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We experimentally investigate spectral statistics in Anderson localization in two-dimensional amorphous
disordered media. Intensity distributions captured over an ultrabroad wavelength range of ∼600 nm and averaged
over numerous configurations provided the Ioffe-Regel parameter to be ∼2.5 over the investigated wavelength
range. The spectra of the disordered structures provided access to several quasimodes, whose widths and
separations allowed one to directly estimate the optical Thouless conductance gT h, consistently observed to be
below unity. The probability distribution of gT h was measured to be a log-normal. Despite being in the Anderson
localization regime, the spacings of energy levels of the system were seen to follow a near Wigner-Dyson
function. Theoretical calculations based on the tight-binding model, modified to include coupling to a bath,
yielded results that were in excellent agreement with experiments. From the model, the level-spacing behavior
was attributed to the degree of localization obtained in the optical disordered system.
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Anderson localization is an interesting transport phe-
nomenon in disordered systems, first proposed in 1958 for
electronic systems [1–3]. In the presence of impurities in
metal, the diffusive motion of electrons is completely arrested
due to self-interference of the multiple scattered electron
waves. Being a general wave phenomenon, this concept has
immediately percolated to other areas of physics such as
photonics, acoustics, matter waves, etc. [4–8]. Among these,
photon localization has triggered immense research due to
light-specific advances such as quantum [9–12] and non-
linear [13–15] transport, localization-based lasing [16–20],
vectorial scattering [21], and so on. Structural correlations
have been reported to realize new effects in transport such
as band gap formation in the absence of translational order
[22,23], novel transition from localization to band gap do-
main [24], and modification of the localization length over
orders of magnitude [25]. The achievement of unambiguous
three-dimensional localization is challenging [26–29], due to
which lower-dimensional structures have been used to inves-
tigate the rich physics of disorder [13,30–34]. Furthermore,
low-dimensional systems also allow for direct access to the
exponential wave function which conclusively characterizes
Anderson localization in the absence of loss.

Similar to the wave function, another feature that charac-
terizes localization is the spectrum of disorder that reflects
the energy levels of the structure. Transport in a disordered
system occurs via the formation of multiple resonances situ-
ated at random locations in space and frequency, associated
with random widths originating from their coupling to the
bath. These quasimodes constitute the disorder spectrum.
Diffusive transport occurs when the spectral widths of the
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quasimodes are larger than their separations enhancing in-
terquasimode coupling. Under strong disorder, the widths are
smaller, inhibiting the intermode coupling, and the system
transits into the localization domain. Accordingly, the domain
of transport is characterized by a spectral parameter called the
Thouless conductance, defined as gT h = δω/�ω = δλ/�λ,
where δω(δλ) is the average spectral width of two adjacent
modes and �ω(�λ) is the separation between the modes [35].
Furthermore, another spectral effect arises under disorder.
In periodic systems, the energy levels are correlated across
the spectrum. As disorder is introduced, the correlations fall
and, under conditions of localization, the eigenvalues (ω’s)
are expected to be completely uncorrelated. This is reflected
in the statistics of the spacings between consecutive levels
s = ωi − ωi−1, where localizing systems exhibit Poissonian
spacings, while diffusive systems show a spacing distribu-
tion approximated by the Wigner-Dyson function given as
∼(πs/2) exp (−πs2/4) [36]. While the theoretical aspects
of the spectra of disorder have been available in literature,
to our knowledge, there are no experimental reports which
verify the same. The primary challenge therein is the re-
quirement of ultrabroad spectral range for measuring the
disorder spectrum, and a sufficiently large ensemble of con-
figurations for the statistics. In this Rapid Communication,
we achieve precisely the same, by employing samples with
75 configurations of amorphous disorder, whose spectra were
measured over a range of 600 nm. Over this range, we access
about 30 localized quasimodes in each configuration. The
localization length is quantified from the configurationally
averaged intensity distributions. The measured spectra allow
for the extraction of the quasimodes and quantification of the
optical Thouless conductance. Subsequently, the level spacing
statistics are measured from the same spectra and exhibit a
close correspondence with the Wigner-Dyson function despite
being in the localization domain. Theoretical computations
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FIG. 1. (a) SEM image of part of a disordered sample. (b) Exper-
imental setup. Legend: SC, supercontinuum; L, lens; MC, monochro-
mator; PBS, polarizing beam splitter; M, mirror; HWP, half wave
plate; BS, beam splitter; PD, photodetector; AL, aspheric lens; CAM,
IR camera. (c) Measured mode profile at a particular wavelength in
one configuration.

were carried out based on the tight-binding Hamiltonian,
whose eigenvalues were further subjected to broadening due
to coupling to the bath. The computational results are in
excellent agreement with the experiments and relate the level-
spacing statistics to the degree of localization in optical sys-
tems.

For the experiments, disordered structures are fabricated in
gallium arsenide membranes (thickness 340 nm). Air holes
(radius 139 nm) are lithographically written on the membrane
at predefined disorder sites. To avoid bandtail localization,
amorphous disorder was realized, and was confirmed by the
Fourier transform of the refractive index distribution. Further,
the calculation of the structure factor S(q) for these configu-
rations shows that there are no structural correlations in the
wavelength range of our interest [37]. The dimensions of the
structured sample are 20 μm × 20 μm. For statistical com-
pleteness, experiments are carried out over 75 configurations.

Figure 1(a) shows the scanning electron micrograph of a
section of a representative configuration. Figure 1(b) depicts
the experimental setup showing a broadband IR beam of a su-
percontinuum source (Fianium, CW power 4W, λ = 1050 nm
to 1650 nm). The beam is passed through a monochromator
to obtain a tunable narrowband light with a spectral width
∼2–3 nm, which is sufficiently narrow to excite individual
modes. Next, the beam is passed through a combination of
a polarizing beam splitter and a half wave plate to achieve the
desired input polarization. A 90 : 10 beam splitter allows 10%
of the beam to be incident onto a photodetector, which moni-
tors the power incoupled into the sample. The rest of the beam
is focused by an aspheric lens onto the edge of the sample. The
incoupled light excites the available modes, which are mapped
by measuring the out-of-plane scattered light. The scattered
light is imaged by a SWIR (short wavelength infrared) camera
aided by a 100X objective. Intensity profiles are recorded
over the entire range of the wavelengths (1050–1650 nm), in
steps of 2 nm. Figure 1(c) illustrates a measured mode at a
particular wavelength and configuration. A localized mode in
the vicinity of the input edge is identified readily [38]. The

FIG. 2. Exponential tail of the Anderson localized modes, ob-
tained from the cross section of the configurationally averaged
intensity shown in the inset. Here, λ = 1110 nm.

strong disorder in the structures does not allow the light to
propagate deeper in the system. The localized character was
reconfirmed via intensity statistics P(I/〈I〉), which exhibited
a long-tailed deviation from exponential statistics, allowing us
to estimate the dimensionless conductance g [39,40].

Figure 2 depicts the measurement of the localization length
in the structures. The inset shows a configurationally averaged
intensity distribution at a representative λ = 1110 nm. The
main plot shows a cross section (on a logarithmic Y axis)
through the intensity maximum. The tail shows a clear expo-
nential decay, which was characterized to yield ξ/L = 0.34,
where L = 20 μm, the sample dimension. The loss length
due to the out-of-plane scatter was calibrated to be ∼5L,
which is substantially larger than the measured ξ [41]. Similar
characterization of ξ was carried out over all wavelengths.

Figure 3 shows the variation of ξ/L (red dots) with wave-
length. A gradually increasing profile is observed, with the ξ

ranging from 0.3 L to 0.55 L. The increase is related to the
scattering cross section of the individual scatterer (air hole),
where larger wavelengths experience weaker scattering and
hence a larger ξ . This fact is reflected in the inset, which
shows the �∗ as a function of λ. The �∗ is extracted from the

FIG. 3. Localization length ξ (red dots, left Y axis), and k�∗

(black circles, right Y axis) as a function of wavelength. Inset: �∗

as extracted from ξ .
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FIG. 4. Intensity (green markers) as a function of λ. Black line is
a fit to the data using a sum of Lorentzians. Red circle corresponds to
the intensity image in Fig. 1(c). Inset shows the boxed region, with
the ingredient Lorentzians explicitly shown.

expression of ξ in two dimensions ξloc = �∗exp(πk�∗/2). The
�∗ is much smaller than the operating range of wavelengths. A
kink is noted at λ ∼ 1350 nm, the origin of which is unclear at
this stage. It is also existent in the �∗. The black circles show
the spectral variation of the Ioffe-Regel parameter k�∗, which
is range bound between 2.4 and 2.55. The fact that k�∗ � 1
indicates that the modes are not very tightly localized, which
has a bearing on the level spacings as discussed later.

Energy spectra were then constructed by choosing a spatial
position (x,y) in the region of the mode, and picking the
recorded intensity I (x, y, λ) [42]. A representative spectrum
(green dots) is shown in Fig. 4. The peaks in the spectrum
indicate the resonant modes of the system. The red circle
corresponds to the intensity distribution shown in Fig. 1(c).
To isolate the resonances, a sum of Lorentzians is used to fit
the spectrum, where the peak amplitudes, positions, and the
widths of the Lorentzians are fit parameters [43]. The black
line in the plot is the fit spectrum. A section of the spectrum
(marked by the dashed rectangle) is emphasized in the inset,
exhibiting the various participating Lorentzians [44].

Next, the Thouless conductance gT h is calculated from the
Lorentzian widths and separation between the Lorentzians
as extracted from the fit routine. When gT h > 1, the modes
overlap spectrally and the system transports light through
intermode energy transfer. However, if gT h < 1, the Thouless
criterion for Anderson localization is satisfied. Figure 5(a)
shows the scatter plot of the gT h over all configurations. The
blue dashed line placed at gT h = 1 separates the localized
and delocalized modes. Clearly, a vast majority of the modes
are localized. Few configurations exhibit extremely tight lo-
calization with gT h → 0.1. A major part of the scatter plot
is flat, revealing a spectral insensitivity of gT h. However,
several outliers are seen with gT h > 1, particularly at larger
λ, where some configurations show strong delocalization with
gT h > 3.5. The outliers induce a wavelength dependence in
gT h, shown in the inset (blue squares, left Y axis), where each
λ bin is of 50 nm. The asymmetric error bars represent the
asymmetry in P(gT h). Clearly, the 〈gT h〉 rises with λ. The
inset also depicts the conductance g (red circles, right Y axis)
calculated from the P(I/〈I〉). It can be seen that g � gT h over

FIG. 5. (a) Scatter plot of measured Thouless conductance gT h

over all wavelengths and configurations. Blue dashed line separates
localized (gT h < 1) and delocalized (gT h > 1) modes. Inset: spectral
variation of gT h (blue squares, left Y axis), where the markers
represent 〈gT h〉 and error bars signify the standard deviation. Red
circles (right Y axis) show g computed from the P(I/〈I〉). (b) Mea-
sured P(ln gT h ), showing a Gaussian distribution as is theoretically
predicted for localized modes. Black line is the Gaussian fit. Blue
dashed line separates localized and delocalized modes.

the displayed energy range. Finally, the distribution of ln gT h

is shown in Fig. 5(b). The red curve shows the experimental
histogram, which is a perfect Gaussian. As is well understood
in the literature, the conductance is seen to be log-normally
distributed [39,45]. The black curve is the fit to the data, and
reveals a 〈ln gT h〉 = −0.76, and a width of 0.45. These are
direct measurements of optical Thouless conductance and its
distribution in two-dimensional, optical Anderson localizing
media.

The log-normal nature of the distribution endorses the
strong localization of the modes. However, the ξ indicates that
there is further scope for tighter localization. This discrepancy
arises from the inherent structure. Earlier experiments in two-
dimensional membranes have shown that, when the number of
air holes is increased to augment the disorder, the scattering
loss also increases and so does the width of the Lorentzians
[42]. This effectively weakens the localization of the modes.

The procedure for measuring the Thouless conductance
directly provides access to the eigenfrequencies ωi of the
disorder, which enables us to investigate the level-spacing
statistics. The spacing s = ωi − ωi−1 is an interesting param-
eter that characterizes random spectra of disordered systems.
Figure 6 depicts (blue curve) the histogram of s/s̄, the spac-
ings normalized to mean spacing. Clearly, P(s/s̄) → 0 as
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FIG. 6. Blue line shows the experimentally measured distribu-
tion of energy level spacings of the disordered samples. Red curve
depicts the Wigner-Dyson distribution, while the black line indicates
Poissonian distribution. The measured modes exhibit level repulsion
despite their localized character.

s/s̄ → 0, which indicates a mode repulsion. This arises from
inherent correlations in the eigenfunctions. The red profile
illustrates the Wigner-Dyson (WD) function. The black curve
shows the Poisson distribution, describing spacings between
completely uncorrelated eigenfunctions. The P(s/s̄) behaves
almost congruent to WD, rising linearly, maximizing close
to 1, and decaying with a Gaussian tail. Theoretically, local-
ized eigenfrequencies are expected to be uncorrelated, and
hence P(s/s̄) ought to be Poissonian. However, in realistic
finite-sized systems, the localization is not too tight, and
deviations towards WD are expected. For instance, in a recent
computational study on disordered photonic crystals [46], it
was shown that the P(s/s̄) remains similar to WD function
despite the system entering the localization domain. In order
to support these observations, we implemented a disorder
model in the form of a tight-binding Hamiltonian with diag-
onal disorder, H = ∑

i[	ic
†
i ci + ∑

j pc†
i ci+ j + H.c.], where

the ci is the annihilation operator, p is the hopping probability
between the sites, and j runs over the nearest neighbors. The
diagonal term is determined by a uniform random variate
	i ∈ [1 − W, 1 + W ], where W varies from 0.1 for weak
disorder to 1 for very strong disorder. The hopping prob-
ability p is kept constant at 0.1. The Hamiltonian matrix
is diagonalized to find the eigenvalues ωi and eigenvectors
ψi of the disordered system. In postprocessing of data, the
eigenvalues were broadened (giving a width δωi) by a loss
factor calculated as � ∝ exp(−2R/ξ ), where R quantified the
distance of the peak of the |ψi|2, averaged over the four
boundaries [47]. One thousand configurations are computed
for statistical averaging. Accordingly, the computation pro-
vides both gT h = δω/�ω and P(s/s̄). Figure 7 shows the
P(s/s̄) for three disorder strengths and the legend mentions
corresponding values of 〈gT h〉 and ξ/L. The level-spacing
distribution tends to a Poissonian with increasing disorder.
Clearly, for the magnitude of conductance obtained in our
experiments, the P(s/s̄) is still close to the Wigner-Dyson
function. The inset shows the computed P(ln gT h), endorsing
the log-normal distribution of gT h.

In conclusion, we designed and fabricated amorphous
disordered templates in GaAs membranes. Measuring the
intensity profiles over an ultrabroad wavelength range and
numerous configurations, we extracted the optical Thouless

FIG. 7. Computed P(s/s̄) from a tight-binding Hamiltonian. Red
and black curves depict the Wigner-Dyson and Poissonian distri-
butions, respectively. The histograms indicate P(s/s̄) for varying
degree of localization as indicated in the legend. P(s/s̄) is closer
to a Wigner-Dyson distribution, even for localized modes for the
experimentally achieved degree of localization. Inset shows the
P(ln gT h ), for ξ/L = 0.51.

conductance and the distribution P(ln gT h) thereof. For com-
parison, the dimensionless conductance g was extracted from
P(I/〈I〉), and was found to be very comparable, albeit slightly
larger than gT h. The measured P(ln gT h) exhibited a Gaussian
distribution, consistent with the Anderson localized domain
of transport, as was independently verified. The level spac-
ing statistics were experimentally measured, and suggested a
likeness to the Wigner-Dyson function despite the localized
transport, which typically shows a Poissonian behavior. The
origin of this observation was the moderate degree of local-
ization obtained in this amorphous system. We implemented
a tight-binding Hamiltonian with a strong disorder in the
nearest-neighbor couplings, with a loss parameter added in the
postprocessing of eigenvalues. The model excellently repro-
duced the P(ln gT h) and P(s/s̄) observed in the experiments
for a comparable degree of localization. These observations
are generally representative of the behavior of light in lo-
calizing systems, and indicative of the disorder strength that
such systems can offer. Riboli et al. have demonstrated the
inefficiency of increasing disorder by raising either the hole
density or the hole radius [42]. Our sample sizes are also
typical of the large-area sizes in membranes. Coupled to these
results, therefore, one can infer that the near Wigner-Dyson
may turn out to be the limiting distribution for level statistics
in practical optical systems. We believe that these studies shed
important light on localization in optical systems, a research
area which is already seeing rapid novel developments.
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