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Quantum Brownian motion in a quasiperiodic potential
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We consider a quantum particle subject to Ohmic dissipation, moving in a bichromatic quasiperiodic
potential. In a periodic potential the particle undergoes a zero-temperature localization-delocalization transition
as dissipation strength is decreased. We show that the delocalized phase is absent in the quasiperiodic case,
even when the deviation from periodicity is infinitesimal. Using the renormalization group, we determine how
the effective localization length depends on the dissipation. We show that a similar problem can emerge in the
strong-coupling limit of a mobile impurity moving in a periodic lattice and immersed in a one-dimensional
quantum gas.
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Introduction. Localization has been a subject of interest for
over half a century, following Anderson’s seminal work on
electron propagation in disordered media [1]. Recently, the
recognition that the many-body localized (MBL) insulator is
a stable state of matter with a robust nonequilibrium phase
structure has sparked renewed interest in the topic [2–6].
Although much of this effort has focused on isolated systems
with uncorrelated disorder, two departures from these preva-
lent paradigms have emerged as significant. First, studying
localization in open quantum systems coupled to an external
“bath” is both intrinsically interesting [7–9] and relevant to
many experiments [10–12]. Second, quasiperiodic systems
can also display localization, but unlike their disordered
cousins, may be less susceptible to rare region effects that
disrupt MBL in d > 1 [13–19]. Quasiperiodic potentials can
be engineered robustly and controllably in cold-atom experi-
ments, either by superposing two mutually incommensurate
optical lattices, or by “cut-and-project” techniques. Experi-
ments have now begun to probe the interplay of localization,
interactions, and coupling to a bath in quasiperiodic systems
[10,11,19–24].

Here, we show that the properties of a quasiperiodic sys-
tem can be altered by coupling to a bath with nontrivial
dynamics, even without interactions. As MBL focuses on
excited eigenstates and hence high temperature T , baths in
that context are approximated as Markovian, i.e., memoryless
on long timescales [8]. In contrast, for T → 0, the bath
autocorrelation time can diverge, so that memory effects
become significant. Such non-Markovian baths can arise nat-
urally from quantum dissipation, induced, e.g., by coupling
to a continuum of gapless excitations [25,26]. The simplest
examples involve dissipative dynamics of a single quantum
degree of freedom [25–31]. This can be the position of a
particle, but similar models arise more generally in “quantum
impurity problems,” describing, e.g., the phase of a resis-
tively and capacitively shunted Josephson junction, a Kondo
spin in a metal, or the scattering phase shift at a quantum

point contact or across a mobile impurity in a quantum fluid
[32–34].

Despite their simplicity, these models can nevertheless
exhibit phase transitions, e.g., as a function of dissipation
strength [27,30,35,36]. For instance, a particle in a periodic
potential can undergo a T = 0 phase transition as the strength
of Ohmic dissipation α is tuned: For α > αc the particle is
localized in one of the potential minima, while for α < αc

it is delocalized and undergoes quantum Brownian motion
over long distances, where αc is a critical value of dissipation
set by the periodicity of the potential [27]. We examine the
fate of this T = 0 transition for quasiperiodic potentials. We
show that the delocalized phase present at weak dissipation
α < αc for a single periodic potential [27] is destabilized by
an additional periodic perturbation, even when the latter has a
higher critical dissipation strength in isolation. The resulting
phase diagram depends on the ratio between the periods of
the potentials. In the commensurate case, the delocalized
phase survives, but with a lower critical dissipation strength
than for either potential in isolation; for the incommensurate
(quasiperiodic) case, it is destroyed. Notably, with dissipation
the delocalized phase is absent even for infinitesimally weak
quasiperiodic perturbations, in striking contrast to the dissi-
pationless case [13] where it survives up to a critical value
of the quasiperiodicity. Although the problem formally maps
to a “double-frequency” boundary sine-Gordon model with
no exact solution, we can compute an approximate localiza-
tion length using renormalization-group (RG) techniques. We
showcase this approach for examples of commensurate and
incommensurate perturbations.

We also find a surprising application of our analysis to
the currently more experimentally realizable setting of a mo-
bile impurity moving in a periodic lattice in one dimension,
immersed in a quantum fluid that it scatters strongly via
contact interactions. Here, our model describes the dissipative
dynamics of the scattering phase across the impurity, the
relevant commensurability is between the gas density and
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the lattice, and the transition corresponds to a change in the
impurity dispersion [energy-momentum relation E (P)], from
flat to periodic.

Model. We begin by considering a single quantum particle
interacting with a bath of harmonic oscillators [25,26]. The
joint Hamiltonian is

H = H0(q) + 1

2

∑
a

p2
a

ma
+ maω

2
a

(
xa + fa[q]

maω2
a

)2

, (1)

where a indexes the oscillators, q is the spatial coordi-
nate of the particle, and H0 = p2/2m + V (q), with V (q)
a local potential. We assume linear particle-bath coupling
f [q] = λaq, and characterize the bath via its spectral function

J (ω) = π
2

∑
a

λ2
a

maωa
δ(ω − ωa). We restrict to Ohmic dissipa-

tion, J (ω) = η|ω|, which in the classical/high-temperature
limit yields Brownian motion described by a Langevin equa-
tion [25,26]. Integrating out the bath in the partition function
yields an (imaginary-time) effective action for the particle
[37], which for Ohmic dissipation and V = 0 is

S0 =
∫ β h̄

0
dτ

[
m

2
q̇2(τ ) + η

2π

∫ ∞

−∞
dτ ′ q(τ )q(τ ′)

(τ − τ ′)2

]
. (2)

We scale out a microscopic length q0 (this will be set by
the potential) and take θ (τ ) = 2πq(τ )/q0. We identify the
characteristic energy scale E0 = (2π h̄)2/mq2

0 required to con-
fine the particle to q0, so that � = E0/h̄ sets the scale of the
bare kinetic energy. Since this is irrelevant under the RG by
power counting (compared to the nonlocal bath contribution)
we replace it by a cutoff � on the bath term [27–29,31]

S0[θ (ω)] = α

4π

∫ �

−�

dω

2π
|ω||θ (ω)|2. (3)

Appropriate choices of V (q) realize a number of interest-
ing scenarios. We will exclusively consider potentials of the
form V (q) = −∑

μ Vμ cos(λμq), with one or two Vμ initially
nonzero. In this case, we choose q0 = 2π/ min[λμ], and
rescale parameters to obtain V [θ ] = ∑

μ Vμ cos(λμθ ), where
now λμ � 1 and V1 �= 0. We will analyze the phase diagram
of S0 + SV , where SV = ∫

dτ V [θ (τ )], for different choices
of λμ.

Single frequency. We first consider a single harmonic, i.e.,
Vμ = 0 for μ �= 1, corresponding to a particle in a periodic
potential [27–31,35], with

SV [θ (τ )] = −V1

∫
dτ cos [θ (τ )], (4)

meaning S0 + Sv is a boundary sine-Gordon model. There-
fore, the perturbative effect of the potential to the “free
fixed point” (3) can be straightforwardly diagnosed using
momentum-shell RG [27,38], as follows. First, we split the
fields into “slow” and “fast” modes θ (ω)=θs(ω)�[�/b−ω]+
θ f (ω)�[ω − �/b], where � is the unit step function, and b =
e. We then integrate out the fast modes, possibly generating
new terms, using a cumulant expansion about the Gaussian S0,
and rescale frequencies via ω �→ bω to keep S0 fixed. Finally,
we define rescaled fields via θ (ω̃) = b−1θs(ω). Iterating this

transformation, we obtain the RG flow equation for V1,

dV1

d
=

(
1 − 1

α

)
V1 + O

(
V 3

1

)
. (5)

This shows that the model has a phase transition at αc = 1: For
α < αc, V1 flows to zero under the RG (corresponding to the
free phase), whereas for α > αc, V1 is relevant and the flow is
to strong coupling. In this limit, a variational estimate suggests
that the localization length ξ ∗ diverges as (α − αc)−1/2 [27].
The constancy of α under RG follows from two facts. First,
note that V1 is local in time, and coarse graining preserves
locality; in contrast, S0 is nonlocal in time for T → 0, and so
cannot emerge in the perturbative RG. Second, the coefficient
of θ is fixed by translational symmetry, θ → θ + 2πZ. Thus,
α does not flow [27]. Additionally, while V1 itself does not
receive corrections at second order in V1, a V2 term is gen-
erated at O(V 2

1 ). However, it is less relevant than V1, which
is always the most relevant term generated by the flow to all
orders. (This will no longer be true if a second harmonic Vγ

with γ �∈ Z is included.)
Generalized RG flows. We now study the double-frequency

(bichromatic) boundary sine-Gordon model,

SV [θ (τ )] = −
∫

dτ {V1 cos [θ (τ )] + Vγ cos[γ θ (τ )]}, (6)

where, without loss of generality, we take γ > 1. Observe that
with this choice, for α < 1, both V1 and Vγ are irrelevant if
considered in isolation. For γ ∈ Z, any term generated by the
RG has a higher scaling dimension than V1, and is therefore
also irrelevant. For γ �∈ Z, we must consider the terms gen-
erated at second order in the RG equations. Intuitively, this
is because “beating” between two cosines can yield a cosine
with a shorter wavelength, potentially relevant even when
V1,Vγ are not. This picture already signals that rational and
irrational γ are physically distinct: In the former case, there
are finitely many such beats; in the latter there are infinitely
many. This is a consequence of the fact that a quasiperiodic
potential has no shortest reciprocal lattice vector [39].

To study these effects quantitatively, we determine the RG
flow equations. We consider all wave vectors generated by the
RG, corresponding to the set L = {λ : λ = |m + γ n|, m, n ∈
Z} [40]. While an explicit derivation of RG equations re-
quires a tedious (albeit standard) cumulant expansion [38],
their structure is fixed by the operator product expansion of
boundary sine-Gordon theory,

dVλ

d
=

(
1 − λ2

α

)
Vλ +

∑
λ′,λ′′

Cλ′λ′′
λ Vλ′Vλ′′ + · · · , (7)

where Cλ′λ′′
λ = λ′λ′′

2α
(δλ,λ′+λ′′ − δλ,λ′−λ′′ ), and “· · · ” denotes

higher-order terms that we neglect in this perturbative analy-
sis. Evidently, this coupled set of equations (7) captures the
beat phenomenon described above, since at O(V 2) the RG
generates new terms that are absent at the bare level. These in
turn generate other terms as the flow proceeds. The absence
of θ �→ θ + 2π symmetry may allow additional terms that
in principle could affect the RG flows; however, the set (7)
remains valid at a perturbative level, and we proceed assuming
their validity. To understand their solution, we consider the
scenario where V1 = u0, Vγ = εu0 at the bare level; for a
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given α, the question then is to determine (i) the new critical
dissipation strength α′

c < αc, (ii) the RG time ∗(α) at which,
for α′

c < α < αc, a relevant potential generated by these bare
values flows to O(1), and (iii) the corresponding localization
length associated with this relevant potential. For  � ∗
we enter the strong-coupling regime where our perturbative
RG is no longer reliable. Unlike in the conventional single-
frequency boundary sine-Gordon problem, there is no exact
solution or duality to leverage here. Though we have assumed
a flow to strong coupling, we cannot rule out the possibility of
an intermediate fixed point stabilized by higher-order terms
neglected in (7); this is a question for future analysis.

Taking γ = m/n � 1 to be an irreducible rational number,
the minimum nonzero wave vector is given by λc = 1/n,
and all Vλ for λ ∈ L are irrelevant if α < α′

c ≡ λ2
∗, i.e., the

delocalized phase survives, but shrinks in extent. However, for
α′

c < α < 1, the localization is driven by high-order “beats”:
Bare V1,Vγ are irrelevant, but generate other Vλ’s as they flow
to zero; eventually, a relevant term emerges and grows to
O(1). The corresponding scale ∗ controls the crossover to
localization: Intuitively, it is the scale at which the particle
“sees” the potential. To understand this, we consider (7) for
a minimal set of Vλ needed to generate a relevant term. We
ignore second-order terms for each unless they help generate
the relevant term, which is justified by numerical iteration of
(7). We then integrate the flows of V1() and Vγ () directly
[38]. For γ = 3/2 and 1/4 < α < 1, since a relevant term
(V1/2) is generated by these two directly, we find it grows to
O(1) in an RG “time,”

∗ = α

α′
c − α

ln
[
εu2

0

] + · · · , (8)

where the omitted terms “· · · ” do not involve u0 or ε. We can
extract from this scale a localization length ξ ∗ ∝

√
〈θ2(τ )〉,

where in evaluating the average we only consider the modes
between the current RG scale �e−∗

and the original cutoff

�. We find ξ ∗ = q0

2π

√
2∗
α

∝ (α − αc)−1/2 [38], which mirrors
a variational calculation for the single-harmonic problem [27].
A similar relation for ∗ may be obtained for generic commen-
surate γ , but with the difference that higher powers of ε and
u0 appear in the logarithm, corresponding to the fact that the
relevant operator emerges at a higher order.

Quasiperiodic case. We now turn to the quasiperiodic
(incommensurate) problem. For irrational γ �∈ Q, we see
immediately that the minimum nonzero wave vector λc in L
is ill defined. Therefore, the critical dissipation strength for
localization is zero, so that arbitrarily weak dissipation leads
to localization. Intuitively, for rational γ = m/n, the com-
bined potential V (θ ) = V1 cos θ + Vγ cos γ θ always contains
a periodic set of equally spaced minima (e.g., at spacing 2πn);
if the dissipation is sufficiently weak that coherent tunneling
between these minima remains possible, the delocalized phase
survives. Conversely, for irrational γ , V (θ ) hosts no such peri-
odic set of minima—indeed, there is no real-space periodicity.
Therefore, the coherent tunneling is disrupted on long length
scales, so that no matter how small the dissipation, the particle
will eventually come to rest in some potential minimum.

For concreteness, we consider the Fibonacci potential,
given by γ = ϕ = 1

2 (1 + √
5), the golden mean. Within L, we
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FIG. 1. Localization length ξ ∗ as a function of dissipation α for
quasiperiodic potential with γ = ϕ (solid green). Inset: Same plot
on a log-log scale. As α is decreased, ξ ∗ is a piecewise function
that changes nonanalytically for α ∼ αn = ϕ−2n between successive

ξn = q0
2π

√
2n
α

[see Eq. (9)].

note that the decreasing sequence λn ≡ (−1)n(Fn+1 − ϕFn) =
ϕ−n, where Fn is the nth element of the Fibonacci sequence,
goes to zero rapidly as n → ∞. We will refer to these as
Fibonacci wave numbers: Taking λ0 = 1, λ1 = ϕ − 1 is the
first new term generated by the RG with a smaller wave
number than those present at the bare level, and subsequent
λn are quickly generated by successive RG iterations, λn =
λn−2 − λn−1. Although for a given α there exist many arbitrary
μm,n = m − ϕn such that μ2

m,n < α, a smaller Fibonacci wave
number will always have been generated earlier in the RG,
and thus will have had more time to grow in strength and
spawn further λn. Thus, determining the most relevant wave
number is simplified relative to a generic irrational γ (though
by analogy to the Fibonacci case, we conjecture they will be
generated by successive “best rational approximants” of γ ).

The crossover to localization is controlled by a critical
scale ∗, the RG time for some relevant term to become O(1).
We denote λn∗ as the first relevant term become O(1) when all
λn are allowed to be nonzero. Each λn requires RG time n to
grow to O(1), and ∗ corresponds to the smallest among the
n for a given α, where n are determined by analogy to (8),

n = α

ϕ−2n − α
ln

[
V Fn

γ V Fn+1
1

]
, (9)

as may be verified by direct integration of (7) [38]. Omitted
from (9) are subleading corrections that vanish in the limit
α � 1 [38]. As α is decreased, ∗ is set by successive n∗

with larger Fibonacci indices: Taking V1 = − ln Vγ = 1, we

see that ξ ∗ = q0

2π

√
2∗
α

is determined by successive n in
a piecewise manner, with ∗ changing from n to n+1 at
α ∼ ϕ−2n = λ2

n. This leads to nonanalyticity in ξ ∗ (Fig. 1).
Although there is always a relevant, localizing potential with
wave number λn∗ , it requires increasingly long for this term
to be generated, corresponding to ∗ → ∞. Dynamically, it
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will take increasingly longer for the particle to “feel” the
localization.

Realization via mobile impurity. So far, we have assumed
that our model directly describes a particle in a quasiperiodic
landscape. This can be challenging to engineer and observe in
cold-atom simulations. We now discuss an alternative route to
the same physics in a mobile impurity problem [32–34,41].
Consider a single mobile impurity, with coordinate X and
momentum P, in a periodic optical lattice (spacing a = 1 and
length L), and immersed in a quantum fluid. Describing the
latter as a Luttinger liquid with interaction parameter K and
velocity v,

Hg = v

2π

∫ L/2

−L/2
dx

[
K (∂xθ )2 + 1

K
(∂xφ)2

]
, (10)

with [φ(x), ∂yθ (y)] = iπδ(x − y) captures its dynamics. We
assume that the optical lattice is sufficiently strong that the im-
purity has tight-binding dispersion given by Hi = −ti cos(P),
and that the particle and the gas interact via contact inter-
actions Hint = uρ(X ), where ρ(X ) is the density of the gas,
and ti and u are coupling strengths. The full Hamiltonian
is H = Hi + Hg + Hint. It is convenient to make a unitary
transformation UX = eiPgX to the frame comoving with the im-
purity, so that H �→ UX HU−1

X = Hg + uρ(0) − ti cos(P − Pg).
Since X is now absent from H , P is conserved and corre-
sponds to the total momentum. We now take the u → ∞
limit, corresponding to a strongly scattering impurity, where
the leading term at O(1/u) involves the tunneling of gas
particles across the impurity. This yields the Josephson-like
term Hr ≈ −tg cos(�), where � = θ (0+) − θ (0−) describes
the phase shift across the impurity. We may relate Pg to �

by using the usual Luttinger liquid relations for the density
ρ = π−1∂xφ and momentum πφ = ∂xθ ,

Pg =
∫

|x|>ε

dxρπφ = 1

π

∫
|x|>ε

dx ∂xφ∂xθ = −ν�, (11)

where the integral excludes the origin as there is a break
in the fluid at the impurity. We have used the mode ex-
pansion φ(x) = φ0 + π N

L x + φ̃(x), θ (x) = θ0 + π J
L x + θ̃ (x),

where N, J are the total particle number and current, respec-
tively, and ν = N/L is the average density or filling. Finally,
we integrate out the gapless sound modes of Hg subject
to the boundary condition θ (0+, t ) − θ (0−, t ) = �(t ); this
generates dissipative dynamics for �. Working in imaginary
time we arrive at the impurity effective action,

Si =
∫

dτ [ti cos(P + γ�) + tg cos �] + α

4π

∫
dω|ω||�ω|2,

(12)

with α = 1/K [42], γ = ν; P �= 0 does not affect the RG
flows, and hence we see that the impurity is described by the

double-frequency sine-Gordon action, with the wave vector
of one of the cosines tuned by the gas density. Reinstating
the lattice spacing a, we see that γ = νa corresponds to
the number of gas atoms in each unit cell of the potential
seen by the impurity; evidently, there is no particular re-
striction to commensurate γ . In this language, the regime
where the cosines are irrelevant corresponds to an impurity
that is nondispersive, i.e., whose energy is independent of P,
while the one where the cosines are relevant corresponds to a
dispersive impurity. When the gas density is commensurate
with the impurity potential, the impurity is able to move
recoillessly between minima while simultaneously allowing
an integer number of gas particles to tunnel across it; for
sufficiently weak dissipation this “dressed” process continues
to show quantum Brownian motion. This effect is absent in
the quasiperiodic case, but depending on the scale at which
the system is probed, the dispersion will show different peri-
odicity set by the potential that controls ξ ∗. We defer further
investigation of the impurity realization of the quasiperiodic
problem to future work.

Discussion. In conclusion, we have shown that a quan-
tum particle moving in a quasiperiodic potential is always
localized by a dissipative bath as T → 0. This is in sharp
contrast with the well-known quantum phase transition in
the periodic case. We also argued that this physics could be
realized in the strong-coupling regime of a mobile impurity
in a one-dimensional Fermi gas moving in a periodic lattice.
On the formal side, we note that while the infrared behavior
of the single-frequency boundary sine-Gordon field theory
can be studied using instanton expansions and integrability,
much less is known about multifrequency variants. It would be
very interesting—and of direct relevance to an experimentally
accessible regime of mobile impurity problems—to develop
analytic tools to analyze the flow to strong coupling in this
theory, and investigate the possibility of a different class of
intermediate-coupling fixed points.
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