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We present a detailed theoretical description of quantum coherent electron transport in voltage-biased
crosslike Andreev interferometers. Making use of the charge conjugation symmetry encoded in the quasiclassical
formalism, we elucidate a crucial role played by geometric and electron-hole asymmetries in these structures.
We argue that a nonvanishing Aharonov-Bohm-like contribution to the current IS flowing in the superconducting
contour may develop only in geometrically asymmetric interferometers making their behavior qualitatively
different from that of symmetric devices. The current IN in the normal contour—along with IS—is found to be
sensitive to phase-coherent effects thereby also acquiring a 2π -periodic dependence on the Josephson phase.
In asymmetric structures this current develops an odd-in-phase contribution originating from electron-hole
asymmetry. We demonstrate that both phase-dependent currents IS and IN can be controlled and manipulated
by tuning the applied voltage, temperature, and system topology, thus rendering Andreev interferometers
particularly important for future applications in modern electronics.
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I. INTRODUCTION

An interplay between quantum coherence and nonequilib-
rium phenomena is an intriguing topic in condensed matter
physics. Hybrid metallic heterostructures composed of su-
perconducting (S) and normal (N) terminals constitute an
important playground to realize and investigate rich physics
associated with the above phenomena. In these systems, fre-
quently called Andreev interferometers, long-range quantum
coherence is induced due to the superconducting proxim-
ity effect, while nonequilibrium conditions can be created
by virtue of biasing different terminals with external volt-
ages and/or temperature gradients [1–3]. Distinctive electri-
cal and thermal properties of such systems, including, e.g.,
large phase-dependent thermoelectric effects [4–8], phase-
coherent charge transport [9–15] and conductance reentrance
[16,17], Aharonov-Bohm-like behavior of SN-rings [16–20]
and nonlocal (or crossed) Andreev reflection [21–29], ren-
der them a promising platform for modern electronics and
caloritronics.

Yet another remarkable effect is the so-called π -junction
state that can occur in systems with two normal and two
superconducting terminals interconnected by normal metallic
wires forming a cross. Applying a phase twist φ to two super-
conducting terminals of this crosslike Andreev interferometer
one induces dc Josephson current IS (φ) between these termi-
nals just like in usual SNS junctions [30–32]. Simultaneously
biasing two normal terminals with an external voltage V one
can modify the electron distribution function in the system,
and thereby control the magnitude of IS ≡ IS (φ,V ). At some
values of V the supercurrent flowing between S terminals
becomes negative signaling the π -junction state [33–36].

Recently three of us demonstrated [37,38] that the above
scenario, being appropriate for symmetric crosslike Andreev
interferometers, becomes by far incomplete as soon as the sys-
tem topology is made asymmetric. It turns out that in the latter
situation the underlying physics becomes much richer being
essentially determined by a competition between voltage-
dependent (odd in φ) Josephson and (even in φ) Aharonov-
Bohm-like currents flowing in the superconducting contour.
This tradeoff may have a drastic impact on the current-phase
relation IS (φ) in voltage-biased Andreev interferometers re-
sulting in a novel (I0, φ0)-junction state [37], predicted to
occur at low T and high enough eV exceeding an effective
Thouless energy of our device. This state is characterized
by coherent 2π -periodic oscillations of IS as a function of φ

shifted from the origin by the phase φ0(V ) that can take any
value, thus being in general different from zero or π .

It should be emphasized that asymmetric topology of
crosslike Andreev interferometers plays a crucial role for this
effect: With the aid of simple charge-conjugation symmetry
arguments to be outlined below one can demonstrate that by
making the interferometer in Fig. 1 symmetric in at least
one of the two contours (either normal or superconducting)
one totally suppresses the Aharonov-Bohm contribution to
IS , hence, getting back to the physical picture [33–36] with
φ0(V ) = 0, π .

Here we will argue that the physics of asymmetric crosslike
interferometers is actually even richer than that discussed in
our previous studies [37,38]. In particular, it turns out that
the current IN flowing between the two normal terminals
of such interferometer, similarly to IS , exhibits proximity
induced coherent 2π -periodic oscillations as a function of the
superconducting phase difference φ. The function IN (φ) is in
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FIG. 1. Asymmetric crosslike Andreev interferometer under
consideration.

general neither even nor odd, i.e., it consists of both even and
odd in φ harmonics. While the first of these contributions
(∝ cos φ) to the current IN can be interpreted in terms of
the Aharonov-Bohm-like effect, the second one (∝ sin φ) is
much more tricky as it obviously cannot have anything to
do with the Josephson current. Below we will demonstrate
that the physical origin of the latter contribution to IN is
directly related to electron-hole asymmetry generated due to
the mechanism of sequential Andreev reflections at different
NS interfaces [39].

The structure of the paper is as follows. In Sec. II, we
introduce the system under consideration, describe the quasi-
classical formalism used throughout our paper, and elucidate
the charge-conjugation symmetry properties of this formalism
important for our further considerations. In Sec. III we focus
our analysis on the limit of highly resistive NS interfaces, in
which case it is possible to obtain a full analytic solution of
our problem. Our key results and the corresponding discussion
are formulated in Sec. IV. In Sec. V, we briefly summarize
our findings. Further technical details are relegated to the
Appendixes.

II. MODEL AND BASIC FORMALISM

Below we will consider crosslike Andreev interferometers
schematically depicted in Fig. 1. The system consists of two
normal-metal diffusive wires of total lengths lN1 + lN2 and
lS1 + lS2 = L connected between each other in the form of
a cross, and attached, respectively, to two normal and two
superconducting terminals. We will address a general case
of asymmetric Andreev interferometers with lN1 �= lN2 and
lS1 �= lS2, which demonstrate a variety of quantum coherent
effects some of which do not occur in symmetric configura-
tions. Electrostatic potentials of both S terminals are set equal
to zero V = 0, while the potentials of the normal terminals
are denoted as V1 and V2. These N terminals are biased by an
external voltage V implying V2 = V1 + V . The superconduct-
ing order parameter of the left and right S terminals is chosen

to be, respectively, � exp(iφL ) and � exp(iφR). The value of
the phase difference between these terminals φ = φL − φR

can easily be controlled by an external magnetic flux inserted
inside a superconducting loop.

Obviously, electric current can flow between S terminals
(superconducting contour) as well as between N terminals
(normal contour) being dependent on external bias V , tem-
perature T , and phase difference φ. The task at hand is to
determine the distribution of voltages and electric currents in
our structure in the presence of long-range quantum coherent
effects, and to demonstrate the importance of geometric and
electron-hole asymmetries in our problem.

A. Quasiclassical formalism

We will adopt the standard quasiclassical formalism [1]
aimed at describing nonequilibrium quantum properties of
hybrid metallic structures like the one in Fig. 1. The quasiclas-
sical Green’s functions in each metallic wire are represented
with the aid of a 4 × 4 matrices in the Keldysh-Nambu space
composed of retarded (ĜR), advanced (ĜA), and Keldysh (ĜK )
functions

Ǧ(ε, r) =
(

ĜR ĜK

0̂ ĜA

)
. (1)

This matrix Green’s function obeys the normalization condi-
tion Ǧ2 = 1̌ and satisfies the Usadel equation

D∇(Ǧ∇Ǧ) = [−iετ̂z, Ǧ], (2)

where D stands for a diffusion coefficient and τ̂z is the Pauli
matrix in the Nambu space.

In what follows it will be convenient for us to employ
the so-called Riccati parametrization [40,41]. For the retarded
Green’s function it reads

ĜR = 1

1 + γ γ̃

(
1 − γ γ̃ 2γ

2γ̃ γ γ̃ − 1

)
. (3)

A similar representation holds for the advanced Green’s func-
tion since ĜA = −τ̂z(ĜR)+τ̂z. The spectral part of the Usadel
equation then becomes

�γ − 2γ̃

1 + γ γ̃
(∇γ )2 + 2iεγ = 0, (4)

�γ̃ − 2γ

1 + γ γ̃
(∇γ̃ )2 + 2iεγ̃ = 0. (5)

With the aid of the standard representation for the Keldysh
Green’s function

ĜK = ĜRF̂ − F̂ ĜA, F̂ = fL + τ̂z fT , (6)

the kinetic part of the Usadel equation can be cast to the form

∇ jL = 0, jL = DL∇ fL − Y∇ fT + js fT , (7)

∇ jT = 0, jT = DT ∇ fT + Y∇ fL + js fL. (8)

Here jT = tr(Ǧ∇Ǧτ̂z )K and jL = tr(Ǧ∇Ǧ)K represent the
spectral densities of respectively electric and thermal currents,
fL and fT are, respectively, symmetric and anisymmetric parts
of the electron distribution function,

js = 1
4 tr τ̂z(ĜR∇ĜR − ĜA∇ĜA) (9)
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stands for the supercurrent density, and the kinetic coefficients
DL, DT , and Y are defined as

DL = 1
2 − 1

4 tr ĜRĜA, (10)

DT = 1
2 − 1

4 tr ĜRτ̂zĜ
Aτ̂z, (11)

Y = 1
4 tr ĜRτ̂zĜ

A. (12)

Note that the kinetic coefficient (12) explicitly accounts for
the presence of the electron-hole asymmetry in our system.

Resolving the Usadel equations one can evaluate the elec-
tric current density j in our system defined as

j = −σN

2e

∫
jT (ε)dε, (13)

where σN is the Drude conductivity of a normal metal.

B. Boundary conditions

As usual, the Usadel equation (2) should be supplemented
by proper boundary conditions allowing us to match the
Green’s functions at all intermetallic interfaces. Below we
will assume that the central node—the contact between the
two normal wires—is characterized by perfect transmission,
meaning that the Green’s functions are continuous and that
the spectral currents associated with them are conserved. The
same applies to the boundaries with the N terminals: The
Green’s functions inside the normal-metal wire are continu-
ously matched to the corresponding bulk values ĜR/A

N = ±τ̂z

and

f N
L/T = 1

2

[
tanh

ε + eV

2T
± tanh

ε − eV

2T

]
. (14)

What remains is to define the boundary conditions at two NS
interfaces. Here, we will restrict our analysis to the tunnel-
ing limit, i.e., we assume that the transmission of both NS
interfaces is small compared to unity. This limit is accounted
for by the well-known Kupriyanov-Lukichev (KL) boundary
conditions [42]

LǦ∂xǦ = ± 1

2r
[ǦSC, Ǧ], (15)

where Ǧ is the Green’s function in the normal wire, ǦSC

denotes the bulk Green’s function of the corresponding S
terminal with

ĜR
SC =

(
ε �eiχ

−�e−iχ −ε

)
√

(ε + iδ)2 − �2
, (16)

ĜK
SC = tanh

ε

2T

(
ĜR

SC − ĜA
SC

)
, (17)

and phase χ equals to either φL or φR depending on the
terminal. The parameter r is defined as

r = AσN

LG , (18)

where A is the interface cross section and G is the normal-state
conductance of the interface. Note that within the applicability
range of KL boundary conditions (15) and depending on the
relation between G and the conductance of the normal wire of

length L, the parameter r can in general take any value both
smaller and larger than unity.

C. Symmetry considerations

Let us define charge-conjugated Green’s function as

Ǧc(ε, r) = −τ̂1Ǧ(ε, r)τ̂1. (19)

It is straightforward to verify that the function (19) represents
a solution of the Usadel equation (2) with inverted signs of
both electric and magnetic fields as well as of that of the
superconducting phase. This symmetry has important con-
sequences for the charge transport properties of the system
under consideration.

Resolving the Usadel equation (2) we determine the charge
currents in all four metallic wires as functions of the phase
difference φ and the applied voltages V1 and V2. Making use
of Eq. (19) one can demonstrate that all currents invert their
signs under the transformation V1 ↔ −V1, V2 ↔ −V2, φ ↔
−φ, i.e., we have

Ii(−φ,−V1,−V2) = −Ii(φ,V1,V2), (20)

where the index i labels the wires N1, N2, S1, and S2.
The electrostatic potentials V1 and V2 as functions of both

the phase φ and the bias voltage V are determined from the
current conservation conditions

IN1(φ,V1,V2) = IN2(φ,V1,V2) = IN , (21)

IS1(φ,V1,V2) = IS2(φ,V1,V2) = IS, (22)

combined with the condition V2 − V1 = V . Likewise, the cur-
rents IS1, IS2, IN1, IN2 can also be expressed as functions of φ

and V .
In general all these currents are 2π -periodic functions of

φ. Extra geometric symmetries of our structure may enforce
higher symmetries for the above currents rendering them, e.g.,
either purely even or purely odd functions of φ. In particular,
it is instructive to distinguish two special cases: (i) symmetric
connectors to S terminals (implying that lS1 = lS2 and rL =
rR) and (ii) symmetric connectors to N terminals (lN1 = lN2).
It follows immediately (see also Appendix A for more details)
that in both cases (i) and (ii) the current IS turns out to be an
odd function of φ, i.e.,

IS (−φ) = −IS (φ), (23)

whereas the current IN is even in φ,

IN (−φ) = IN (φ). (24)

Hence, for partially symmetric crosslike Andreev interfer-
ometers [in both cases (i) and (ii)] the Aharonov-Bohm-like
contribution to the current IS vanishes and we are back to
the situation of only 0- or π -junction states considered in
Refs. [33–35]. On top of that, no odd-in-φ contribution to
IN can occur in such structures. In what follows we will,
therefore, address the most general case of fully asymmetric
interferometers with lN1 �= lN2 and lS1 �= lS2.
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III. HIGHLY RESISTIVE INTERFACES: ANALYTIC
SOLUTION

Let us now employ the above equations and evaluate the
Green’s functions for the structure depicted in Fig. 1. As
usual, one can split the problem into spectral, Eqs. (4)–(5), and
kinetic, Eqs. (7)–(8), parts, which can be treated separately.
Below in this section, we will stick to the limit of sufficiently
large values of the parameter r at both NS interfaces and
construct a full analytic solution of the problem.

A. Spectral part

Let us assume that tunnel barriers at both NS interfaces are
sufficiently large and, hence, anomalous correlations penetrat-
ing into the normal-metal wires from the superconducting ter-
minals are strongly suppressed. In this case, one can linearize
the spectral part of the Usadel equation and get

γ ′′
i + λ2γi = 0, (25)

where λ2 = 2iε/(EThL2) and ETh ≡ D/L2 (with L = lS1 +
lS2) is an effective Thouless energy of our setup. The same
equation also holds for γ̃ . Here and below, we also assume
ETh � � enabling us to restrict our analysis to subgap ener-
gies |ε| < �.

The boundary conditions take the form

γS1(0) = γS2(0) = γN1(0) = γN2(0) = γ0,

AS1γ
′
S1(0) + AN2γ

′
N2(0) = AS2γ

′
S2(0) + AN1γ

′
N1(0),

γN1(lN1) = γN2(−lN2) = 0,

Lγ ′
S1(−lS1) = −FL

2rL
, Lγ ′

S2(lS2) = FR

2rR
.

Equations in the first two lines follow directly from the
continuity of γ and from the spectral current conservation
at the central node (with coordinate set equal to zero). The
equation in the third line implies that anomalous correlations
vanish at the boundaries with both N terminals. Finally, the
two equations in the last line just represent KL boundary
conditions at the left and right NS interfaces characterized by
parameters rL and rR, respectively, [defined in Eq. (18) with
G ≡ GL/R]. We also choose

FR = −i�eiφR√
�2 − (ε + iδ)2

, FL = −i�eiφL√
�2 − (ε + iδ)2

.

Resolving the linearized Usadel equations with the above
boundary conditions, we obtain

γN1 = γ0
sin λ(lN1 − x)

sin λlN1
, γN2 = γ0

sin λ(lN2 + x)

sin λlN2
, (26)

γS1 = γ0
cos λ(lS1 + x)

cos λlS1
− FL

2LλrL

sin λx

cos λlS1
, (27)

γS2 = γ0
cos λ(lS2 − x)

cos λlS2
+ FR

2LλrR

sin λx

cos λlS2
, (28)

where

γ0 = 1

N
1

2Lλ

( FLAS1

rL cos λlS1
+ FRAS2

rR cos λlS2

)
, (29)

N = AN1 cot λlN1 + AN2 cot λlN2 −
−AS1 tan λlS1 − AS2 tan λlS2. (30)

Then, for the spectral supercurrent density, one readily finds

js,S1AS1 = js,S2AS2 = AS1AS2

L2rRrL
sin φ

× Re

{
�2

�2 − (ε + iδ)2

i

λ cos λlS1 cos λlS2

1

N

}
.

(31)

The above analytic solution of the spectral part of the prob-
lem enables one to easily derive the applicability condition for
the linearized Usadel equation (25). Setting functions γ to be
much smaller than unity within the normal wires and making
use of Eqs. (26)–(30), we arrive at the following conditions:

rL � AS1

L

(AN1

lN1
+ AN2

lN2

) , rR � AS2

L

(AN1

lN1
+ AN2

lN2

) . (32)

Note that depending on the system parameters these con-
ditions may substantially deviate from simple inequalities
rR,L � 1, which one could naively expect to be sufficient in
order to linearize the Usadel equations.

B. Kinetic part

Below, we proceed similarly to the above Sec. III A, and
resolve the kinetic equations perturbatively by formally ex-
panding them in 1/(rir j ), where i, j = L, R. In the zeroth
order, we have

∇ j (0)
L/T = 0, j (0)

L/T = ∇ f (0)
L/T (33)

with the boundary conditions

f (0)
L/T (lN1, ε) = f N

L/T (V1), f (0)
L/T (−lN2, ε) = f N

L/T (V2);

j (0)
L,S1/S2 = j (0)

T,S1/S2 = 0;

AS1 jL/T,S1 + AN2 jL/T,N2 = AS2 jL/T,S2 + AN1 jL/T,N1.

Equations in the first line account for boundaries with both N
terminals, the second line represents KL boundary conditions
at both NS interfaces, whereas the last equation just reflects
both electric and energy currents conservation and, hence, it
remains valid to all orders. In fact, the condition jL,S1/S2 = 0
is also valid to all orders at energies |ε| < �, since subgap
excitations do not contribute to the energy current flowing into
the S terminals.

We observe that—to the zeroth order—functions f (0)
L and

f (0)
T depend linearly on the coordinate along the wire in

the normal contour, whereas in the wire that belongs to
the superconducting contour these functions remain constant
equal to

f (0)
L/T (0) =

(
1

RN1
+ 1

RN2

)−1
[

f N
L/T (V1)

RN1
+ f N

L/T (V2)

RN2

]
. (34)
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Here, RN1 and RN2 are normal-state Drude resistances of the
normal wires connected to terminals N1 and N2

RN1 = lN1

AN1σN
, RN2 = lN2

AN2σN
. (35)

Note that with the aid of the above zeroth-order solution
combined with KL boundary conditions one can establish
the spectral electric current in the superconducting contour
to the next order in parameter ∼1/(rLrR). Indeed, the latter
conditions can be written in the form j (1)

T = ±αT /(LrL/R)

with

αT = Im

{
�(e−iφγ + eiφγ̃ )√

�2 − (ε + iδ)2

}
f (0)
L

− Im

{
�(e−iφγ − eiφγ̃ )√

�2 − (ε + iδ)2

}
f (0)
T . (36)

With this in mind, the electric current conservation condition
yields

AS1

∫
dε jT,S1(ε) = AS2

∫
dε jT,S2(ε), (37)

which after some algebra can further be cast to the form

AS2

r2
R

∫
dε f (0)

T Im

{
�2

�2 − (ε + iδ)2

i

λ

tan λlS2(AN1 cot λlN1 + AN2 cot λlN2 − AS1 tan λlS1) + AS2

N

}

+ 2
AS1AS2

rRrL
cos φ

∫
dε f (0)

T Im

{
�2

�2 − (ε + iδ)2

i

λ cos λlS1 cos λlS2

1

N

}

+AS1

r2
L

∫
dε f (0)

T Im

{
�2

�2 − (ε + iδ)2

i

λ

tan λlS1(AN1 cot λlN1 + AN2 cot λlN2 − AS2 tan λlS2) + AS1

N

}
= 0. (38)

This equation together with the condition V2 − V1 = V defines
electrostatic potentials of both normal terminals V1 and V2

demonstrating that these potentials depend not only on V and
T , but also on phase difference φ between the superconduct-
ing terminals. The latter dependence clearly illustrates the im-
portance of long-range proximity induced quantum coherence
effects spreading not only into the superconducting contour
but also into the normal contour, thereby influencing the
potentials of both normal terminals. It follows from Eq. (38)
that both electrostatic potentials V1 and V2 depend on cos φ,
thus being even functions of φ.

The above perturbative analysis of the kinetic equations
can be justified if the interface resistances are much larger than
the resistances of the corresponding attached normal wires

rLL/lS1, rRL/lS2 � 1. (39)

Having determined V1 and V2, we are ready to find the
electric current in the superconducting contour. It reads

IS = −σN

2e

∫
dεAS1 jT,S1(ε), (40)

where

AS1 jT,S1 = f (0)
L

AS1AS2

L2rRrL
sin φ Re

{
�2

�2 − (ε + iδ)2

i

λ cos λlS1 cos λlS2

1

N

}

+ f (0)
T

AS1AS2

L2rRrL
cos φ Im

{
�2

�2 − (ε + iδ)2

i

λ cos λlS1 cos λlS2

1

N

}

+ f (0)
T

AS1

L2r2
L

Im

{
�2

�2 − (ε + iδ)2

i

λ

tan λlS1(AN1 cot λlN1 + AN2 cot λlN2 − AS2 tan λlS2) + AS1

N

}
. (41)

The first term in the right-hand side of Eq. (41) represents the
Josephson contribution, the second term [proportional to both
1/(rLrR) and cos φ] defines the coherent Aharonov-Bohm-
like current, while the last term has to do with the Andreev
conductance of SN interfaces.

As already mentioned above, Eq. (38) contains only terms
depending on cos φ, while the Josephson contribution pro-
portional to sin φ drops out from this equation. In other
words, the terms entering the electric current conservation
condition, cf. Eq. (37), represent the combination of cos φ-
dependent (Aharonov-Bohm) and φ-independent (Andreev)
contributions. This observation appears to be specific to the
chosen crosslike geometry [as suggested, e.g., by Eqs. (31)
and (34)] and, furthermore, it only holds in the leading order

in 1/(rir j ). A more detailed numerical analysis indicates that
for smaller values of rL,R the sin φ harmonic is present and
might even play an important role. We also note that Eq. (38)
and Eq. (41) can be combined in a way that allows us to
expel an explicit dependence on cos φ from the expression
for IS . In this case, the even in φ contribution to IS appears
implicitly due to the dependencies of potentials V1 and V2

on φ.

IV. RESULTS AND DISCUSSION

Let us now explicitly evaluate the distribution of volt-
ages and currents in our crosslike Andreev interferometer.
We first determine electrostatic potentials of the two normal
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FIG. 2. The amplitude of even-in-φ oscillations of electrostatic
potentials V1/2 as a function of the bias voltage V at T 
→ 0.
Numerical curve (solid line) is obtained by solving Eq. (38). An
approximate result (44) is indicated by the dotted red line. Here we
set rL = rR = r � 1, lS1 ≡ L − lS2 = 0.2L, lN1 = 0.3L, lN2 = 0.7L,
and � = 500ETh. Note that this amplitude does not depend on r in
the limit of large r.

terminals, V1 and V2, and then evaluate the currents in both
superconducting and normal contours, which depend on these
potentials.

A. Electrostatic potentials

According to Eq. (38) the corresponding Aharonov-Bohm
term is proportional to ∼1/(rLrR), i.e., it has the same order as
the other two terms ∼1/r2

L and ∼1/r2
R. On the other hand, in

the limit lS1, lS2 � √
D/� considered here and at high enough

voltages ETh � e|V1,2| < |�| the Aharonov-Bohm contribu-

tion becomes exponentially suppressed as ∝ e−
√

e|V1,2|/ETh and,
hence, it can be treated as a small perturbation. Then we
obtain

V1/2 ≈ V̄1/2(V ) + VAB(V ) cos φ, (42)

where

V̄1 ≈ − R2
N1

R2
N1 + R2

N1

V, V̄2 ≈ R2
N2

R2
N1 + R2

N1

V (43)

and

eVAB = 4rRrL

r2
R + r2

L

(RN1RN2)2

(R2
N1 + R2

N2)3/2

√
e|V |ETh

[
e−

√
e|V̄2|/ETh

RN2

× sin
√

e|V̄2|/ETh − e−
√

e|V̄1|/ETh

RN1
sin
√

e|V̄1|/ETh

]
.

(44)

The presence of the φ-dependent term in Eq. (42) indicates
that electrostatic potentials V1/2 are sensitive to proximity-
induced long-range quantum coherence in our structure. The
magnitude of this coherent contribution to V1,2 is controlled by
parameter VAB defined in Eq. (44). Note that this approximate
analytic expression for VAB turns out to be very accurate, as it
is demonstrated in Fig. 2.

B. Current IS in the superconducting contour

Following our previous analysis [37,38] we can express the
current IS in the superconducting contour in the form

IS (φ,V ) = Ieven
S (φ,V ) + Iodd

S (φ,V )

≈ I0(V ) + IJ (V ) sin φ + IAB(V ) cos φ. (45)

Here I0(V ) defines a dissipative Andreev-like term entering
Eq. (41), while IJ and IAB represent odd in φ Josephson and
even in φ Aharonov-Bohm-like currents. It follows directly
from Eq. (38) that the last (Aharonov-Bohm) term differs from
zero only for asymmetric structures with both lS1 �= lS2 and
lN1 �= lN2, in accordance with our general symmetry analysis
in Sec. II C.

The results derived in the previous subsection imply that
in the particular case of identical NS boundaries with rL =
rR = r � 1 we have IS (r) ∝ 1/r2. In this limit, the amplitudes
of both odd and even in φ oscillations as functions of V are
shown in Fig. 3. We observe that IJ (V ) experiences zero-
to-π -junction switching [33–36] at around eV � 17ETh and
becomes exponentially suppressed at higher voltages, simi-
larly to the case of fully transparent NS boundaries [37,38].
Integrating the supercurrent density in Eq. (41) over energies,
at sufficiently high bias voltages eV � ETh we get

eRLIJ

ETh
≈ 1

rRrL

∑
i=1,2

1/RNi

1/RN1 + 1/RN2

�2

�2 − (eV̄i )2

×e−
√

e|V̄i|/ETh cos

√
e|V̄i|
ETh

. (46)

This formula turns out to be in a good agreement with the
numerical solution of Eq. (38) at eV � 5ETh, cf. Fig. 3(a).

Just like in the case of transparent SN boundaries [37,38],
here one could expect IAB(r,V ) to saturate to some nonzero
value I∞

AB(r) at sufficiently high voltages eV � ETh. In con-
trast to such expectations, in the limit r � 1 one finds
I∞
AB = 0, cf. also Fig. 3(b). The latter result applies in the

leading order in 1/r2 and has the same origin as a similar
behavior of the coherent contribution to V1/2 at large voltages,
cf. Fig. 2. Hence, one can expect that I∞

AB(r) ∝ 1/r4 for r � 1.
For amplitude IAB(V ), within the voltage interval � �

eV � ETh, one can derive an expression similar to the one in
Eq. (46). Under the condition lS1, lS2 � √

D/(eV ) we obtain

eRLIAB

ETh
≈ r2

L − r2
R

(r2
L + r2

R)rRrL

RN1RN2

RN1 + RN2

×
∑
i=1,2

(−1)i

RNi
e−

√
e|V̄i|/ETh sin

√
e|V̄i|
ETh

. (47)

Note that in the particular case rR = rL = r, the expression
(47) vanishes identically implying that a more accurate treat-
ment is required in this case. The corresponding analysis can
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be worked out and yields

eRLIAB

ETh
≈ − 1

2r2

RN1RN2

(RN1 + RN2)(R2
N1 + R2

N2)

⎡
⎣∑

i=1,2

(−1)i

RNi
e−

√
e|V̄i|/ETh sin

√
e|V̄i|
ETh

⎤
⎦

×
⎧⎨
⎩
∑

i, j=1,2

(−1) jR2
Ni exp

⎛
⎝−
√

e|V̄i|
ETh

lSj

L

⎞
⎠
⎡
⎣cos

⎛
⎝
√

e|V̄i|
ETh

lSj

L

⎞
⎠− sin

⎛
⎝
√

e|V̄i|
ETh

lSj

L

⎞
⎠
⎤
⎦
⎫⎬
⎭. (48)

As far as the temperature dependence of IS is concerned,
we point out that, while the Aharonov-Bohm-like contribu-
tion IAB decays as a power law with increasing T > eV ,
the Josephson term IJ decays exponentially, thus becoming
negligible as compared to IAB in the high-temperature limit
T � ETh. In the case of fully transparent NS interfaces the
temperature dependencies of both even and odd in φ com-
ponents of IS have already been studied elsewhere [37,38],
therefore we can avoid further details here.

C. Current IN in the normal contour

Let us now turn to the electric current IN flowing between
the two normal terminals. This current also demonstrates a
2π -periodic dependence on phase φ and can be represented
as a sum of even and odd in φ contributions:

IN (φ,V ) = Ieven
N (φ,V ) + Iodd

N (φ,V ). (49)

The first (even-in-φ) term again describes the Aharonov-
Bohm-like contribution [43] and is by no means surprising.
At the same time, the presence of the odd periodic in φ

contribution to current IN is curious. In contrast to the su-
perconducting contour, here term Iodd

N (φ,V ) obviously cannot
be attributed to the Josephson effect, and its physical nature
requires further analysis.

For simplicity, let us assume that all cross sections are
equal Ai = A. Then, we obtain

Iodd
N = σN

2e

A
lN1 + lN2

∫
dε j (0)

L

lN1∫
−lN2

dxY (x, ε), (50)

where j (0)
L = ( f N

L (V1) − f N
L (V2))/(lN1 + lN2) is the corre-

sponding spectral current in the normal contour. Since the
current Iodd

N in Eq. (50) is controlled by the kinetic coefficient
Y we conclude that this current should be attributed to the
electron-hole asymmetry in our system generated due to the
phase-sensitive mechanism of sequential Andreev reflections
at different NS interfaces [39]. This conclusion is further
supported by observing that Iodd

N ∝ sin φ/(rLrR).
At sufficiently large voltages e|V | � ETh the integrals in

Eq. (50) can be handled explicitly, and we get

eRLIodd
N

ETh
≈ sin φ

16rRrL

(RS1 + RS2)2

(RN1 + RN2)2

L2

l2
S1 + l2

S2

∑
i=1,2

(−1)i+1 ETh

e|V̄i|
�2

�2 − (eV̄i )2
e−

√
e|V̄i|/ETh

×
⎡
⎣sin

⎛
⎝
√

e|V̄i|
ETh

lS1 − lS2

L

⎞
⎠+ lS1 − lS2

L
cos

⎛
⎝
√

e|V̄i|
ETh

lS1 − lS2

L

⎞
⎠
⎤
⎦, (51)

where RS1 = lS1/(AS1σN ) and RS2 = lS2/(AS2σN ) are the nor-
mal state Drude resistances of the wires connected to the
superconducting terminals. We also note that the current in
Eq. (51) vanishes identically for lS1 = lS2 (and rS1 = rS2)
and/or lN1 = lN2, in full agreement with our symmetry con-
siderations in Sec. II C.

It is also interesting to study current IN (φ,V ) at different
values of r. This can be done by numerically solving the
Usadel equation (2). In Fig. 4 we display the corresponding
results for the amplitudes of both odd and even oscillations of
the current IN as functions of V at T 
→ 0 for different values
of r. We observe that the odd in φ harmonics persists at all
values of r becoming progressively more pronounced with
decreasing r, cf. also the inset in Fig. 4 where we present
the result obtained in the limit r = 0. This amplitude first
increases with increasing V reaching its maximum at around
eV � 10ETh and then falls off being exponentially suppressed
already at eV � 50ETh in accordance with Eq. (51). Let us

mention that in contrast to the current IJ (V ), which exhibits
the transition to the π -junction state [37,38] at around eV �
15ETh [cf. also Fig 3(a)], the amplitude of Iodd

N (V ) demon-
strates similar switching at much higher voltages eV � 60ETh.
This behavior of Iodd

N (V ) is related to the presence of an extra
parameter (lS1 − lS2)/L < 1 in the argument of the sin term,
cf. Eq. (51).

The even in φ current amplitude Ieven
N (V ) saturates to a

nonzero value at large voltages (see Fig. 4), just as one would
expect for the Aharonov-Bohm-like contribution. Notably, the
value of the plateau scales as 1/r2 for r � 1. This is in
contrast to I∞

AB(r), which scales as 1/r4.
In order to complete our analysis of the current IN , we

note that with increasing temperature T > eV the even-
in-φ contribution to this current decays as a power law
similarly to IAB(T ), which could serve as a signature of
the Aharonov-Bohm-like effect. In contrast, the odd-in-φ
contribution Iodd

N (T ) behaves qualitatively similarly to the
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FIG. 3. The amplitudes of (a) odd-in-φ and (b) even-in-φ oscilla-
tions of the current IS as functions of V at T 
→ 0. Numerical curves
(indicated by solid lines) are obtained by solving Eq. (38). Analytical
results (dotted red lines) correspond to Eq. (46) in (a) and to Eq. (48)
in (b).

Josephson term IJ (T ) decaying much faster than Ieven
N (T ) and

becoming invisibly small already at temperatures of order
several ETh.

V. CONCLUSIONS

In this work we performed a detailed analysis of a nontriv-
ial interplay between proximity induced long-range quantum
coherence and nonequilibrium effects in crosslike Andreev
interferometers as well as of its impact on electron transport
properties of such devices.

We emphasized a crucial role of various symmetries in
our problem. The charge conjugation symmetry encoded in
the Usadel equations allowed us to establish an important
general relation (20), which, in turn, helps to demonstrate that
topology of crosslike Andreev interferometers is essential for
determining charge transport properties of these devices.

We showed that in symmetric interferometers, the current
IS in the superconducting contour is an odd function of the
superconducting phase difference φ. In other words, the even-
in-φ Aharonov-Bohm-like contribution vanishes identically in
such structures. These setups can only support the voltage-
controlled Josephson current, and demonstrate switching

FIG. 4. Top: The amplitude of the odd-in-φ oscillations of the
current IN as a function of V at T 
→ 0 for different values of r. The
parameter values are the same as in Fig. 2, except � = 250ETh. Solid
lines represent full numerical solution of the Usadel equation (2),
dashed lines correspond to the analytical result, cf. Eq. (51). The
latter equation provides a good approximation starting from eV �
20ETh down to the lowest values of r employed in our calculation.
Inset: The same quantity evaluated in the limit of fully transparent
interfaces and � = 100ETh. Dashed line corresponds to Eq. (B4).
Bottom: Amplitude of the even-in-φ oscillations of IN .

between 0 and π states depending on the applied voltage bias.
In contrast, nonvanishing Aharonov-Bohm-like currents do
survive in asymmetric structures. The physics of such devices
is dominated by a tradeoff between Josephson and Aharonov-
Bohm-like quantum coherent contributions to the current IS ,
leading to the (I0, φ0)-junction state at sufficiently high bias
voltages [37,38]. Hence, the current-phase relation IS (φ) can
be manipulated by external voltage bias, temperature, and
topology of the setup.

The current IN (φ) flowing in the normal contour is also 2π -
periodic function of the superconducting phase difference φ,
i.e., it is directly affected by the proximity induced long-range
quantum coherence. With the aid of our symmetry arguments
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we demonstrated that in symmetric Andreev interferometers,
the current IN (φ,V ) is an even function of φ associated with
the Aharonov-Bohm-like contribution.

A nontrivial effect discovered here is that in asymmetric
crosslike interferometers the current IN develops an odd har-
monics Iodd

N , cf. Eq. (50). The appearance of this contribution
is particularly interesting because it can be attributed neither
to the Aharonov-Bohm effect nor to the Josephson physics.
In fact, our analysis demonstrates that the origin of the term
Iodd
N is linked to violation of yet one more (electron-hole)

symmetry that occurs under nonzero phase bias due to se-
quential Andreev reflections at different NS interfaces [39]. In
the tunneling limit the magnitude of this effect is controlled
by sin φ thereby resulting in a Josephson-like contribution
Iodd
N ∝ sin φ to the current IN (φ,V ) between normal terminals.

Similarly to IS (φ), the current-phase relation IN (φ) can also
be manipulated by external voltage bias, temperature and
topology of the interferometer.

Finally, we note that electron-hole symmetry violation
is believed to also be responsible for large thermoelec-
tric effects in Andreev interferometers [39,44]. Our work,
therefore, establishes an intimate relation between the cur-
rent IN and thermoelectricity in hybrid superconducting
nanostructures [45].

To conclude, we developed a detailed theory of quan-
tum coherent charge transport in phase-and-voltage-biased
asymmetric crosslike Andreev interferometers. The electron
currents in both superconducting and normal contours demon-
strate the presence of both even and odd 2π periodic in
φ contributions. We identified key physical mechanisms re-
sponsible for different contributions to these currents, and
described their nontrivial behavior depending on the applied
voltage, temperature, and the system topology. Our findings
allow for full control of the current pattern in biased Andreev
interferometers, thus rendering them particularly promising
for future applications in modern electronics.
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APPENDIX A: SYMMETRIC ANDREEV
INTERFEROMETERS

Let us focus our attention on the two special cases:
(i) symmetric connectors to S terminals with lS1 = lS2 and
rL = rR and (ii) symmetric connectors to N terminals with
lN1 = lN2.

In the case (i), we observe an extra symmetry related
to the possibility of interchanging the terminals S1 ↔ S2

with simultaneous inversion of the phase φ → −φ imply-
ing that all the functions V1(φ,V ), V2(φ,V ), IN1(φ,V1,V2),
IN2(φ,V1,V2) are even in φ, cf. Eq. (24). Besides that,

we have

IS1(φ,V ) = −IS2(−φ,V ), (A1)

IS2(φ,V ) = −IS1(−φ,V ). (A2)

Combining these equations with Eq. (22) we arrive at the
relation (23).

In the case (ii), our system is symmetric with respect to
interchanging the normal terminals N1 ↔ N2. Then we have

IS1(φ,V2,V1) = IS1(φ,V1,V2), (A3)

IS2(φ,V2,V1) = IS2(φ,V1,V2), (A4)

IN1(φ,V2,V1) = −IN2(φ,V1,V2), (A5)

IN2(φ,V2,V1) = −IN1(φ,V1,V2). (A6)

Let us define δV = V1 + V/2 = V2 − V/2. By symmetry
in the case (ii) the function δV is even in V . It follows from
Eq. (19) that for φ → −φ, V → −V we get

IS1(φ,−V/2 + δV (φ),V/2 + δV (φ))

= −IS1(−φ,−(−V/2 + δV (φ)),−(V/2 + δV (φ))

= −IS1(−φ,−V/2 − δV (φ),V/2 − δV (φ)). (A7)

Here we also employed Eq. (A3). Note that the currents
IS1, IS2 are even functions of V and, hence, we obtain

δV (φ,V ) = −δV (−φ,V ), (A8)

i.e., δV turns out to be an odd function of the superconducting
phase φ.

Applying the relations (A3), (A8) and (19) to the current
IS1 we get

IS1(φ,V1(φ),V2(φ)) = −IS1(−φ,−V2(φ),−V1(φ))

= −IS1(−φ,V1(−φ),V2(−φ)), (A9)

implying that the current IS again turns out to be an odd
function of the phase φ, i.e. just like in the case (i) it obeys
the relation (23).

Furthermore, making use of the relations (21), (A5), (A6),
and (A8) we recover the following properties of the current
IN1:

IN1(φ,V1(φ),V2(φ)) = −IN2(−φ,−V1(φ),−V2(φ))

= IN1(−φ,−V2(φ),−V1(φ))

= IN1(−φ,V1(−φ),V2(−φ)), (A10)

implying that the current IN obeys the relation (24), thus being
an even function of the phase φ.

Obviously, the relations (23) and (24) are also obeyed in a
special case of fully symmetric Andreev interferometers with
lS1 = lS2, rL = rR, and lN1 = lN2. In this case we have V2 =
−V1 = V/2, i.e., the potentials V1 and V2 do not depend on φ.

APPENDIX B: TRANSPARENT SN INTERFACES

While the main part of our paper is devoted to the tunneling
limit described by KL boundary conditions (15), it is useful
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to extend our analysis to the case of fully transparent SN
interfaces corresponding to the limit r = 0. In particular, we
performed a numerical analysis of the current IN (the current
IS was investigated in Refs. [37,38]). The corresponding re-
sults are displayed in Fig. 4 at different values of r, including
r = 0 in the inset of Fig. 4.

In the case of fully transparent SN interfaces and in the
limit of high voltages ETh � e|V1,2| < � one can also derive
an explicit expression for the odd harmonic of the current

IN . Employing the approach developed in Ref. [38] one can
easily find the anomalous Green’s function in the normal wires
connected to the normal terminals. We obtain

F R = F R
c eiλx, F̃ R = F̃ R

c eiλx, (B1)

where x is the distance from the crossing point, and F R
c is the

anomalous Green’s function evaluated at this crossing point

Fc = − 8iAS1 fSeiλlS1 eiφL

AS1 + AS2 + AN1 + AN2
− 8iAS2 fSeiλlS2 eiφR

AS1 + AS2 + AN1 + AN2
. (B2)

Here we defined

fS (ε) = tan

[
1

4
arcsin

|�|√
|�|2 − ε2

]
. (B3)

The function F̃c can be recovered from Eq. (B2) by replacing Fc by −F̃c and φL,R by −φL,R. Then it is straightforward to derive
the function Y and evaluate the integral in Eq. (50). In the case of equal cross sections we obtain

eRLIodd
N

ETh
≈ 4 sin φ

lN1 + lN2

L2

l2
S1 + l2

S2

∑
i=1,2

(−1)i+1 f 2
S (e|Vi|) exp

(
−
√

e|Vi|
ETh

)

×
[

L sin

(
lS1 − lS2

L

√
e|Vi|
ETh

)
+ (lS1 − lS2) cos

(
lS1 − lS2

L

√
e|Vi|
ETh

)]
. (B4)

As shown in the inset of Fig. 4, this analytic expression
perfectly matches with our numerical result at eV � 20ETh.

In addition, Eq. (B4) can be used to estimate the maximum
value of the current Iodd

N .
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