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Strong dependence of the Josephson energy on the magnetization orientation in Josephson junc-
tions with ferromagnetic interlayers and spin-orbit coupling opens a way to control magnetization by
Josephson current or Josephson phase. Here we investigate the perspectives of magnetization control in
superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions on the surface of a 3D topological
insulator hosting Dirac quasiparticles. Due to the spin-momentum locking of these Dirac quasiparticles a
strong dependence of the Josephson current-phase relation on the magnetization orientation is realized. It is
demonstrated that this can lead to splitting of the ferromagnet’s easy axis in the voltage driven regime. We show
that such a splitting can lead to stabilization of an unconventional fourfold degenerate ferromagnetic state.
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I. INTRODUCTION

By now it is well known that current-phase relation (CPR)
in Josephson junctions with multilayered ferromagnetic in-
terlayers is strongly sensitive to the mutual orientation of
the magnetizations in the layers [1–12]. CPRs of Joseph-
son junctions with ferromagnetic interlayers in the presence
of spin-orbit coupling also depends on the magnetization
orientation. This occurs primarily via the appearance of
the magnetization-dependent anomalous phase shift [13–26].
This coupling between the Josephson and magnetic subsys-
tems leads to the supercurrent-induced magnetization dynam-
ics [1,6,27–32]. In particular, the reversal of the magnetic
moment by the supercurrent pulse [33] was predicted. A
unique possibility of controlling the magnetization dynamics
via external bias current and series of specific magnetization
trajectories has been reported [34]. In Refs. [27,35] it was
also reported that in the presence of spin-orbit coupling the
supercurrent can cause reorientation of the magnetization easy
axis. Assuming the initial position of the easy axis along the
z direction these works demonstrate that under the applied
supercurrent stable position of the magnetization becomes
between z and y axes depending on parameters of the system.

Here we investigate prospects of superconductor/
ferromagnet/superconductor (S/F/S) Josephson junctions
constructed atop a three-dimensional topological insulator
(3D TI) surface, which hosts Dirac quasiparticles, in the
field of supercurrent-induced magnetization control. Our
motivation is that these Dirac quasiparticles on the surface of
the 3D TI exhibit full spin-momentum locking: An electron
spin always makes a right angle with its momentum. This
gives rise to a very pronounced dependence of the CPR

on the magnetization direction [17,36,37]. In particular,
the anomalous ground state phase shift proportional to the
in-plane magnetization component perpendicular to the
supercurrent direction was reported.

The second reason to study magnetization dynamics in
such a system is that at present there is a great progress
in experimental realization of F/TI hybrid structures. In
particular, to introduce the ferromagnetic order into the TI,
random doping of transition metal elements, e.g., Cr or V, has
been employed [38–41]. The second option, which has been
successfully realized experimentally, is a coupling of the non-
magnetic TI to a high Tc magnetic insulator to induce strong
exchange interaction in the surface states via the proximity
effect [42–46].

Here we demonstrate that the anomalous phase shift causes
the magnetization dynamics analogously to the case of a
spin-orbit coupled system. However, in contrast to the spin-
orbit coupled systems, where the magnetization dynamics
was studied before, for the system under consideration the
absolute value of the critical current also depends strongly
on the magnetization orientation. It only depends on the in-
plane magnetization component along the current direction.
We demonstrate that such dependence, in a suitably cho-
sen voltage-driven regime, can lead to supercurrent induced
splitting of the magnetic easy axis of the ferromagnet. We
show that this effect may lead to stabilization of a fourfold
degenerate ferromagnetic state, which is in sharp contrast to
the conventional twofold degenerate easy-axis ferromagnetic
state.

The paper is organized as follows. In Sec. II we derive
a CPR for the S/F/S junction atop a topological insula-
tor surface starting from the quasiclassical Green function
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FIG. 1. Sketch of the system under consideration. Superconduct-
ing leads and a ferromagnetic interlayer are deposited on top of the
TI insulator.

formalism. This is followed by a discussion of the mag-
netization dynamics of such systems in Sec. III. Next, in
Sec. IV, we discuss the stabilization of the fourfold degenerate
ferromagnetic state. Finally, we conclude in Sec. V.

II. CURRENT-PHASE RELATION IN A BALLISTIC S/F/S
JUNCTION ON A 3D TI

The sketch of the system under consideration is presented
in Fig. 1. Two conventional s-wave superconductors and a
ferromagnet are deposited on top of a 3D TI insulator to form
a Josephson junction.

First of all, we consider a current-phase relation of a
Josephson junction. The interlayer of the junction consists of
the TI conducting surface states with a ferromagnetic layer on
top of it. It is assumed that the magnetization M(r) of the fer-
romagnet induces an effective exchange field heff (r) ∼ M(r)
in the underlying conductive surface layer. The Hamiltonian
that describes the TI surface states in the presence of an
in-plane exchange field heff (r) reads:

Ĥ =
∫

d2r′�̂†(r′)Ĥ (r′)�̂(r′), (1)

Ĥ (r) = −ivF (∇ × ez )σ̂ + heff (r)σ̂ − μ, (2)

where �̂ = (�↑, �↓)T , vF is the Fermi velocity, ez is a unit
vector normal to the surface of TI, μ is the chemical potential,
and σ̂ = (σx, σy, σz ) is a vector of Pauli matrices in the spin
space. It was shown [37,47] that in the quasiclassical approx-
imation (heff , ε,�) � μ the Green’s function has the fol-
lowing spin structure: ǧ(nF , r, ε) = ĝ(nF , r, ε)(1 + n⊥σ )/2,
where n⊥ = (nF,y,−nF,x, 0) is the unit vector perpendicular
to the direction of the quasiparticle trajectory nF = pF /pF

and ĝ is the spinless 4 × 4 matrix in the particle-hole and
Keldysh spaces containing normal and anomalous quasiclas-
sical Green’s functions. The spin structure above reflects
the fact that the spin and momentum of a quasiparticle at
the surface of the 3D TI are strictly locked and make a
right angle. Following standard procedures [48,49] it was
demonstrated [37,47,50] that the spinless retarded Green’s
function ĝ(nF , r, ε) obeys the following transport equations
in the ballistic limit:

−ivF nF ∇̂ĝ = [ετz − �̂, ĝ]⊗, (3)

where [A, B]⊗ = A ⊗ B − B ⊗ A and A ⊗ B = exp[(i/2)
(∂ε1∂t2 − ∂ε2∂t1 )]A(ε1, t1)B(ε2, t2)|ε1=ε2=ε;t1=t2=t . τx,y,z are
Pauli matrices in particle-hole space with τ± = (τx ± iτy)/2.

�̂ = �(x)τ+ − �∗(x)τ− is the matrix structure of the
superconducting order parameter �(x) in the particle-hole
space. We assume �(x) = �e−iχ/2	(−x − d/2) +
�eiχ/2	(x − d/2). The spin-momentum locking allows
for including heff into the gauge-covariant gradient
∇̂Â = ∇Â + (i/vF )[(hxey − hyex )τz, Â]⊗.

Equation (3) should be supplemented by the normaliza-
tion condition ĝ ⊗ ĝ = 1 and the boundary conditions at x =
∓d/2. As we assume that the Josephson junction is formed at
the surface of the TI, the superconducting order parameter �

and heff are effective quantities induced in the surface states
of TI by proximity to the superconductors and a ferromagnet.
In this case there are no reasons to assume existence of
potential barriers at the x = ∓d/2 interfaces and we consider
these interfaces as fully transparent. In this case the boundary
conditions are extremely simple and are reduced to continuity
of ĝ for a given quasiparticle trajectory at the interfaces.

To obtain the simplest sinusoidal form of the current-phase
relation we linearize Eq. (3) with respect to the anomalous
Green’s function. In this case the retarded component of
the Green’s function ĝR = τz + f Rτ+ + f̃ Rτ−. The anomalous
Green’s function obeys the following equation:

− 1
2 ivF,x∂x f R + heffn⊥ f R = ε f R − �(x). (4)

Equation for f̃ R is obtained from Eq. (4) by vF → −vF , � →
−�, and χ → −χ .

The solution of Eq. (4) satisfying asymptotic conditions
f R → (�/ε)e±iχ/2 at x → ±∞ and continuity conditions at
x = ∓d/2 takes the form [the solution is written for x ∈
(−d/2, d/2), the solution in the superconducting leads is also
found, but it is not required for finding the Josephson current]:

f R
± = �e∓iχ/2

ε
exp

[∓2i(heffn⊥ − ε)(d/2 ± x)

vx

]
,

(5)

f̃ R
± = −�e∓iχ/2

ε
exp

[∓2i(heffn⊥ − ε)(d/2 ∓ x)

vx

]
,

where the subscript ± corresponds to the trajectories
sgnvx = ±1.

The density of electric current along the x axis is

jx = −eNF vF

4

∫ ∞

−∞
dε

∫ π/2

−π/2

dφ

2π
cos φ

×[(gR
+ ⊗ ϕ+ − ϕ+ ⊗ gA

+) − (gR
− ⊗ ϕ− − ϕ− ⊗ gA

−)],

(6)

where φ is the angle, which the quasiparticle trajectory makes
with the x axis. ϕ± is the distribution function corresponding
to the trajectories sgnvx = ±1.

Here we consider the voltage-biased junction. In principle,
in this case the electric current through the junction consists
of two parts: the Josephson current js and the normal current
jn. The Josephson current is connected to the presence of
the nonzero anomalous Green’s functions in the interlayer
and takes place even in equilibrium. Here we assume the
low applied voltage regime eV/(kBTc) � 1. In this case the
deviation of the distribution function from equilibrium is weak
and can be disregarded in the calculation of the Josephson
current: ϕ+ = ϕ− = tanh(ε/2T ). Exploiting the normaliza-
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tion condition one can obtain gR
± ≈ 1 − f R

± f̃ R
±/2. Taking into

account that gA
± = −gR∗

± we find the following final expression
for the Josephson current:

js = jc sin(χ − χ0), (7)

jc = evF NF T
∑
εn>0

∫ π/2

−π/2
dφ cos φ

�2

ε2
n

× exp

[
− 2εnd

vF cos φ

]
cos

[
2hxd tan φ

vF

]
, (8)

χ0 = 2hyd/vF , (9)

where εn = πT (2n + 1). At high temperatures T ≈ Tc � �

the main contribution to the current comes from the lowest
Matsubara frequency and Eq. (8) can be simplified further

jc = jb

∫ π/2

−π/2
dφ cos φ

× exp

[
− 2πT d

vF cos φ

]
cos

[
2hxd tan φ

vF

]
, (10)

where jb = evF NF �2/(π2T ). A similar expression has al-
ready been obtained for Dirac materials [50]. The normal
current is due to deviation of the distribution function from
the equilibrium. However, for the system under consideration,
where we assume the ferromagnet to be metallic, practically
all the normal current flows through the ferromagnet because
in real experimental setups the TI resistance should be much
larger as compared to the resistance of the ferromagnet. As
for the Josephson current, it is carried by Cooper pairs and
is strongly suppressed inside the ferromagnetic layer because
the exchange field there is typically much larger as compared
to the induced exchange field heff in the TI surface layer.
Therefore, it flows through the TI surface states and we can
assume that it is equal to the total electric current flowing via
the TI surface states.

III. MAGNETIZATION DYNAMICS INDUCED BY A
COUPLING TO A JOSEPHSON JUNCTION

The dynamics of the ferromagnet magnetization can be
described in the framework of the Landau-Lifshitz-Gilbert
(LLG) equation

∂M
∂t

= −γ M × Heff + α

Ms
M × ∂M

∂t
, (11)

where Ms is the saturation magnetization, γ is the gyromag-
netic ratio, and Heff is the local effective field. The electric
current flowing through the TI surface states causes spin-
orbital torque [51–54] due to the presence of a strong coupling
between a quasiparticle spin and momentum. In principle, if
the ferromagnetism and spin-orbit coupling spatially coexist,
this torque is determined by the total electric current flowing
through the system. However, for the case under consideration
only the supercurrent flows via the TI surface states, where
the spin-momentum locking takes place. Therefore, only this
supercurrent generates a torque acting on the magnetiza-
tion. The normal current flows through the homogeneous

ferromagnet, where we assume no spin-orbit coupling. Con-
sequently, it does not contribute to the torque.

The torque caused by the supercurrent can be accounted
for as an additional contribution to the effective field. In order
to find this contribution we can consider the energy of the
junction as a sum of the magnetic and the Josephson energies:

Etot = EM + EJ , (12)

where the Josephson energy EJ = Ec[1 − cos(χ − χ0)] with
Ec = �0Ic/2π , Ic = jcS (S is the junction area) and χ =
2 eVt in the presence of the applied voltage. EM =
−KVF M2

y /2M2
s is the uniaxial anisotropy energy with the easy

axis assumed to be along the y axis. VF is the volume of the
ferromagnet. The effective field Heff = −(1/VF )(δEtot/δM)
and takes the form:

Heff,x

HF
= �

[∫ π/2

−π/2
e−d̃/ cos φ sin φ sin(rmx tan φ)dφ

]

×[1 − cos(�Jt − rmy)], (13)

Heff,y

HF
= �

[∫ π/2

−π/2
e−d̃/ cos φ cos φ cos(rmx tan φ)dφ

]

× sin(�Jt − rmy) + my, (14)

Heff,z = 0, (15)

where we have introduced the unit vector m = M/Ms,
d̃ = 2πT d/vF is the dimensionless junction length, � =
�0 jbSr/2πKVF is proportional to the ratio of the Joseph-
son and magnetic energies, r = 2dheff/vF , �J = 2 eV is the
Josephson frequency, and HF = �F /γ = K/Ms.

The effective field consists of two contributions: The
anisotropy field, which is directed along the easy axis, is
represented by the last term in Eq. (14). The other terms
are generated by the supercurrent. The same approach to
study magnetization dynamics in voltage biased junctions
has already been applied to systems with spin-orbit coupling
in the interlayer [27,35]. The qualitative difference of our
system based on the TI surface states from these works is that
the critical current demonstrates strong dependence on the x
component of magnetization in our case, while it has been
considered as independent on the magnetization direction
earlier. This dependence leads to nonzero Heff,x ∼ mx at small
mx. This means that the easy y axis can become unstable in
a voltage-driven or current-driven junction, while this axis
is always stable if the critical current does not depend on
magnetization direction. Moreover, there is no difference for
the system between ±mx components of the magnetization.
This leads to the remarkable fact that in a driven system the
easy axis is not reoriented keeping two stable magnetization
directions, as has already been obtained before, but is split
demonstrating four stable magnetization directions. In the
following section we study this effect in detail.

IV. MAGNETIZATION EASY AXIS SPLITTING

It is obvious that mx = mz = 0 is an equilibrium point of
Eq. (11) with Heff determined by Eqs. (13)–(15). Now we
investigate stability of this point. In the linear order with

054506-3



M. NASHAAT et al. PHYSICAL REVIEW B 100, 054506 (2019)

respect to mx the effective field can be written as follows:

Heff,x = AHF mx[1 − cos(�Jt − r)],

Heff,y = HF [1 + B sin(�Jt − r)], (16)

where A > 0 and B > 0 are constants. By comparing Eqs. (16)
and (13) it is seen that

A = r�
∫ π/2

−π/2
e−d̃/ cos φ sin φ tan φ dφ. (17)

The LLG equation (11) in the linear order with respect to mx

and mz takes the form

ṁx = γ

1 + α2
[Heff,y(mz − αmx ) + αHeff,x],

(18)
ṁz = γ

1 + α2
[−Heff,y(mx + αmz ) + Heff,x],

while ṁy = 0.
One can estimate the parameter �F /�J ∼ γ HF /(eIcRn)

for 3D TI Josephson junctions. Taking IcRn ∼ 10−3V, as has
been reported for Nb/Bi2Te3/Nb Josephson junctions [55],
and the easy-axis anisotropy field HF ∼ 500 Oe, what was
reported for Py [56,57], we obtain �F /�J ∼ 3 × 10−3. In
the regime �F /�J � 1 the magnetization varies slowly at
t ∼ �−1

J , therefore we can average Eqs. (18) over a Josephson
period thus obtaining the following system:

ṁx = �F

1 + α2
[mz − α(1 − A)mx],

(19)

ṁz = �F

1 + α2
[−(1 − A)mx − αmz].

The general solution of this system takes the form mx(z) =∑
k=1,2 Ck,x(z) exp[λkt]. The equilibrium point mx = mz = 0

becomes unstable under the condition Reλ1 > 0 or Reλ2 > 0.
One can obtain that it is realized at A > 1.

It is rather difficult to make accurate estimates of the nu-
merical value of A for realistic parameters. The main problem
is the absence of experimental data on the value of heff . How-
ever, if we take K = 500 J/m3 from the measurements [58]
on permalloy with very weak anisotropy, Ic = 10μA, vF ∼
105 m/c from Ref. [55] and the permalloy volume d ×
l × w ∼ 100 nm × 10 nm × 50 nm, then we can obtain A ∼
r� ∼ Icheff/(vF eKlw) ∼ 0.4–8 for heff ∼ 10–200 K. There-
fore, we can conclude that the range of A values discussed in
our work should be experimentally accessible.

Now we turn to study the stationary points of the magne-
tization and their stability. Beyond the linear approximation
(with respect to mx and mz) it is convenient to parametrize the
magnetization as m = (sin 	 cos �, cos 	, sin 	 sin �). Then
from the LLG equation one obtains

	̇ = γ

1 + α2
[−αHeff,y sin 	

+ Heff,x(sin � + α cos 	 cos �)],

�̇ sin 	 = γ

1 + α2
[−Heff,y sin 	

+ Heff,x(−α sin � + cos 	 cos �)]. (20)

At �F /�J → 0 effective fields Heff,x,y determined by
Eqs. (13), (14) should be averaged over a Josephson period
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FIG. 2. Vector fields according to Eq. (20). (a) A = 0.90 (� =
1.26), (b) A = 1.05 (� = 1.46), (c) A = 1.25 (� = 1.84), (d) A =
1.50 (� = 2.10). r = 0.5, d̃ = 0.3, α = 0.25 for all the panels. Blue
points indicate unstable stationary solutions, and the stable solutions
are marked by red points.

Heff,x,y → 〈Heff,x,y〉. The stationary points are to be found as
solutions of Eqs. (20) corresponding to 	̇ = �̇ = 0.

Figure 2 shows vector fields in the plane 0 � � < 2π ,
0 � 	 < π according to Eq. (20) at four different values of
A. The stationary solutions are indicated by color points. The
blue points correspond to unstable stationary solutions, while
the red points indicate the stable magnetization directions.
The Gilbert damping constant α = 0.25. We have chosen such
a large unrealistic value of the Gilbert constant in order to
clearly show the stability/instability of the stationary points
because for α = 0.01, which is more appropriate for a realistic
situation, stability/instability of a solution is not clearly seen
in the figure [compare Figs. 3(a) and 3(b)], although in fact
the topology of the vector field is not changed. Figure 2(a)
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FIG. 3. (a) Vector field corresponding to the parameters of Fig. 4,
but for �F /�J → 0. (b) The same as in panel (a), but for α = 0.25
in order to demonstrate stability/instability of the stationary points.

represents the regime A < 1, when the only stable solutions
mst are mst

y = ±1, which corresponds to upper and bottom
horizontal lines in the figure. Panels (b) and (c) demonstrate
the vector fields in the regime of not very large A > 1. Four
stable red points are clearly seen. Upon further increase of
A the stable points get closer to 	 = π/2 and finally merge
into two stable points at some Acrit , as is shown in Fig. 2(d).
Therefore, there exists a finite range of 1 < A < Acrit , where
the ferromagnet has four stable magnetization directions in
the voltage-biased regime considered here. From Fig. 2 it is
seen that all the stationary points correspond to mz = ±1 or
mz = 0. The stationary points mz = ±1 are always unstable.
Let us consider the stationary points corresponding to mz = 0,
that is � = 0, π . It is obvious that in order to have four
stable points |mst

x | and |mst
y | should be nonzero simultaneously.

Substituting mz = 0 into Eq. (20) and taking into account
that 〈Heff,y〉 = HF my, we obtain that mst

x can be determined
from the simple nonlinear equation mx = 〈Heff,x〉/HF . This
equation always has the solution mx = 0, but at 1 < A < Acrit

it also has the second nonzero solution mst
x . In this situation

there are four stable points mst = (±|mst
x |,±|mst

y |, 0).
Further in Fig. 4 we demonstrate the full time evolution of

the magnetization m obtained from the numerical solution of
the LLG equation. It is seen that starting from different initial
conditions it is possible to reach all four stable magnetization
solutions. The results are obtained at �F /�J = 0.2, but the
averaged values of magnetization at large times are in good
agreement with the results for stable points obtained in the
limit �F /�J � 1, which are demonstrated in Fig. 3(a) for
the same parameters �, r, α, and d . Figure 3(b) only differs
from (a) by the value of α = 0.25. While the topology of
the vector fields presented in panels (a) and (b) is the same,
the stability/instability of all the stationary points is more
clearly seen for larger values of the damping constant α. At

FIG. 4. Time evolution of the magnetization starting from
different initial conditions. (a) mx (t = 0) = −0.6, my(t = 0) =
0.8, (b) mx (t = 0) = 0.6, my(t = 0) = 0.8, (c) mx (t = 0) = −0.6,
my(t = 0) = −0.8, and (d) mx (t = 0) = 0.6, my(t = 0) = −0.8. For
all the panels we take mz(t = 0) = 0. The four panels correspond
to four possible stable states, which are reached by the system at
large t . � = 1.57, r = 0.5, d̃ = 0.3, α = 0.01, �F /�J = 0.2; time
is measured in units of �−1

J .

finite values of �F /�J the magnetization oscillates around
the vector trajectory presented in Fig. 3 and the amplitude of
the oscillations is suppressed at �F /�J → 0.

In order to show that the system under consideration can
demonstrate spontaneous behavior we investigate the system

FIG. 5. Time evolution of the magnetization starting from an
unstable point with the initial condition mx = my = 0 and mz = 1
in the presence of noise. The four panels correspond to four possible
stable states, which are reached by the system at large t . � = 1.57,
r = 0.5, d̃ = 0.3, α = 0.01, �F /�J = 0.2; time is measured in units
of �−1

J .
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FIG. 6. (a) Averaged values of magnetization components at
large times as functions of �J/�F . d̃ = 0.2, � = 1.62. (b) The same
as functions of �. d̃ = 0.2, �J/�F = 5. (c) The same as functions
of d̃ . �F /�J = 0.2, � = 1.62. For all the panels r = 0.5, α = 0.01.

evolution starting from one of the unstable points mz = ±1. A
small noise is introduced to the system in order to allow for
leaving the unstable equilibrium point. From the vector fields
represented in Fig. 3(a) it is seen that at small values of α

the system finally comes to one of the four stable states with
practically equal probabilities. It is shown in Fig. 5, where
different panels correspond to all the possible final states.

Figure 6 demonstrates the behavior of the absolute values
of averaged magnetization at t → ∞ depending on essential
parameters of the system. The dependence on �J/�F is
represented in Fig. 6(a). It is seen that at �J/�F � 1 |〈mi〉|
tend to constant values and, in particular, |〈mz〉| → 0, as it
follows from our analysis of stationary points of Eqs. (20).

The dependence on � is plotted in Fig. 6(b). � is linearly
proportional to A. For this reason one can explicitly see in this
panel the range of A where four stable limiting magnetization
directions exist: it corresponds to the regions where |〈mx〉| and
|〈my〉| are nonzero simultaneously.

Panel (c) of Fig. 6 represents the dependence of |〈mi〉| on
the junction length. Analogously to the previous panel, the
range of existence of four stable limiting magnetization direc-
tions is also clearly seen. The dependence on r is qualitatively
very similar to the dependence on �, therefore we do not
represent it. Figures 6(b) and 6(c) also provide the optimal
range of parameters � and d for experimental realization
of the easy axis splitting. The effect can be experimentally
investigated, for example, by measuring the magnetic field
pattern away from the nanomagnet.

V. CONCLUSIONS

In this work we study a S/F/S Josephson junction atop
a topological insulator and discuss the possibility of electrical
control of magnetization in such a device. Our analysis, which
combines microscopic Keldysh Green function technique
for obtaining the Josephson current with phenomenological
Landau-Lifshitz-Gilbert equations for studying magnetization
dynamics, shows that the property of full spin momentum
locking can lead to destabilization of a transverse easy magne-
tization axis my in such systems in the presence of appropriate
voltage or current bias. Such an instability, in turn, results
in a ferromagnet with two easy axes allowing for four sta-
ble magnetization directions instead of usual two. Switching
between these states by means of voltage or current impulses
is of interest from the applied point of view.
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