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Ultrafast control of spin interactions in honeycomb antiferromagnetic insulators
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Light enables the ultrafast, direct, and nonthermal control of the exchange and Dzyaloshinskii-Moriya
interactions. We consider two-dimensional honeycomb lattices described by the Kane-Mele-Hubbard model
at half filling and in the strongly correlated regime, i.e., an antiferromagnetic spin-orbit Mott insulator. Based
on the Floquet theory, we demonstrate that by changing the amplitude and frequency of polarized laser pulses,
one can tune the amplitudes and signs of and even the ratio between the exchange and Dzyaloshinskii-Moriya
spin interactions. Furthermore, the renormalizations of the spin interactions are independent of the helicity. Our
results pave the way for ultrafast optical spin manipulation in recently discovered two-dimensional magnetic
materials.
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Introduction. The discovery of the all-optical control of
the order parameters in antiferromagnetic (AFM) and ferro-
magnetic (FM) materials by means of ultrashort intense high-
frequency laser pulses has propelled spintronics into a new era
of ultrafast magnetism [1–3]. Despite the many attempts to
uncover its origin, the detailed underlying microscopic mech-
anism remains unclear. The process triggering ultrafast mag-
netization dynamics phenomena may rely on either thermal or
nonthermal mechanisms [3,4]. Thus far, it has been believed
that the ultrafast nonthermal manipulation of spins is possible
only through either a direct coupling between the magnetic
field component of the laser pulses and the spins or an indirect
coupling between the electric field component of the light and
the spins via spin-orbit coupling [3,5–7]. Recent experiments
have demonstrated that laser pulses can directly modify the
amplitude and sign of the exchange interaction, which is the
strongest spin interaction in magnetically ordered systems
[5,8–10]. References [11–18] have theoretically proposed that
a direct coupling between the electric field of the light and
the spins facilitates the nonthermal optical modification of the
exchange interaction, in agreement with recent experiments
[5,8].

In magnetic systems with broken inversion symmetry, there
is also an antisymmetric exchange interaction between spins
that breaks the chiral symmetry, namely, the Dzyaloshinskii-
Moriya interaction (DMI) [19–22]. Although this interaction
is considerably weaker than the exchange interaction, it is
essential in magnetic materials for enabling weak ferromag-
netism in AFM materials [19,20], topological objects such as
chiral skyrmions [23–26] and chiral domain walls [27–29],
and exotic phases of topological magnon insulators [30–35].
The ratio between the exchange interaction and the DMI con-
trols the tilt angle of the canted spins. Finding a mechanism
for tuning this ratio can enable new phenomena in ultrafast
spin dynamics and switching [5,13,15,16].
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Another far-reaching recent breakthrough in spintronics
is the discovery of two-dimensional (2D) van der Waals
AFM and FM materials with metallic, semiconducting, and
insulating band structures [36,37]. The advantages presented
by the existence of low dimensionality and magnetic order in
the same material enable the development of new spintronic
devices with exceptional performance.

In this Rapid Communication, we show that intense high-
frequency laser pulses can dramatically affect the spin-spin
interactions and the ratio between the exchange interaction
and the DMI in a broad class of 2D magnetic materials
described by the Kane-Mele-Hubbard model. We find that
light can be used to tune both the sign and magnitude of the
AFM exchange interaction, in agreement with the dynamical
mean-field theory [13]. Importantly, we demonstrate that laser
pulses can also be used to independently change the sign and
magnitude of the DMI, thus enabling the rapid control of the
magnetism. The ability to independently control the signs and
magnitudes of the exchange interaction and the DMI enables
superior control of magnetic textures in 2D magnets.

Model Hamiltonian. The electron dynamics in 2D planar
honeycomb lattices can be described by the Kane-Mele-
Hubbard model [38–44]; see Fig. 1. In the absence of external
perturbations, the Hamiltonian is the sum of the kinetic term
ĤK, the intrinsic spin-orbit interaction (SOI) ĤSOI, and the
repulsive Coulomb interaction between the electrons as mod-
eled in the form of the extended Hubbard interaction Ĥint,

Ĥ0 = ĤK + ĤSOI + Ĥint, (1)

where

ĤK = −t1
∑

〈i, j〉,τ
ĉ†

iτ ĉ jτ − t2
∑

〈〈i, j〉〉,τ
ĉ†

iτ ĉ jτ , (2)

ĤSOI = i�
∑

〈〈i, j〉〉,τ,τ ′
νi jσ

z
τ,τ ′ ĉ†

iτ ĉ jτ ′ , (3)

Ĥint = U00

∑
i=1

n̂i↑n̂i↓ + 1

2

∑
〈i, j〉,ττ ′

Vi j n̂iτ n̂ jτ ′ . (4)
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FIG. 1. A honeycomb cell with NN hopping t1, NNN hopping t2,
intrinsic SOI �, and νi j = ±1 for clockwise and counterclockwise
hopping.

Here, 〈·〉 and 〈〈·〉〉 denote nearest neighbors (NN) and next-
nearest neighbors (NNN), respectively; ĉ†

iτ and ĉiτ are the
fermionic creation and annihilation operators, respectively,
for an electron at site i and in spin state τ = {↑,↓}; t1 and
t2 are the NN and NNN hopping amplitudes, respectively;
� is the intrinsic SOI parameter; νi j = ±1, depending on
the hopping orientation from j to i (see Fig. 1); σ z is the
z component of the Pauli matrices σ; and U00 and Vi j are
the on-site and NN Coulomb interactions, respectively. The
intrinsic NNN SOI, Eq. (3), reduces the SU(2) symmetry of
the original Hubbard model to the U(1) spin group. In buckled
noncoplanar honeycomb lattices or systems with structural
inversion asymmetry, the presence of NNN or NN Rashba
SOIs, respectively, further reduces the symmetry to Z2.

Using the variational principle, it has been shown that the
NN Coulomb interaction can be approximated by a renormal-
ized local interaction U = U00 − V̄ , where V̄ is a weighted av-
erage of the NN Coulomb interaction [45]. Thus, we consider
only the local Coulomb interaction in our total Hamiltonian
and express the interaction part of the Hamiltonian in Eq. (4)
as

Ĥint ≈ Ud̂, (5)

where we introduce the doublon number operator d̂ =∑
i=1 n̂i↑n̂i↓, which has an eigenvalue of d . For later use, we

define P̂d as the projection operator onto the subspace spanned
by states with eigenvalue d , i.e., states with exactly d dou-
blons. At site i, we can define the projection operator related to
double occupancy as P̂i,1 = n̂i↑n̂i↓ and the projection operator
related to the absence of double occupancy as P̂i,0 = 1 − P̂i,1

[46]. We can then define the projection operator P̂d for the
whole system as follows. Let O and Pd (O) denote the set of
sites on the lattice and the set of subsets of O with exactly d
elements, respectively. Then, in compact form, the projection
operator reads P̂d = ∑

A∈Pd (O) {
∏

i∈A P̂i,1
∏

i/∈A P̂i,0}.
We are interested in the strongly correlated regime U 	

t1(2) at half filling. In the limit of such strong coupling, any
state with a nonzero number of double occupancies (d 
= 0)

has a much larger energy than a state with no double occu-
pancy (d = 0). We obtain the effective Hamiltonian acting
on the d = 0 subspace by means of applying second-order
perturbation theory on the hopping terms. Using the relations

ĉ†
iτ ĉiτ ′ = 1

2 (ni↑ + ni↓)δττ ′ + Si · ττ ′,τ , (6a)

ĉiτ ĉ†
iτ ′ = 1

2 (2 − ni↑ − ni↓)δττ ′ − Si · ττ,τ ′, (6b)

we find the spin Hamiltonian for 2D AFM spin-orbit Mott
insulators,

HS = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j,

+
∑
〈〈i, j〉〉

Si�S j +
∑
〈〈i, j〉〉

Di j · Si × S j, (7)

with the following spin-spin interactions,

J1(2) = 2t2
1(2)

U
, (8a)

� = 2�2

U
diag(−1,−1, 1), (8b)

Di j = 4t2�

U
νi j êz. (8c)

In the spin Hamiltonian given in Eq. (7), the first and
second terms are the NN and NNN symmetric Heisenberg
AFM exchange interactions (J1(2) > 0), respectively; the third
term is the NNN anisotropic exchange interaction (an XXZ-
like term) arising from the intrinsic SOI, and the last term is
the intrinsic NNN DMI. The intrinsic SOI in the Kane-Mele-
Hubbard model, Eq. (3), leads to an NNN DMI with a DM
vector Di j , which is perpendicular to the honeycomb layer
with an amplitude linearly proportional to the SOI strength.
It can also be shown that the breaking of the inversion
symmetry in this system induces a Rashba-type SOI, which
consequently results in an NN interfacial DMI with a DM
vector that lies in the film plane and normal to the lattice
bonds.

Although the microscopic derivation of the anisotropic
exchange interaction in the spin Hamiltonian of Eq. (7) has
been reported before [41,47,48], we are not aware of any other
microscopic calculation of the intrinsic NNN DMI in hon-
eycomb lattices [30,31,33]. The spin Hamiltonian of Eq. (7)
gives rise to several interesting features and exotic phases,
such as the existence of the magnon spin Nernst effect in
collinear AFM layers [49,50], a topological magnon insulator
phase [30–33], spin Hall effects for Weyl magnons [51,52],
magnonic Floquet topological insulators, spin density waves
[53], and chiral and topological gapped spin liquid phases
[47]. The ultrafast control of the DMI and the exchange inter-
action, by means of laser pulses, can enable the engineering
of all of these phenomena and phases.

For completeness, let us briefly illustrate the effect of
disorder by adding an on-site disorder potential

∑
iτ εiĉ

†
iτ ĉiτ to

the Kane-Mele-Hubbard Hamiltonian given in Eq. (1), where
εi is an uncorrelated random variable. Following the above
procedure, it can be shown that the spin interaction parameters
are renormalized as 1/U → 1/[U − (ε j − εi )2/U ] [54]. In
the large U limit and in the presence of very high-frequency
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oscillations, the effect of disorder is negligible; thus, we do
not include it in the following.

Laser illumination. We introduce the effects of laser irra-
diation in the Kane-Mele-Hubbard Hamiltonian of Eq. (1) via
the Peierls substitution [55]. The Peierls prescription is valid
for slowly varying vector potentials on the scale of the lattice
constant at which the system remains in a quasiequilibrium
state [56]. The electric field component of a polarized laser
pulse is given by E(t ) = E0(e−iωt ε̂ + c.c.)/2, where E0 is
the electric field amplitude; ω is the laser pulse frequency;
and ε̂ = (êx + iλêy)/

√
1 + λ2 is the unit vector representing

the laser polarization, with λ = 0 for linear polarization and
λ = ±1 for right- and left-handed polarizations.

It is convenient to rewrite the noninteracting part of the
Kane-Mele-Hubbard Hamiltonian in Eq. (1) as an effec-
tive hopping term T̂0 = ĤK + ĤSOI = −∑

i, j,τ,τ ′ t ττ ′
i j ĉ†

iτ ĉ jτ ′ ,

where the hopping amplitude is t ττ ′
i j = δτ,τ ′t1 for i and j that

satisfy the NN condition and t ττ ′
i j = δτ,τ ′t2 − i�νi jσ

z
τ,τ ′ for i

and j that satisfy the NNN condition. With the Peierls sub-
stitution, the hopping part of the Hamiltonian gains an extra
phase t ττ ′

i j → t ττ ′
i j ei e

h̄ Ri j ·A(t ), where Ri j = Ri − R j , Ri is the
position of site i, e is the charge of an electron, h̄ is the reduced
Planck constant, and A is the vector potential of the laser
pulse; A(t ) = 1

2 (Ae−iωt + c.c.), with A = iE0
ω

ε̂. The Peierls
phase at time t = 0 can be rewritten as e

h̄ Ri j · A ≡ αi jeiθi j ,
with αi j = ±| e

h̄ Ri j · A|, such that αi j = −α ji, θi j = θ ji, and
θi j ∈ [0, π ). Now, we can use the Jacobi-Anger expansion to
rewrite the Peierls phase in the basis of its harmonics,

ei e
h̄ Ri j ·A(t ) =

∑
m

ei( π
2 −θi j )mJm(αi j )e

imωt , (9)

where Jm(x) is an mth Bessel function of the first kind [16].
In the presence of the laser field, the hopping term in

the Hamiltonian depends on time, Ĥ (t ) = T̂ (t ) + Ud̂ . From
Eq. (9), we find that T̂ (t ) = ∑

m T̂meimωt , where T̂m is the sum
of all mth Fourier modes of the hopping terms. We can ad-
ditionally adopt the decomposition T̂m = T̂−1,m + T̂0,m + T̂1,m,
where T̂dm(t ) changes the doublon number by adding d double
occupancies and is expressed as T̂dm(t ) = ∑

n P̂n+d T̂m(t )P̂n.
Since the hopping term is of second order in the creation and
annihilation operators, it can change the double occupancy
of the states only by ±1. Thus, we can express the hopping
operator as

T̂ (t ) =
∑

m

(T̂−1,m + T̂0,m + T̂1,m)eimωt . (10)

To find the renormalized spin Hamiltonian in the strongly
correlated regime, we first derive an effective static Hamil-
tonian using the Floquet formalism [57–59]. To this end, we
transform the original time-dependent Hamiltonian Ĥ (t ) by
using the canonical transformation Û (t ) = e−iŜ(t ) [16,60],

Ĥ ′(t ) = eiŜ(t )[Ĥ (t ) − i∂t ]e
−iŜ(t ). (11)

We can formally express T̂ (t ) = ηT̂ (t ), where η plays
the role of a bookkeeping parameter in the perturbation
expansion. We expand Ŝ(t ) = ∑

ν ην Ŝ(ν)(t ) and Ĥ ′(t ) =∑
ν ηνĤ ′(ν)(t ). We require the transformed Hamiltonian to

be block diagonal in the doublon number operator d̂ . To

fulfill this requirement, the unitary transformation Ŝ(t ) must
have the same periodicity as T̂ (t ); consequently, the trans-
formed Hamiltonian Ĥ ′(t ) will have the same periodicity as
the original Hamiltonian Ĥ (t ). Thus, we can write Ŝ(ν)(t ) =∑

m eimωt Ŝ(ν)
m . With the further requirement that Ŝ(t ) does not

contain block-diagonal terms, we can uniquely determine the
unitary transformation,

Ŝ(ν)(t ) =
∑
d 
=0

∑
m

ην Ŝ(ν)
d,meimωt , (12)

where Ŝ(ν)
d,m changes the double occupancy number by d . We

expand the transformed Hamiltonian of Eq. (11) into a power
series in η and determine Ŝ(ν)(t ) iteratively in ν such that
Ĥ ′(ν)(t ) is diagonal in the doublon number. After tedious
but straightforward calculations, we obtain the transformed
Hamiltonian up to the second order in the hopping parameter
Ĥ ′(t ) = T̂ ′(t ) + Ud̂ , where

T̂ ′(t ) ≈ −
∑

m

T̂0,m(t )eimωt

+ 1

2

∑
mn

(
[T̂1,n, T̂−1,m−n]

U + nh̄ω
− [T̂−1,n, T̂1,m−n]

U − nh̄ω

)
eimωt .

(13)

Now, we calculate the effective static Hamiltonian by time av-
eraging the transformed Hamiltonian Ĥeff = P̂0Ĥ ′(t )P̂0, where
P̂0 is the Gutzwiller projection onto the subspace containing
no doubly occupied sites at all, i.e., the d = 0 subspace
[46]. After some algebra, the effective static Hamiltonian is
obtained in terms of the creation and annihilation operators,

Ĥeff = −
∑

i, j,τ,τ ′

(
t τ
i jt

τ ′
ji

∑
n

J 2
n (αi j )

U + nh̄ω

)
ĉ†

iτ ĉ jτ ĉ†
jτ ′ ĉiτ ′ . (14)

Note that to obtain this result, we have only considered the
strongly correlated regime of the Kane-Mele-Hubbard model,
t1(2)/U � 1, and no assumption has been made on the range
of ω and αi j . Using the relations in Eq. (6), we finally obtain
the spin Hamiltonian at half filling,

H̃S(ω) =
∑
〈i, j〉

J̃1,i jSi · S j +
∑
〈〈i, j〉〉

J̃2,i jSi · S j

+
∑
〈〈i, j〉〉

Si�̃i jS j +
∑
〈〈i, j〉〉

D̃i j · Si × S j, (15)

with the following renormalized spin-spin interactions,

J̃1,i j = 2t2
1

∑
n

J 2
n (α〈i j〉)

U + nh̄ω
, (16a)

J̃2,i j = 2t2
2

∑
n

J 2
n (α〈〈i j〉〉)

U + nh̄ω
, (16b)

�̃i j = 2�2 diag(−1,−1, 1)
∑

n

J 2
n (α〈〈i j〉〉)

U + nh̄ω
, (16c)

D̃i j = 4t2�
∑

n

J 2
n (α〈〈i j〉〉)

U + nh̄ω
νi j êz. (16d)
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FIG. 2. Dimensionless exchange interaction (green lines) and
DMI (red lines) as functions of the Floquet parameter E = eaE0

h̄ω
for

two laser frequencies, ω = 4 (solid lines) and ω = 14 (dashed lines).

All spin interaction parameters are renormalized in the
presence of a periodic drive by the same function, but αi j

differs between the NN and NNN parameters. Thus, the ratios
between the renormalized NN and NNN parameters are dif-
ferent from those for the unperturbed parameters. Therefore,
in a honeycomb lattice described by the Kane-Mele-Hubbard
model, the ratio between the AFM exchange interaction and
the intrinsic DMI changes during the light irradiation, while
in a square lattice with the NN Rashba SOI, it is not possible
to control this ratio. The renormalized spin interactions pre-
sented in Eq. (16) do not depend on the helicity in this model.
In our model, perturbing the system with an AC electric field
renormalizes the original DMI, which is already present in
the unperturbed Hamiltonian. In the absence of a SOI, the
unperturbed system does not display DMI and adding the
electric field would not induce any DMI. This is different
from the case studied in Ref. [60], in which it has been shown
that an out-of-plane AC electric field, equivalent to a periodic
time-dependent chemical potential, induces a DMI-like term
in the system even in the absence of any SOI.

Figure 2 shows the dependence of the dimensionless NN
exchange interaction J̃1,i j/J1,i j and the dimensionless NNN
DMI D̃i j/Di j on the Floquet parameter E = eaE0

h̄ω
, where a is

the lattice constant. We show this dependence for two different
laser pulse frequencies. We set h̄ = t1 = 1 and measure the
energy in units of t1 and the frequency in units of t1/h̄. The
presented results correspond to the material parameters t2 =
0.1 and U = 10. Figure 2 shows that it is possible to not only
change the sign and amplitude of the exchange interaction, as
reported in Ref. [13], but also change the sign and amplitude
of the intrinsic DMI. Figure 2 shows that the ratio D̃i j/J̃1,i j 
=
Di j/J1,i j , which is responsible for ultrafast photoinduced spin
dynamics phenomena, can be tuned by means of laser exci-
tations in systems with specific symmetries. Here, we should
emphasize that since in our model the NNN exchange inter-
action, the anisotropic exchange interaction, and the intrinsic
DMI arise from NNN couplings, they are renormalized in the
same way [see Eqs. 16(b)–16(d)].

To estimate the change in the ratio between spin-spin in-
teractions D/J1 within the current technology, let us consider
the typical experimental parameters U ≈ 3 eV, t1 ≈ 0.5 eV,
h̄ω ≈ 0.85U = 2.55 eV, and a = 4 Å, and consider an electric
field amplitude of E0 = 109 V/m. Using these parameters,
the DMI and the exchange interaction are renormalized as
D̃/D = 1.047 and J̃1/J1 = 1.016, respectively. Thus, the ratio
between these two spin-spin interactions is also renormalized
as D̃/J̃1 = 1.031(D/J1). These values are detectable experi-
mentally. In Ref. [5], a change of 0.01% in the ratio between
the DMI and the exchange interaction has been reported by
measuring the photoexcitation of the quasiantiferromagnetic
mode in FeBO3.

Equations (15) and (16) explicitly show that the spin
Hamiltonian in the presence of a time-dependent external field
can be effectively written as H̃S = HS + gαβi jSα

i Sβ
j EαE∗β ,

where α and β represent the spatial components of vectors,
i and j refer to lattice sites, and g is the optomagnetic
coupling tensor, which can be read off from Eq. (16). Thus,
the dielectric permittivity tensor, which determines the optical
properties of the medium, is given by εαβ = ∂2H̃S/∂Eα∂E∗β .
The optomagnetic effect, which is described by the dielectric
permittivity ε, can be detected by measuring the intensity of
the light scattered by magnons, Isc ∝ (εαβE0)2 [61].

In ultrafast spin dynamics experiments, very intense laser
pulses are used, and thus it might be relevant to consider
how heating might affect the validity of our approach. Recent
theoretical [62–64] and experimental [65] works have shown
that the energy absorption rate is exponentially suppressed
for high-frequency laser pulses, i.e., for h̄ω/W 	 1, where
W ∝ t1 is the fermionic bandwidth, and this condition holds in
ultrafast experiments with optical laser pulses. Thus, rapidly
driven systems have a very long prethermalization period,
implying that the evolution of these systems in the presence of
short laser pulses can be safely described by our formalism.

In summary, we have investigated the effect of intense
high-frequency polarized laser pulses on 2D AFM spin-orbit
Mott insulators using the Floquet theory. We have found that
both the sign and the amplitude of the ratio between the
DMI and the exchange interaction in a honeycomb lattice can
be modified, regardless of the helicity of the laser pulse. In
general, we have shown that this ratio might be renormalized
only in systems with special lattice symmetries in which
the DMI and Heisenberg exchange interaction in the spin
Hamiltonian are originated from hopping integrals between
different distance sites in the electronic Hamiltonian. Our
calculations propose another way to achieve the ultrafast and
energy-efficient control of spin-spin interactions and thus the
engineering of topological objects and the topological proper-
ties of 2D van der Waals magnetic materials. The possibility of
the ultrafast optical modification of the exchange interaction
in bulk iron oxides has recently been reported [5]. We hope
that our work will motivate different ultrafast experiments on
measuring both the exchange interaction and the DMI in 2D
magnetic systems.
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