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The magnetocaloric effect (MCE), which is the refrigeration based on the variation of the magnetic entropy,
is of great interest in both technological applications and fundamental research. The MCE is quantified by the
magnetic Grüneisen parameter �mag. We report on an analysis of �mag for the classical Brillouin-like paramagnet
for a modified Brillouin function taking into account a zero-field splitting originated from the spin-orbit (SO)
interaction and for the one-dimensional Ising (1DI) model under a longitudinal field. For the Brillouin-like model
with SO interaction and the longitudinal 1DI model, a sign-change in the MCE is observed for vanishing T and
B. SO interaction leads to a narrowing of the enhancement of �mag for T and B → 0. Our findings emphasize
the relevance of �mag for exploring critical points. Also, we show that the Brillouin model with and without SO
interaction can be recovered from the 1DI model in the regime of high temperatures and vanishing coupling
constant J .
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I. INTRODUCTION

Although classical phase transitions are driven by thermal
fluctuations [1], a genuine quantum phase transition (QPT) [2]
takes place at T = 0 K. In this case, thermal fluctuations are
absent, and the transition is driven by tuning a control param-
eter g (see Fig. 1), namely, application of external pressure,
magnetic field, or changes in the chemical composition of
the system of interest. Intricate manifestations of matter have
been observed in the immediate vicinity of a quantum critical
point (QCP) (cf. Fig. 1), i.e., the point in which the QPT
takes place, such as divergence of the Grüneisen parameter
computed by combining ultra-high-resolution thermal expan-
sion and specific-heat measurements [3–5], collapse of the
Fermi surface as detected via Hall-effect measurements [6],
non-Fermi-liquid behavior observed by carefully analyzing
the power law obeyed by the electrical resistivity, specific
heat, magnetic susceptibility [7,8], and breakdown of the
Wiedemann-Franz law due to an anisotropic collapse of the
Fermi surface [9]. Hence, the exploration and understanding
of the physical properties of interacting quantum entities on
the verge of a QCP consist of topics of wide current interest,
see, e.g., Ref. [10] and references therein. In this context,
heavy-fermion compounds have been used as an appropriate
platform to explore such exotic manifestations of matter [11].
Interestingly enough, new sorts of quantum critical behavior,
having strong spin-orbit (hereafter SO) coupling and electron
correlations as key ingredients, embodying an antiferromag-
netic semimetal Weyl phase [15] and excitations of strongly
entangled spins called spin orbitons [16], have been recently
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reported in the literature. Furthermore, a QPT in graphene
tuned by changing the slope of the Dirac cone has also been
reported [17]. In general terms, the fingerprints of a magnetic-
field-induced QPT are the divergence of the magnetic
susceptibility [18] χ (T, B) = μ0(∂M/∂B) (here, M refers to
the magnetization, B is an external magnetic field, and μ0 is
the vacuum permeability) for T → 0 K and a sign change in
the MCE near QCPs [19]. Indeed, such fingerprints have been
observed experimentally in several materials. Among them
are YbRh2Si2 [20], Cs2CuBr4 [21], and CeCoIn5 [22], just to
mention a few examples. Furthermore, zero-field QCPs have
been also recently reported in the f -based superconductors
CeCoIn5 [23], β-YbAlB4 [18], and quasicrystals of the
series Au-Al-Yb [24]. Owing to the experimental difficulties
posed by accessing a QCP under pressure and/or under
an external magnetic field, zero-field QCPs are of high
interest since quantum criticality is, thus, accessible simply
by means of temperature sweeps. An analogous situation is
encountered, for instance, in molecular conductors regarding
the finite-T critical end point of the Mott metal-to-insulator
transition [25–27] as well as for gases [28]. From the
theoretical point of view, however, topics still under intensive
debate are as follows: (i) the universality class of QPTs
[11,27]; (ii) the temperature range of robustness of quantum
fluctuations and the role played by them, for instance, in the
mechanism behind high-temperature superconductivity [10].
Several theoretical models have been served as appropriated
platforms to address these issues, being the transverse 1DI
model, namely, an Ising chain under a transverse magnetic
field, an appropriate playground to investigate several
fundamental aspects [29,30]. Indeed, for the transverse 1DI
model, exactly solved analytically, there is no spontaneous
magnetization, and a phase transition occurs only at T = 0 K
under a finite magnetic field [31], see Fig. 1. This is merely
a direct consequence of the famous Mermin-Wagner theorem
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FIG. 1. Schematic phase diagram of the temperature versus tun-
ing parameter g, indicating two quantum critical points. Yellow
and blue bullets indicate a magnetic-field-tuned and a zero-field
QCP, respectively. The red line at T = 0 K depicts a magnetic-field
induced QPT for the transverse 1D Ising model. The dashed line
for the hypothetical magnetic field-induced quantum critical point
(yellow bullet) indicates the suppression of an energy scale, while the
dashed line from the origin (blue bullet) represents the enhancement
of the magnetic susceptibility for vanishing magnetic field [12]. In
the case of a magnetic-field-induced QPT, the solid line refers to
the adiabatic magnetization [13]. Figure adapted from Refs. [3,14].
Details in the main text.

[32], which forbids long-range magnetic ordering at finite
temperatures in dimensions d � 2. Since the 1DI Hamiltonian
considers solely nearest-neighbor interactions, computing the
eigenenergy of a spin configuration is a relatively easy task
[1]. As a matter of fact, in a broader context, thought the Ising
model, at first glance, is a toy model to simulate a domain
in a ferromagnetic material, it still continues to attract broad
interest, for instance, in the field of quantum information
theory [33] and detection of Majorana edge states [34].
Motivated by the intrinsic quantum critical nature of the 1DI
model under a transverse field, we explore a possible similar
behavior in other exactly analytically solvable models.

The focus of the present paper lies on the report of an
intrinsic diverging magnetic Grüneisen parameter for the var-
ious model systems discussed here in the limit of a vanish-
ing magnetic field and T → 0. Following the discussions in
Ref. [35] in order to probe a magnetic-field-induced QCP,
the criteria to be fulfilled are based on particular behavior
of the magnetic Grüneisen parameter �mag as follows: (i) a
divergence of �mag for T → 0; (ii) a sign change in �mag

upon crossing the critical magnetic-field Bc, and (iii) a typical
T/(B − Bc)ε scaling, where ε is the so-called scaling expo-
nent. Our analysis on the magnetic Grüneisen parameter, to
be discussed in the following, fulfill these criteria, being the
investigation of the (iii) criterium out of the scope of the
present paper [12]. For real materials, a divergence of the
magnetic Grüneisen parameter for vanishing B and T → 0
might be related to the presence of residual amount of mag-
netic moments [35]. Hence, the divergence of the Grüneisen
ratio, namely, the ratio of the thermal expansion to specific
heat, is also required to probe genuine quantum criticality
[35]. In the case of an ideal paramagnet, upon approaching
zero temperature and removing the external magnetic field,
one achieves the limit where mutual interactions are relevant
with a typical local magnetic field of about 0.01 T for a dis-
tance between neighboring electron’s spins (S = 1/2) of 5 Å

as discussed in Ref. [36]. It turns out that one has an intrinsic
entropy change for a vanishing external magnetic field [36].
Such entropy change is related to the enhancement of �mag

for B and T → 0. Surprisingly enough, the model systems to
be discussed in the following incorporate such features.

This paper is organized as follows: In Sec. II, the MCE
is calculated for the classical Brillouin-like paramagnet; in
Sec. III, the SO interaction is taken into account to calculate
the MCE for the Brillouin paramagnet for S = 3/2, being the
results compared with those obtained in Sec. II, the 1DI model
under longitudinal field is recalled, and the corresponding
MCE is presented in Sec. IV.

Before starting the discussions on the MCE for the
Brillouin-like paramagnet, it is worth recalling that both 1DI
and the two-dimensional Ising (2DI) models provide an ap-
propriate playground to explore critical points both theoretical
and experimentally. For zero external field B = 0 T, the model
can be exactly solved, and it is known as the famous Onsager
solution [1,37,38]. The mathematical solution of both 1DI and
2DI models in the absence of an external magnetic field can
be found in classical textbooks, see, e.g., Refs. [31,39,40].
A hypothetical sample with a volume of 1 mm3, the Sys-
tème International values of μB = (9.27 × 10−24) J T−1, the
Boltzmann constant kB = (1.38 × 10−23) m2 kg s−2 K−1, and
N = (6.022 × 1023) atoms were employed in the calculations.
For the 1DI model, we have employed a magnetic coupling
constant J = 10−23 J = 0.72 K. Also, it is worth mentioning
that the MCE is quantified by �mag.

II. THE BRILLOUIN-LIKE PARAMAGNET

In what follows, we discuss the MCE for the Brillouin
paramagnet. First, we recall the Brillouin function BJ , well
known from textbooks [31]:

BJ (J, y) = 2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

( y

2J

)
, (1)

where y = gJμBJB/kBT, gJ is the Landé gyromagnetic factor
(gJ = 2.274), μB is the Bohr magneton, and J is the system’s
spin. The magnetization is readly written as follows:

M = NgJμBJBJ (J, y). (2)

The magnetic susceptibility is computed by χ =
(∂M/∂B)B=0. Figure 2 depicts the Brillouin magnetic
susceptibility as a function of temperature under various
magnetic fields. Remarkably, at low T for a vanishing
magnetic field, χ diverges as it occurs for a magnetic
field-induced QCP. It turns out that, for real systems,
magnetic moments are always interacting. Such interaction is
rather small when compared with the thermal energy kBT , but
it becomes relevant at low T and, thus, a long-range magnetic
ordering takes place [41]. The calculation of the MCE for the
Brillouin paramagnet is straightforward. For arbitrary values
of J , it can be calculated using the expression [3],

�mag = − 1

T

(∂S/∂B)T

(∂S/∂T )B
. (3)

We can calculate the entropy S employing the Helmholtz free-
energy F per spin,

F = −kBT ln[ZJ (y)], (4)
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FIG. 2. Main panel: molar magnetic susceptibility χmol =
μ0(dM/dB) as a function of T at various magnetic fields for the
Brillouin paramagnet employing J = 3/2. The inset: experimental
data of the magnetic susceptibility χ as a function of temperature
for the Cd1−xMnxSe paramagnetic system with 5% concentration
of Mn (x = 0.05) under a magnetic field of 8.5 kOe. The low-
and high-temperature data were taken after zero-field cooling for
increasing T (5 K � T � 35 K) and after field cooling of decreasing
T , respectively. The red solid line represents a Curie-like fitting,
employing the values of g and J of the Cd1−xMnxSe system. The
obtained number of spins in the system is N ∼ (3 × 1022). Data taken
from Fig. 1 of Ref. [42]. Further details are discussed in the main text.

where ZJ (y) is the partition function, given by

ZJ (y) = sinh
[
(2J + 1) y

2J

]
sinh

[ y
2J

] . (5)

Thus, the Helmholtz free energy is as follows:

F = −kBT ln

(
sinh

[ (2J+1)y
2J

]
sinh

[ y
2J

]
)

. (6)

From Eq. (6), the entropy S can be easily calculated

S = −
(

∂F

∂T

)
B

. (7)

The resulting expression for the entropy reads

S(y) = kB[ln ZJ (y) − yBJ (y)]. (8)

Regarding the entropy (S) [Eq. (8)], it is worth recalling
the adiabatic demagnetization using a paramagnetic system.
Upon applying a magnetic field, the spins are aligned in the
direction of B reducing, thus, the entropy of the system. Then,
the magnetic field is removed adiabatically, and the temper-
ature of the system decreases. Such a well-known adiabatic
demagnetization procedure is frequently employed in order to
achieve low temperatures in the microkelvin range.

The calculation of the MCE is straightforward, and the
resulting expression for any J regarding the Brillouin para-
magnet reads

�mag = 1

B
. (9)

FIG. 3. Magnetization M as a function of temperature (0 < T <

0.01 K) and magnetic-field (−0.01 T < B < 0.01 T) for the classi-
cal Brillouin paramagnet.

From Eq. (9), one can again directly conclude that �mag for
the Brillouin paramagnet depends only on the magnetic field,
and it diverges as B → 0 at any temperature (see Fig. 3).

The effect of the SO interaction on �mag is discussed in the
next section.

III. THE SPIN-ORBIT INTERACTION

The interaction between the orbital angular momentum
of the nucleus and the electron spin angular momentum is
the well-known SO interaction [31]. The latter leads to a
splitting of the electrons’ energy levels in an atom. Since the
energy levels are affected by the SO interaction, it is of our
interest to study the influence of the SO interaction on the
Grüneisen parameter. Thus, in order to take into account the
SO interaction, it is necessary to make use of the Hamiltonian,
which considers such interaction. For a S = 3/2 system, such
a Hamiltonian was already reported in Refs. [43–45], and it
has the form

Hspin = μBgpaBzSz + μBgpe(BxSx + BySy) + DS2
z , (10)

where gpa, gpe, and D stand for the gyromagnetic factors of
the anisotropic system and the zero-field splitting constant
[D = (5.479 × 10−23) J = 3.97 K], respectively. The matri-
ces Sx, Sy, and Sz can be easily found by the usual operation
rules of quantum mechanics. Thus, it is only necessary to
diagonalize the resulting operator Hspin in order to obtain the
eigenenergies. Considering that By = Bz = 0 and Bx �= 0 as
reported in Ref. [45], one obtains

Hspin =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9h̄2D
4

√
3h̄μBgpeBx

2 0 0

√
3h̄μBgpeBx

2
h̄2D

4 h̄μBgpeBx 0

0 h̄μBgpeBx
h̄2D

4

√
3h̄μBgpeBx

2

0 0
√

3h̄μBgpeBx

2
9h̄2D

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and the diagonalization yields four values of eigenenergies
given by

E1 = 1
2μBgpeBx + 5

4 D +
√

μ2
Bg2

peB2
x − DgpeμBBx + D2,

E2 = 1
2μBgpeBx + 5

4 D −
√

μ2
Bg2

peB2
x − DgpeμBBx + D2,

E3 = − 1
2μBgpeBx + 5

4 D +
√

μ2
Bg2

peB2
x + DgpeμBBx + D2,

E4 = − 1
2μBgpeBx + 5

4 D −
√

μ2
Bg2

peB2
x + DgpeμBBx + D2.

(11)

Yet, the free energy for the Brillouin-like paramagnet con-
sidering the SO interaction reads

F = −kBT ln

{
2 exp

(
−2BgJμB + 5D

4kBT

)

×
[

cosh

(√
B2gJ

2μB
2 − BDgJμB + D2

kBT

)

+ exp

(
BgJμB

kBT

)

× cosh

(√
B2gJ

2μB
2 + BDgJμB + D2

kBT

)]}
. (12)

Replacing D = 0 in Eq. (12) and simplifying the resultant
expression, it is possible to obtain

F = −kBT ln
[
4 cosh

( y

2J

)
cosh

( y

J

)]
.

Employing the hyperbolic trigonometric identities and again
simplifying the equation,

F = −kBT ln

(
sinh

[ 2y
J

]
sinh

[ y
2J

]
)

, (13)

which is the very same free energy of the Brillouin para-
magnet in Eq. (6) employing J = 3/2 without considering
the SO interaction. In other words, the classical Brillouin
paramagnet is recovered when the zero-field splitting D → 0.
Since the eigenenergies were found, it is then possible to
obtain the partition function and, consequently, the observable
quantities, especially the magnetic Grüneisen parameter �mag

(see the Appendix). In this context, we have performed numer-
ical calculations and made the density and three-dimensional
plots of both the magnetization and the magnetic Grüneisen
parameter for the Brillouin paramagnet as well as considering
the SO interaction. As can be seen from Fig. 4, a comparison
between the classical Brillouin system for S = 3/2 and SO
coupling shows that the magnetization density plot is slightly
altered for nonzero D. Figure 4 shows that the magnetiza-
tion is much more sensitive to magnetic-field changes for
any value of temperature in the case of SO interaction. The
dashed white lines in the density plots of Fig. 4 were inserted
aiming to compare the enhancement of �mag for T and B → 0
(magnetization cone) and its narrowing when SO interactions

FIG. 4. Density plots of the magnetization as a function
of magnetic-field (−0.01 T < B < 0.01 T) and temperature (T <

0.01 K) for a Brillouin paramagnet with (lower panel) and without
(upper panel) considering the SO interaction. The solid red (upper
and lower panels) and dashed white (lower panel) lines are guides to
the eyes. Details in the main text.

are taken into account. Note that, in the lower panel of Fig. 4,
the red solid line (without SO) is plotted together with the
white dashed line (considering SO) for a proper comparison.
Thus, it is clear that the angular coefficient of the lines is
changed when SO interaction is considered, narrowing the
magnetization cone. For the case where the SO interaction
is lacking, the magnetization presents a weaker dependence
regarding magnetic-field changes. From the eigenenergies,
we can see that, as the magnetic field approaches zero, the
degree of degeneracy of the eigenenergies is two, whereas, for
the case where no SO interaction is considered (analogously,
for D = 0), we have a degree of degeneracy four (all the
eigenenergies have the same value and equal zero) (see Fig. 5).
The magnetic Grüneisen parameter presents a singular behav-
ior in the vicinity of T = 0 K and B = 0 T (Fig. 6). In other
words, �mag diverges as B → 0 T, resembling a fingerprint of
a quantum phase transition. At this point, it is important to
recall the results reported in Ref. [3] obtained using scaling
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FIG. 5. Magnetization M as a function of temperature (0 < T <

0.01 K) and magnetic-field (−0.01 T < B < 0.01 T) for the Bril-
louin paramagnet considering SO interaction. Details in the main
text.

arguments for any QCP tuned by a magnetic field,

�B,cr (T → 0) = −G
1

(B − Bc)
, (14)

where cr refers to the critical contribution of �B, Bc is
the critical magnetic field and G is a universal prefactor.
Note that Eqs. (14) and (9) are quite similar. The presence
of an additional pseudoenergy scale, namely, D gives rise
to a temperature-dependent magnetic Grüneisen parameter
(cf. Fig. 6), and it diverges upon approaching B = 0 T and
T = 0 K.

IV. THE ONE-DIMENSIONAL ISING MODEL
UNDER A LONGITUDINAL FIELD

For the 1DI model, all the physical quantities discussed in
this section are given per mole of particles. For the sake of
completeness, we start recalling the 1DI model and its key
equations [31] where the Hamiltonian for a linear chain of N

FIG. 6. Three-dimensional plot of the magnetic Grüneisen pa-
rameter �mag as a function of magnetic field and temperature for the
Brillouin paramagnet considering the SO interaction. The depicted
zigzag is a consequence of the numerical calculation and, thus, not
intrinsic.

spins is expressed by the form

H =
N∑

i=1

Ji,i+1SiSi+1 − B
N∑

i=1

Si, (15)

where Ji,i+1 is the coupling constant between the ith and the
i + 1 sites and Si refers to the spin of the ith site. Nevertheless,
the Si terms are normalized to unity so that we can analyze the
energy scales and the coupling term without adding numerical
constant contributions. Also, the magnetization is given by

M1DI(T, B) = μB
sinh(βμBB)

[cosh2(βμBB) − 2e2βJ sinh(2βJ )]1/2
,

(16)

where β = 1/kBT and J is the coupling constant between
two neighbor spins. From Eq. (16), one can deduce that, for
the 1DI model, spontaneous magnetization is not possible,
namely, M(T �= 0, B = 0) = 0. It is now worth analyzing the
1DI magnetic susceptibility, which reads [31]

χ1DI (T, B) = βμ2
B

cosh(βμBB)[1 − 2e−2βJsinh(2βJ )]

[cosh2(βμBB) − 2e−2βJ sinh(2βJ )]3/2
.

(17)

For vanishing magnetic-field χ (T, B → 0) = βμ2
Be2βJ ,

i.e., for B → 0 and T → 0, χ diverges as expected for a QCP.
In other words, for the 1DI model at T = 0 K, a vanishing
small external magnetic field suffices to produce long-range
magnetic ordering. The specific heat at zero field is given by

CB=0 T = kB
β2J2

cosh2(βJ )
. (18)

In order to perform an analysis of the 1DI model for generic B
and T , the Helmholtz free energy is calculated employing the
expression [1],

F (B, T ) = −J − kBT ln[η +
√

τ 2 + ϑ], (19)

where η, τ , and ϑ stand for

ϑ = exp

(−4J

kBT

)
; η = cosh

(
μBB

kBT

)
; τ = sinh

(
μBB

kBT

)
.

(20)

Figure 7 shows the behavior of the free energy for different
applied magnetic fields as a function of temperature. It can
be seen that, if both J and B are held constant, an increase in
the temperature causes a decrease in the free energy. We also
introduce an equivalent definition of the MCE via Maxwell
relations, namely, the magnetic Grüneisen parameter [19],

�mag = − (∂M/∂T )B

CB
, (21)

where

CB = T

(
∂S

∂T

)
B

. (22)

Since the magnetization was already presented, the calcula-
tion of �mag and the obtainment of the MCE for the 1DI
model under a longitudinal field is also straightforward. From
Eq. (16), we can see that, as B → 0, also M → 0, which
means that there is no spontaneous magnetization at finite

054446-5



GABRIEL O. GOMES et al. PHYSICAL REVIEW B 100, 054446 (2019)

0 5 10 15 20 25
-150

-120

-90

-60

-30

0
B = 1T
B = 2T
B = 3T
B = 5T

F
(J
/m
ol
)

T (K)

FIG. 7. The Helmholtz free-energy F [Eq. (19)] as a function of
temperature for various magnetic fields, cf. label. From the data,
it can be seen that, as the temperature increases, the free energy
decreases. Further details in the main text.

temperature for the 1DI model as previously stated. Figures 8
and 9 show the behavior of the magnetization when T is
held constant and B varies and when B is held constant and
T varies, respectively. It is possible already to detect the
absence of long-range magnetic order in the system. The
Mermin-Wagner theorem ensures that, for the 1DI model, the
spontaneous magnetization is zero for any finite temperature
value. If the system would present spontaneous magnetiza-
tion, in Fig. 8 it would be possible to see a discontinuity in
the magnetization at B = 0 for a certain range of temperature
values, given by T < Tc, which would be characteristic of a
phase transition from ferromagnetic to paramagnetic behavior.
However, this behavior is not present in the 1DI model. Thus,
we can calculate analytically the Grüneisen parameter. The
derivatives can be performed straightforwardly yielding

S = kB

[



kBT (
√

ϑ + τ 2 + η)
+ ln(

√
ϑ + τ 2 + η)

]
, (23)
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FIG. 8. Magnetization M as a function of magnetic-field B at
various temperatures as indicated in the label. Further details are
given in the main text.
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FIG. 9. Magnetization M as a function of temperature T under
various values of magnetic field as indicated in the label. Further
details are given in the main text.

(
∂M

∂T

)
B

= − 2Jτ + Bη

T 2
√

ϑ + τ 2(kBϑ−1τ 2 + kB)
, (24)

CB =
[




T (
√

ϑ + τ 2 + η)

]
+ T ϒ

�ς
− �T 


ς2
, (25)

where the additional parameters ϒ, �, �, ς , and 
 were
introduced purely for compactness as follows:

ϒ = 16J2τ 2 + 8J2ϑ − 1

2
D2ϑ−1 sinh2

(
2μBB

kBT

)

+ D2ϑ−1τ sinh

(
2μBB

kBT

)√
ϑ + τ 2

+ 2B2 cosh

(
2μBB

kBT

)
(ϑ−1τ 2 + 1)

+ 2B2η
√

ϑ + τ 2 + 4JB sinh

(
2μBB

kBT

)
, (26)

� = 2T 2
√

ϑ + τ 2(kBϑ−1τ 2 + kB), (27)

� = 2εϑ − 1
2 B sinh

( 2μBB
kBT

)
kBT

√
ϑ + τ 2

+
√

ϑ + τ 2 − Bτ

kBT 2
, (28)

ς = T (
√

ϑ + τ 2 + η), (29)


 = ϑ
[
2J − 1

2 Bϑ−1 sinh
( 2μBB

kBT

)]
√

ϑ + τ 2
− Dτ. (30)

It can be seen that the MCE for the 1DI model is far from
trivial and we study its behavior by maintaining B and J
constant and varying the temperature, cf. Fig. 10. Thus, �mag

for the 1DI model is given by the expression,

�mag =
2Jτ+Bη

T 2
√

ϑ+τ 2(kBϑ−1τ 2+kB )[



T (
√

ϑ+τ 2+η)

] + T ϒ
�ς

− T �

ς2

. (31)

It is possible to make a Taylor series expansion for �mag for the
case of the 1DI model around B = 0 for a fixed temperature
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FIG. 10. Main panel: the magnetic Grüneisen parameter �mag

versus T under low-field (B = 10−5 T). Note the logarithmic scale.
As T → 0 K, �mag diverges. The absence of a classical phase transi-
tion at finite temperatures can be interpreted as a direct consequence
of the Mermin-Wagner theorem. The inset: �mag versus T for B = 1
and 5 T. Further details in the main text.

T (see Fig. 11). The obtained expression reads

�mag(B, T ) =
[

(e2J/kBT + 1)2μ2
B(2J + kBT )

4J2kBT

]
B + O(B3),

(32)

where O(B3) represents the higher-order terms in the expan-
sion. For T → 0 K, �mag diverges, and a discontinuity takes
place at T = 0 K and B = 0 T, cf. Fig. 12. From Eq. (32),
it is shown that the mathematical function describing �mag

for the 1DI model is odd with respect to the magnetic-field
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FIG. 11. Entropy S as a function of temperature T for various
values of magnetic-field B, cf. indicated in the label. It can be seen
that the entropy increases with temperature, which is the expected
behavior of the system, i.e., the magnetic disorder is increased
upon increasing the thermal energy. Another interesting aspect of
the entropy function is its saturation point. When the temperature
is sufficiently increased, the entropy reaches a constant value. The
required temperature to the saturation increases as the magnetic
coupling constant J is increased.
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FIG. 12. The magnetic Grüneisen parameter �mag as a function
of the magnetic-field B for various temperatures (see the label) for the
1DI model under the longitudinal field. By tuning B between positive
and negative values, �mag changes sign.

B. Hence, Eq. (32) also explains the obtained symmetrical
behavior of �mag upon varying the magnetic-field B from
negative to positive values, cf. Fig. 12. In order to analytically
demonstrate the asymptotic equivalence of �mag for the 1DI
and the Brillouin model, it is possible to make a change in the
temperature variable T to 1/T and make an expansion in a
Taylor series around 1/T → 0 [46]. Thus, the expression of
�mag for the 1DI model is simplified and is expressed by

�mag(B, T → ∞) = μ2
BB

J2 + μ2
BB2

. (33)

In this context, when J = 0, the �mag for the Brillouin model
is elegantly recovered, namely, 1/B [Eq. (9)]. This means
that, at high temperatures, and upon neglecting the magnetic
coupling between the nearest-neighbor spins, we have shown
analytically that the two magnetic models are equivalent.
Similarly, it is possible to make the very same expansion for
�mag in the case of the Brillouin model upon considering the
SO interaction,

�mag(B, T → ∞) = 5gJ
2μ2

BB

4D2 + 5gJ
2μ2

BB2
. (34)

Upon comparing Eqs. (33) and (34), it is clear that both
expressions have the same mathematical structure except for
the constant term J2. Making J = √

4/5D/gJ and replacing
it in Eq. (33), it can be shown that the two models are also
equivalent in the asymptotic regime, namely, for 1/T → 0.
Such mathematical similarity in the regime of high temper-
atures is a direct consequence of the dominant effects from
thermal fluctuations, and, obviously, this does not mean that
the models are physically equivalent. Yet, still considering
Eq. (34), it is clear that for D → 0, Eq. (9) is nicely restored.
Summarizing the results obtained for the longitudinal 1DI
model: (i) It does not present any classical critical behavior
for any finite value of temperature as a consequence of the
Mermin-Wagner theorem, and (ii) for T → 0 K, it is tempt-
ing to say that the system shows intrinsic quantum critical
behavior. It is important to emphasize that the Grüneisen
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parameter cannot be calculated at T exactly equal to 0 K since
the corresponding function is not determined at this point.

V. CONCLUDING REMARKS

Grüneisen, in 1908, realized that the volume dependence
of the vibrational energy must be taken into account in or-
der to explain thermal expansion. Slowly but steadily, the
Grüneisen parameter has been incorporated as a thermody-
namic coefficient, both in thermodynamical textbooks and
in experimental physics; and when measured, it can provide
information on other thermodynamic coefficients as shown in
Refs. [28,47]. As a second step from our previous work [28],
we have considered the magnetic analog of the Grüneisen
parameter as a tool to further probe magnetic systems, in par-
ticular, at low temperatures when quantum phase transitions
are relevant. In the Introduction, we mentioned several ex-
otic manifestations of matter where the Grüneisen parameter
could be measured. Following the Introduction, we computed
this parameter for several known theoretical models, namely,
the Brillouin paramagnet, yielding a temperature-independent
Grüneisen parameter, proportional to the inverse of the ap-
plied magnetic field; SO interaction model yields a diverging
Grüneisen parameter as the temperature goes to zero; and the
longitudinal 1D Ising model, known not to exhibit any kind
of phase transition at finite temperature as a consequence of
the well-known Mermin-Wagner theorem. Also, we did find
an equivalence at high temperatures between the 1D Ising
model with a Brillouin paramagnet with vanishing coupling
constant J and with or without a SO interaction included on
the latter. Thus, the magnetic Grüneisen parameter can be seen
as a smoking gun when we probe critical points. The relevance

of the mutual interactions for an ideal paramagnet in the limit
B and T → 0 was briefly discussed. Future work will consider
other systems where the thermodynamic coefficients are not
readily computed in a complete analytic fashion.
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APPENDIX

For the Brillouin-like paramagnet considering SO interac-
tion, the magnetic Grüneisen parameter �mag reads

�mag = a(T, B)

c(T, B)
, (A1)

where

a(T, B) = −gJμB[ sinh[A]{F (2D2 − 3BDgJμB + 4B2gJ
2μB

2) cosh[C] + 2BgJμB(D2 + 2B2gJ
2μB

2) sinh[C]}
− G cosh[A](2D2 sinh[C] + BgJμB{6F cosh[C] + (3D + 4BgJμB) sinh[C]})

− 2FG{2BgJμB cosh[(BgJμB)/(kBT )] + D sinh[(BgJμB)/(kBT )]}],
c(T, B) = 2FG( cosh[A]{(2D2 + 3B2gJ

2μB
2) cosh[C] + 2BFgJμB sinh[C]} + 2{(D2 + B2gJ

2μB
2) cosh[(BgJμB)/(kBT )]

− G sinh[A](BgJμB cosh[C] + F sinh[C]) + BDgJμB sinh[(BgJμB)/(kBT )]}),

A =
√

B2gJ
2μB

2 − BgJμBD + D2

kBT
,

C =
√

B2gJ
2μB

2 + BgJμBD + D2

kBT
,

F =
√

B2gJ
2μB

2 + BgJμBD + D2,

G =
√

B2gJ
2μB

2 − BgJμBD + D2.
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