19]
involves three key effects in transport: (1) A negative correc-
tion to conductivity due to the reduction of electron density
of states (DOS) [39], which occurs because some electrons
are paired. (2) A positive Aslamazov-Larkin (AL) correction
[20] due to the direct conductivity of fluctuating Cooper pairs.
Since both their density and lifetime diverge at the transition,
this correction has a double singularity and usually dominates
transport. (3) The third, usually less singular correction is due
to the scattering of electrons off of the fluctuating pairs—the
Maki-Thomson (MT) correction [21]. Its sign can be either
positive or negative. Fluctuation viscosity can be calculated in
a similar way, but the hierarchy of diagrams is different from
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conductivity, as shown below. In two dimensions, they all
have the same type of singular behavior [they all contain the
factor ln(T − Tc); cf. Ref. [27]], but the AL viscosity diagram
vanishes in the appropriate limit.

Shear viscosity in a fluid moving with an inhomogeneous
velocity is a force per unit area (per unit length in two
dimensions) per velocity gradient acting between two fluid
elements experiencing the velocity gradient. There are two
kinds of terms that contribute to viscosity: scatterings at the
boundary between the moving layers that slow down the faster
moving ones and drag forces that occur in the presence of
long-range interactions. We will consider only short-range
interactions and hence the drag viscosity is absent in what
follows. The Kubo formula for viscosity η has been derived
in Refs. [40–42] and reads

KR(ω) = −i
∫ +∞

−∞
dt

∫
dd r eiωt�(t ) 〈[T̂xy(r, t ), T̂xy(0, 0)]〉 ,

η = lim
ω→0

[
1

−iω
KR(ω)

]
. (1)

Here, T̂αβ is the stress-energy tensor operator.
The stress tensor is derived from the continuity relation

∂t ĵα = −∂β T̂αβ , where ĵα is the α’s component of the mo-
mentum density operator, α labels spatial axes, and ∂α is the
corresponding derivative. We will consider a clean, interacting
electron liquid with the standard Hamiltonian as follows:

Ĥ = 1

2m

∫
r
∂α	̂†

σ (r)∂α	̂σ (r) + 1

2

∫
r,r′

n̂(r)V (r − r′)n̂(r′),

(2)

where 	̂†
σ (r) and 	̂σ (r) are electron field operators

creating/destroying electrons with spin σ in point r, and
n̂(r) = 	̂†

σ (r)	̂σ (r) is the electron density in point r. The
interaction will be assumed local attraction V (r) = −V0δ(r),
with the appropriate cut-offs used as standard in the BCS the-
ory. From the Heisenberg equations of motion for the current,
we find that the local interactions do not contribute to the
off-diagonal component of the tensor and its noninteracting
form [43] can be used:

T̂αβ = 1

2m
(∂α	̂†

σ ∂β	̂σ +∂β	̂†
σ ∂α	̂σ ). (3)

Here α and β are two arbitrary but different spatial indices.
We will denote the corresponding “double current” vertices in
the diagrams for viscosity by two short wavy lines.

The viscosity of a Fermi liquid was first discussed qualita-
tively by Pomeranchuk in 1950 [44], who argued that it should
scale as η ∝ T −2 in three-dimensional metals. This result was
later derived more rigorously by Abrikosov and Khalatnikov
[45,46], who used kinetic equation methods. The simplest way
to reproduce this behavior is to consider the “bubble diagram”
in Fig. 1(a)—the analog to Drude diagram for viscosity—with
the solid lines representing the Matsubara Green’s function,
G−1(εn, p) = iεn − ξp + i sgn εn/[2τFL(εn)] with εn = (2n +
1)πT being the fermion Matsubara frequencies, ξp = p2

2m −
EF is the electron dispersion relative to the Fermi energy,
and τFL(εn) is the momentum relaxation time. Importantly,
here and in what follows, we will assume no disorder and so

FIG. 1. These diagrams define the main contributions to viscos-
ity discussed and calculated in the main text. (a) This “Drude-like
diagram” defines viscosity of a Fermi liquid with short-range inter-
actions. The interactions give rise to a finite relaxation rate encoded
in the Green’s functions (the solid lines). The short double wavy
lines correspond to the viscosity vertices px py/m. (b) The long wavy
line is the superconducting fluctuation propagator [see Eq. (5)]. It
diverges at the transition point for Q = 0. (c) The Aslamazov-Larkin
(AL) diagram for viscosity, which corresponds to the viscosity of
the fluid of fluctuating pairs. (d) The Maki-Thomson (MT) diagram
for viscosity, which corresponds to scattering of electrons off of the
fluctuating pairs. (e) and (f) The density of states (DOS) diagrams
for viscosity, which describe the deficit of single-electron excitations
contributing to η, because some electrons participate in fluctuating
pairing.

relaxation is entirely due to interactions. In 3D, τ−1
3DFL ∝ T 2

and in 2D, τ−1
2DFL ∝ T 2 ln(1/T ). A calculation of the naïve

“Drude viscosity diagram” reproduces the Pomeranchuk-
Abrikosov-Khalatnikov scaling

ηFL(ω) ∼ E2
F ντFL

1 − iωτFL
, (4)

where ν = m/π h̄2 is the density of states at the Fermi surface,
m is the electron effective mass, and ω is the external fre-
quency. Note that we have ignored the vertex corrections and
also nonlocal viscosity vertices due to nonlocal interactions.
The expression of the DC viscosity is proportional to the
momentum relaxation time and it reproduces Pomeranchuk’s
scaling [44]. At T = 0, the DC viscosity formally diverges.
However, in this limit as well as in a theory with vanishing
interactions, the result depends on the order of limits τFL →
∞ and ω → 0, which is dictated by the timescales in a
particular experiment.

Note that a similar behavior of viscosity occurs in the φ4

theory, described by the Lagrangian −L = (∂φ)2 + m2φ2 +
λφ4, which was considered by Jeon and Yaffe [47], who found
ηφ4 ∝ T 3/λ2. The viscosity is mass independent in the leading
order and diverges fast as λ → 0. However, just like in the
Fermi liquid case, for the noninteracting field theory with λ =
0, a proper order of limits should be used.
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These results [47] may seem disconcerting, as the pertur-
bative superconducting fluctuation theory is a Gaussian |φ|2
theory [19] (with the complex field φ playing the role of
pair fluctuations, whose “mass” is the proximity to the tran-
sition), which neglects interactions between the fluctuating
pairs (i.e., λ = 0). However, the theory is not Lorentz invariant
and the proper fluctuation propagator [see, Eq. (5) below]
includes relaxation encoded in its frequency dependence,
which is due to the presence of the second fluid—the single
electron excitations. Hence, it is a different effective theory
from Ref. [47]. Furthermore, this effective (Ginzburg-Landau)
theory has electrons integrated out, which is not appropriate
if the flow gradients “resolve” the lengthscales smaller than
the coherence length (i.e., the pair size). We will assume
such “small-scale” regime and calculate viscosity using the
microscopic Aslamazov-Larkin theory.

The diagrams for the three processes are presented in
Figs. 1(c)–1(f). It should be noted that the theory of fluc-
tuations in clean superconductors is highly nontrivial [26].
First, there are several regimes considered in the literature,
which depend on the hierarchy of parameters, Tc, ω, the
cyclotron frequency in the presence of a field, and the disorder
scattering time τimp. The dirty limit Tcτimp 	 1 is the simplest,
because the Green’s function blocks in all three diagrams are
local, although one has to be careful with including Cooperon
modes and treating quantum interference singularities. This
limit is irrelevant to our problem. The opposite ultraclean
limit, where the relaxation time is set to infinity [i.e., the
Green’s functions are taken to be G−1

0 (εn, p) = iεn − ξp] is
the most cumbersome, as it requires regularizations without
which it contains pathological results, as discussed in the
book of Larkin and Varlamov [19]. Namely, the three Green’s
function blocks in the AL diagram are a nonanalytic function
of the frequencies in this regime, which presents challenges
in using the Matsubara technique. Reference [23] found that
there is an exact cancellation of the MT and DOS terms
and only the AL diagram survives. This issue was recently
critically revisited by Stepanov and Skvortsov [26], who used
the Keldysh method to circumvent difficulties with analytical
continuation. For the sake of completeness, we have presented
the calculation of AL viscosity [48] in the ultraclean limit and
encountered similar issues in the Matsubara technique.

However, we argue that this ultraclean limit is not mean-
ingful and the nonanalytic structure of the theory probably
reflects inconsistencies in the diagrammatic expansion. In-
deed, even in the absence of disorder, interactions (which are
necessarily present in a superconductor) give rise to momen-
tum relaxation of Fermi liquid quasiparticles. Hence, there is
always a finite relaxation near Tc that must be included in
the Green’s function. Note that the analog of the dirty limit
does not exist in this two-fluid fluctuation hydrodynamics,
because τFL(Tc)Tc 
 1 as long as the Fermi liquid behavior
holds. Hence, the Green’s function blocks are still nonlocal.
However, we find that inclusion of a finite relaxation rate, no
matter how small, straightforwardly regularizes the theory and
provides consistent results for all three processes. The details
of the calculations are provided in the Supplemental Material
[48]. Below we briefly outline the calculation.

The DOS diagram [see Figs. 1(e) and 1(f)] has two key
elements: (i) First, the fluctuation propagator [the long wavy

line defined in Fig. 1(b)],

L(Q,�k ) = −1

ν

1

ξ 2Q2 + π
8Tc

|�k| + (T − Tc)/Tc
(5)

[with ξ =
√

7ζ (3)
32π2 vF /Tc and ζ (3) ≈ 1.202] and (ii) second, the

four–Green’s function block:

BDOS(Q, q) = T
∑
εn

∫
p
χ2

p G2
pGQ−p(Gp+q + Gp−q), (6)

where we introduced for brevity the three-component mo-
menta frequency: p = (p, εn), Q = (Q,�k ), and q = (0, ωm),
with the latter representing the external AC frequency “run-
ning” through the Kubo formula. The function χp = px py/m
represents the viscosity vertex (cf., the current vertex, which is
the velocity v = p/m). Here and below, the shorthand notation∫

p . . . ≡ ∫ d2 p
(2π )2 . . . is used for brevity.

The corresponding Kubo viscosity kernel is

KDOS(ωm) = 2T
∑
�k

∫
Q

BDOS(Q; �k, ωm)L(Q,�k ). (7)

The proper analytic continuation ωm → −iω and the limit
ω → 0, gives the DC viscosity [Eq. (1)]. The analytical
structure of BDOS(Q; �k, ωm) is complicated. However, since
we are looking for a singular contribution to viscosity, every
power of � and q coming from the block would remove
the logarithmic singularity originating from integrating the
fluctuation propagator. Hence, we can simply set the bosonic
frequency, �k , to zero and focus on the remaining linear-in-ω
term from the block. This greatly simplifies the calculation
(note that this simplification is not possible in the absence of
regularization). The calculation of the MT contribution [see
Fig. 1(d)] is similar. One only has to replace BDOS in Eq. (7)
with BMT:

BMT(Q, q) = T
∑
εn

∫
p
χpχQ−pGpGp+qGQ−q−pGQ−p. (8)

The AL correction, defined in Fig. 1(c), is slightly different
in that it requires the calculation of two triangular blocks:

BAL(Q; �k, ωm) = T
∑
εn

∫
p
χpGpGp+qGQ−p. (9)

Note that the angular averaging of the viscosity vertex over
the Fermi surface gives zero, unless we keep contributions
proportional to QxQy. This lowers the singularity of the AL
diagram down to that of DOS and MT terms (in contrast to
the results for conductivity). Furthermore, the AL block is
identically zero for ω = 0 for any finite τFL and hence the
product of the two blocks gives rise to the ω2 factor. This
implies that the DC linear response corresponding to the direct
viscosity of fluctuating Cooper pairs vanishes.

Hence, we are left with the two terms for the viscosity,

η = lim
ω→0

{
2T

−iω

∑
�k

∫
Q

[BDOS(−iω) + BMT(−iω)]L(Q)

}
.

Putting everything together, we get the main result of
the microscopic calculation—the fluctuation correction to
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FIG. 2. Single-electron Green’s function renormalized by pair-
ing fluctuations. The self-energy (12) gives rise to a strongly en-
hanced relaxation term calculated in Eq. (13).

viscosity,

δη = −ηFL
F (TcτFL)

7ζ (3)

Tc

EF
ln

(
Tc

T − Tc

)
, (10)

where ηFL is the Fermi liquid viscosity [Eq. (4)], and the F
function is

F (α) = 4παψ ′
(

1

2
+ 1

4πα

)
− 1

2
ψ ′′

(
1

2
+ 1

4πα

)
, (11)

with ψ (z) being the logarithmic derivative of the � function.
Note that F (α) is strictly positive and hence the leading
correction to shear viscosity is strictly negative.

Note that this result [Eq. (10)], while reliable for a wide
range of temperatures, cannot be trusted all the way down to
the transition point. The leading order perturbation theory is
not very informative inside the Ginzburg region [i.e., for (T −
Tc)/Tc � Tc/EF = Gi—the Ginzburg parameter [49,50]].

However, we present phenomenological arguments sug-
gesting that the critical region above the transition is promis-
ing to search for electronic turbulence. We do know that at
the transition point the zero-viscosity superfluid forms, which
still coexists with a “soup” of Bogoliubov excitations. The
phenomenological two-fluid model below the transition in-
volves a normal fluid that behaves somewhat like an ordinary
metal. However, the two-fluid model right above the transition
is markedly different because of strongly enhanced relaxation
enabled by the critical uncondensed pairs. The DOS diagram
is a precursor to this enhancement. We can resum a subset
of diagrams involving the single-electron self-energy due to
pair formation and recombination. Consider the self-energy
diagram in Fig. 2:

�CP(p) = T
∑
�k

∫
Q

L(Q,�k )GQ−p, (12)

where the fluctuation propagator is given in Eq. (5). In the
leading order it gives

Im �CP(p) ≡ − sgn(εn)

2τCP
∼ −sgn(εn)

TcτFL

νξ 2
ln

(
Tc

T − Tc

)
.

(13)

Therefore, the dressed Green’s function has the combined
relaxation rate of τ−1 = τFL+τCP

τCPτFL
. If we now calculate the

Drude-like viscosity diagram [see Fig. 1(a)] with the dressed
Green’s function, we obtain the following result for viscosity
of the single-electron component above the transition:

η(T → Tc+) = ηFL

1 + κ ln
( Tc

T −Tc

) , (14)

where κ ∼ Tcτ
2
FL/(νξ 2). The critical fluctuations above the

transition suppress the viscosity of the normal component.

We note here that no nonperturbative theoretical methods exist
to reliably describe superconducting fluctuations inside the
Ginzburg fluctuation region and Eq. (14) should be viewed
as merely an extrapolation of the perturbation theory results.

Furthermore, the suppression of shear viscosity does not
necessarily imply that the hydrodynamic Reynolds number

R ∼ uLρ

η

grows, since the latter involves kinematic viscosity given by
the ratio of the shear viscosity η and the mass density ρ

(here, u and L are the typical velocity and lengthscales of
the flow). We note, however, that the quasiparticle density
remains finite even below the transition. Therefore, vanishing
of the shear viscosity at criticality would indeed imply a
small kinematic viscosity and giant hydrodynamic Reynolds
number right above the transition. The most spectacular con-
sequence of this scenario would be observation of easy-to-
create turbulence in the critical region. While the direct mea-
surement of the velocity field and energy spectrum presents a
challenge in immediate solid state experiments, it should be
quite straightforward in cold fermion superfluids. Indeed, the
time-of-flight measurement would provide direct access to the
velocity field and enable probe of the Kolmogorov spectrum
and potentially inverse energy cascades (see Ref. [51] for a
review). Here, we propose to look for signatures of classical
turbulence in finite temperature neutral fermion superfluids. In
particular, low-dimensional such systems would have a wider
critical region and may provide easier access to the regime of
interest.

In conclusion, we point out that while our results are spe-
cific to two dimensions, three-dimensional fluctuating super-
conductors may be of special interest from the point of view
of exotic (magneto)hydrodynamics as well. In particular, in
charged superconductors, the magnetic Reynolds number [52]

Rm = uL
4πσ

c2
(15)

is greatly enhanced near the transition for obvious reasons.
While the exact critical scaling of the diverging conductivity
is unknown in 3D, the Alsamazov-Larkin result provides the
following estimate [19]:

σ3DAL(ω, T ) = 1

(1 − iωτ )2

e2

32ξ

√
Tc

T − Tc
.

Regardless of critical scaling, the divergence of conductivity
at the second-order transition ensures that Rm can be made
arbitrarily large. As is known from magnetohydrodynamics
and pointed out in our recent Letter [53], this implies
instability of differential flows against self-generation of
the magnetic field—the dynamo effect [54–57]. Note that
while turbulence aids dynamos, it is not necessary. Therefore,
critical three-dimensional superconductors above Tc provide a
promising playground to attempt observation of self-exciting
dynamos in the solid state laboratory. The existing dynamo
experiments [58–61] involve fast rotating classical conducting
fluids in large containers [needed to increase the uL factor in
Eq. (15)]. However, Rm can be made large in critical super-
conductors regardless of uL. The simplest experiment, which
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would mimic experimental classical hydrodynamic dynamos,
would therefore involve fast rotation of the sample in close
proximity to superconducting Tc and looking for signatures of
the dynamo instability—a spontaneously generated magnetic
field.

We are grateful to Axel Brandenburg, Dam Thanh Son,
Sergey Syzranov, and Andrey Varlamov for useful discus-
sions. This research was supported by US-ARO (Contract
No. W911NF1310172) (Y.L.), DOE-BES (DESC0001911)
(V.G.), and the Simons Foundation.

[1] A. V. Andreev, S. A. Kivelson, and B. Spivak, Phys. Rev. Lett.
106, 256804 (2011).

[2] I. Torre, A. Tomadin, A. K. Geim, and M. Polini, Phys. Rev. B
92, 165433 (2015).

[3] A. Lucas, J. Crossno, K. C. Fong, P. Kim, and S. Sachdev,
Phys. Rev. B 93, 075426 (2016).

[4] F. M. D. Pellegrino, I. Torre, A. K. Geim, and M. Polini,
Phys. Rev. B 94, 155414 (2016).

[5] T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E.
Moore, Phys. Rev. Lett. 118, 226601 (2017).

[6] H. Guo, E. Ilseven, G. Falkovich, and L. S. Levitov, Proc. Natl.
Acad. Sci. USA 114, 3068 (2017).

[7] L. Levitov and G. Falkovich, Nat. Phys. 12, 672 (2016).
[8] A. Lucas and S. Das Sarma, Phys. Rev. B 97, 245128 (2018).
[9] R. K. Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y. Cao, A.

Principi, H. Guo, G. Auton, M. B. Shalom, L. A. Ponomarenko,
G. Falkovich, K. Watanabe, T. Taniguchi, I. V. Grigorieva, L. S.
Levitov, M. Polini, and A. K. Geim, Nat. Phys. 13, 1182 (2017).

[10] D. A. Bandurin, I. Torre, R. K. Kumar, M. B. Shalom, A.
Tomadin, A. Principi, G. Auton, E. Khestanova, K. Novoselov,
I. Grigorieva, L. A. Ponomarenko, A. K. Geim, and M. Polini,
Science 351, 1055 (2016).

[11] J. Gooth, A. C. Niemann, T. Meng, A. G. Grushin, K.
Landsteiner, B. Gotsmann, F. Menges, M. Schmidt, C. Shekhar,
V. Süß, R. Hühne, B. Rellinghaus, C. Felser, B. Yan, and K.
Nielsch, Nature (London) 547, 324 (2017).

[12] J. Gooth, F. Menges, C. Shekhar, V. Süß, N. Kumar, Y.
Sun, U. Drechsler, R. Zierold, C. Felser, and B. Gotsmann,
arXiv:1706.05925.

[13] C. Fu, T. Scaffidi, J. Waissman, Y. Sun, R. Saha, S. J.
Watzman, A. K. Srivastava, G. Li, W. Schnelle, P. Werner,
M. E. Kamminga, S. Sachdev, S. S. P. Parkin, S. A. Hartnoll,
C. Felser, and J. Gooth, arXiv:1802.09468.

[14] P. J. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P.
Mackenzie, Science 351, 1061 (2016).

[15] G. Gusev, A. Levin, E. Levinson, and A. Bakarov, AIP Adv. 8,
025318 (2018).

[16] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941);
Reprinted in Proc. R. Soc. Math. Phys. Sci. 434, 9 (1991).

[17] A. M. Obukhov, Dokl. Akad. Nauk SSSR 32, 22 (1941) [Bull.
Acad. Sci. USSR, Geog. Geophys. 5, 453 (1941)].

[18] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.
94, 111601 (2005).

[19] A. Larkin and A. Varlamov, Theory of Fluctuations in Su-
perconductors, International Series of Monographs on Physics
(Oxford University Press, Oxford, 2009).

[20] L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela (Leningrad)
10, 1104 (1968) [Sov. Phys. Solid State 10, 875 (1968)].

[21] K. Maki, Prog. Theor. Phys. 40, 193 (1968); R. S. Thomson,
Phys. Rev. B 1, 327 (1970); Physica (Utrecht) 55, 296 (1971).

[22] A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. B 51,
3880 (1995).

[23] L. Reggiani, R.Vaglio, and A. A. Varlamov, Phys. Rev. B 44,
9541 (1991).

[24] B. L. Altshuler, M. Yu. Reyzer, and A. A. Varlamov, Zh. Eksp.
Teor. Fiz. 84, 2280 (1983) [Sov. Phys. JETP 57, 1329 (1983)].

[25] L. G. Aslamasov and A. A. Varlamov, J. Low Temp. Phys. 38,
223 (1980).

[26] N. A. Stepanov and M. A. Skvortsov, Phys. Rev. B 97, 144517
(2018).

[27] V. M. Galitski and A. I. Larkin, Phys. Rev. B 63, 174506 (2001).
[28] V. V. Dorin, R. A. Klemm, A. A. Varlamov, A. I. Buzdin, and

D. V. Livanov, Phys. Rev. B 48, 12951 (1993).
[29] D. V. Livanov, G. Savona, and A. A. Varlamov, Phys. Rev. B

62, 8675 (2000).
[30] K. S. Tikhonov, G. Schwiete, and A. M. Finkel’stein, Phys. Rev.

B 85, 174527 (2012).
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