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Emergent critical phenomenon in spin-1
2 ferromagnetic-leg ladders:
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We examine the magnetic-field-induced criticality of phase boundary near saturation field Hc in the spin- 1
2 fer-

romagnetic (FM)-leg ladder 3-Cl-4-F-V [=3-(3-chloro-4-fluorophenyl)-1,5-diphenylverdazyl], the predominant
interactions of which arise from FM chains (strong-leg type). Critical temperatures were precisely determined
through DC magnetization, specific heat, and magnetocaloric effect measurements. The criticality of 3-Cl-4-F-V
is characterized by a linear phase boundary with respect to Hc − H near H = Hc. This behavior is similar to that
of another strong-leg-type FM-leg ladder. The universal critical behavior in these strong-leg-type FM-leg ladders
is expected to demonstrate the theoretically predicted quasi-one-dimensional Bose–Einstein condensation.
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I. INTRODUCTION

The notion of Bose–Einstein condensation (BEC)—a
macroscopic quantum state—was first predicted by Bose and
Einstein almost a century ago [1,2]. Experimental realization
of a BEC on ultracold atomic gases of alkali metals received
the Nobel prize in Physics [3,4], and substantial research
efforts on this notion have been reported over the last two
decades [5].

In condensed matter physics, BEC in quantum magnets is
an attractive research topic; the macroscopic quantum state
can be realized in quantum spin systems with the mapping
between lattice gas bosons and three-dimensional (3D) XY -
like antiferromagnetic (AFM) ordering [6,7]. Experimental
tests for the BEC in quantum magnets have relied on the
critical exponent φ of the phase boundary, defined by T ∼
|Hc(T ) − Hc(0)|1/φ , which has been predicted to be φ = 3/2
as T → 0 for the 3D BEC universality class [Hc typically
corresponds to a critical magnetic field on a quantum phase
transition (QPT) from a spin disordered or fully polarized
state to an AFM ordered state] [8,9]. In recent decades,
numerous experiments on QPTs in real quantum magnets have
confirmed the 3D BEC exponent [7]. The spin dimer systems
TlCuCl3 [10] and BaCuSi2O6 [11] are representative.

Beyond the conventional 3D BEC, recent research inter-
est has focused on the aspects of low dimensionality and
frustration. Frustration in 3D AFM bcc lattices is expected
to cause two-dimensional (2D) BEC behavior, known as
“dimensional reduction” [12–16]. The relationship between
a Tomonaga–Luttinger liquid (TLL) as a one-dimensional
(1D) quantum critical state and 3D BEC state has often
been discussed for quasi-1D spin-gapped systems, e.g., the
spin- 1

2 AFM spin ladders (Cu7H10N)2CuBr2 [17,18] and
(Cu5H12N)2CuBr4 [19,20]. In a recent experimental study on
another quasi-1D quantum magnet, a direct change in the
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critical exponent was observed from the TLL regime to the
3D BEC universality class [21]. Another fascinating system
for the low dimensionality in BEC is quasi-1D ferromagnetic
(FM) chains or quasi-2D FM planes coupled with weak AFM
interactions [22]. In the theory, the power law of the critical
temperature near the saturation field Hc in such systems
should exhibit a crossover from φ = 3/2 for the 3D BEC
universality class to φ � 1 for quasi-1D or quasi-2D cases as
the magnetic field moves away from Hc. However, few exper-
imental tests for the theoretical proposal have been reported
for this theoretical proposal, aside from those for the quasi-2D
candidate K2CuF4 [23], particularly for the quasi-1D case.

Our recent studies [24,25] have revealed that spin-
1
2 FM-leg ladders synthesized using verdazyl radical
molecules [26–29] are a powerful tool for investigating BEC
in quasi-1D quantum magnets with predominantly FM in-
teractions. Verdazyl-radical-based molecular crystals typi-
cally exhibit isotropic (Heisenberg) spin interactions [27], the
Hamiltonian of such FM-leg ladders can be expressed as

H = J||
∑
i,α

Si,α · Si+1,α + J⊥
∑

i

Si,1 · Si,2, (1)

where the interaction along each leg (α = 1, 2) J|| is FM (J|| <

0), and the rung interaction between the legs J⊥ is AFM (J⊥ >

0). Theoretically, this model has a spin gap with a rung singlet
state [30–32]. In a finite magnetic field, the ground state
between the lower critical field Hc1 and the saturation field
Hc2 has been predicted to be a TLL [33]. Such characteristics
are analogous to the AFM–AFM case (J||, J⊥ > 0) [8], which
is the most well-studied case. Thus, the conventional 3D BEC
state is expected to be induced by weak 3D interladder inter-
actions. Among the three synthesized FM-leg ladders, 3-Br-
4-F-V [=3-(3-bromo-4-fluorophenyl)-1,5-diphenylverdazyl],
which consists of strong-rung type (|J||/J⊥| < 1) ladders, has
confirmed this conjecture by exhibiting a spin gap and a 3D
BEC exponent near both of the critical fields Hc1 and Hc2 at
low temperatures [24,28].
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FIG. 1. Temperature dependence of the magnetic susceptibility
χ = M/H for magnetic fields ranging from 4.0 to 4.4 T in 0.05 T
steps. Each curve is shifted by +0.002 emu/mol for clarity. The ar-
rows pointing up (down) mark the cusp (kink) anomalies, indicating
the upper (lower) critical temperatures (see text).

Here we focus on the FM-leg ladder 3-Cl-4-F-V [=3-(3-
chloro-4-fluorophenyl)-1,5-diphenylverdazyl], which consists
of strong-leg-type (|J||/J⊥| > 1) ladders and was reported as
the first realization of a FM-leg ladder [26]. This material
shows no spin gap and a double phase transition that differs
from those of the other FM-leg ladders. These characteristics
may be attributed to frustrated interladder interactions, as
predicted by ab initio molecular-orbital calculations for the
synthesized FM-leg ladders [26,28,29]. As the predominant
interactions of the strong-leg-type FM-leg ladders consist of
FM chains, the quasi-1D BEC behavior of the phase boundary
described above is expected to be realized. In fact, another
strong-leg-type FM-leg ladder, 3-I-V [=3-(3-iodophenyl)-
1,5-diphenylverdazyl], has shown the φ = 1 behavior of the
3D ordering phase boundary near the saturation field [25,29],
similar to the quasi-1D BEC predicted in Ref. [22]. Therefore,
studying the criticality near the saturation field in 3-Cl-4-F-V
with respect to the universality associated with BEC among
FM-leg ladders is worthwhile.

This study aims to determine the magnetic-field-induced
criticality of the phase boundary near saturation in 3-Cl-4-
F-V. The details of the phase boundary near the saturation
field μ0Hc ∼ 5.9 T were precisely defined through DC mag-
netization, specific heat, and magnetocaloric effect (MCE)
measurements. These measurements reveal that the double
phase transition survives below ∼4.9 T, and a single phase
boundary region exists from that field to Hc. The criticality of
the single phase boundary region is characterized by the φ = 1
behavior. The universal critical behavior near saturation in the

FIG. 2. Temperature dependence of the magnetic susceptibility
χ for magnetic fields ranging from 4.45 to 5.5 T in 0.05 T steps. Each
curve is shifted by +0.002 emu/mol for clarity. The arrows show the
cusp maximum, indicating the critical temperatures (see text).

strong-leg-type FM-leg ladders is explored in the context of
the theoretically predicted quasi-1D BEC [22].

II. EXPERIMENT

A single-crystal sample of 3-Cl-4-F-V was prepared as
described in our previous report [26]. DC magnetization
measurements were performed using a Faraday-force mag-
netometer [34]. Specific heat measurements were conducted
using the standard quasiadiabatic heat-pulse method. In
these measurements, the same 2.44-mg single crystal was
used. The MCE was obtained under “quasiadiabatic” condi-
tions for each 20 mT magnetic field sweep (see Sec. III C
for details) using part of the single crystal (0.60 mg).
For all measurements, magnetic fields were applied per-
pendicular to the a axis (perpendicular to the leg direc-
tion). As already discussed in the previous report [26],
the magnetic anisotropy is negligibly weak. Although the
field direction in the present measurements (H ⊥ a) is dif-
ferent from the previous report (H ‖ a) [26], the intrin-
sic nature of the phase boundary is considered not to be
affected.

III. RESULTS AND DISCUSSION

A. Temperature dependence of the magnetization

Figures 1 and 2 show the temperature dependence of the
magnetic susceptibility χ (T ) (χ = M/H) near the saturation.
As shown in Fig. 1, two anomalies exist in each curve, a cusp
and a kink, which can be associated with the double phase
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FIG. 3. Temperature dependence of the specific heat C for mag-
netic fields ranging from 4.0 to 4.75 T in 0.05 T steps. Each curve is
shifted by +0.3 J/mol K for clarity. The triangles show double-peak
structures, indicating the upper and lower critical temperatures. The
three dashed lines for each curve above 4.35 T present linear fits for
defining the merged double-peak structures (see text). The squares
indicate the onset of the upper anomalies.

transition, as previously reported [26]. As only a cusp was
observed for χ (T ) in the previous report, the lower phase
boundary was determined only from the specific heat. The
clarity of the kink anomalies in χ (T ) for the present data may
be attributed to the high quality of the present sample. The
cusp also appears sharper than that in the previous report [26].
This fact supports that the peak indicates a phase transition
rather than a crossover to the TLL regime. In the magnetic
field range shown in Fig. 2, the details of the lower phase
boundary cannot be determined from χ (T ) since the kink
anomaly becomes ambiguous.

B. Temperature dependence of the specific heat

The temperature dependence of the specific heat C(T )
is shown in Figs. 3 and 4. In Fig. 3, C(T ) shows obvi-
ous double-peak structures, which clearly indicate a double
phase transition. The double-peak structures are broader for
the high magnetic fields of 4.35–4.85 T. Eventually, above
4.9 T, the merged peaks appear to become a single peak
(Fig. 4) [35], implying that only a single phase boundary
exists near saturation. To examine the critical behavior of the
phase boundary near the saturation, the onset temperature of
the peak, as indicated in Figs. 3 and 4, was adopted as the
critical temperature for the upper phase boundary because
this definition is in good agreement with that from the χ (T )
and MCE measurements [see also Figs. 6, 7(a), and the
Appendix].

FIG. 4. Temperature dependence of the specific heat C for mag-
netic fields ranging from 4.8 to 5.55 T in 0.05 T steps. Each curve
is shifted by +0.3 J/mol K for clarity. The triangles show peak
anomalies, indicating critical temperatures. The dashed lines at 4.8
and 4.85 T are the same as those in Fig. 3. The squares indicate the
onset of the upper and single-peak anomalies.

C. MCE measurements

MCE measurements were conducted under quasiadiabatic
conditions as described below. A general thermodynamic
equation for the MCE can be given as the magnetic field
derivative of entropy S [36,37],

(
∂S

∂H

)
T

= − κ

T

�T

Ḣ
− C

T

dT

dH
, (2)

where κ is the thermal conductivity between the sample
and the bath, �T = T − Tbath, and Ḣ is the sweep rate at
±30–40 mT/min for the present measurements. dT/dH was
obtained from the initial slope of T (H ) immediately after
the beginning of each 20 mT magnetic field sweep. After
each sweep, the sample temperature T returned to the initial
temperature. Consequently, dT/dH values were obtained in
20 mT intervals throughout the measurement range at a fixed
bath temperature. Under the initial conditions for each sweep,
�T can be approximated as zero. Thus, the first term on
the right-hand side of Eq. (2) can be ignored (weak coupling
limit [36]). This condition can be validated by the coincidence
of dT/dH in the up and down sweeps, as shown in Fig. 5,
because the left term (∂S/∂H )T in Eq. (2) does not change its
sign but Ḣ does with the reversal of the magnetic field [38].
A sign change in dT/dH [or an extremum of T (H )] in the
adiabatic limit indicates a second-order phase transition in
a quantum magnet characterized by the BEC state [7]. As
indicated in Fig. 5, the critical magnetic field can be defined
from the sign change at a fixed bath temperature because
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FIG. 5. MCE dT/d (μ0H ) under quasiadiabatic conditions at a
fixed bath temperature of (a) 0.3 K, (b) 0.6 K, and (c) 0.9 K. The
red and blue symbols correspond to the up and down sweeps, respec-
tively. The arrows show the sign change of dT/d (μ0H ), indicating a
phase transition. The error bars denote the fitting errors of the initial
slope of T (H ) (see text).

the weak coupling limit is approximated as the adiabatic
conditions.

In Figs. 5(a) and 5(b) the dT/dH curves show a distinct
sign change between 4 and 6 T, which also supports the exis-
tence of a single phase boundary in this range, as discussed
for the specific heat measurements. As shown in Fig. 5(c),
0.9 K is within the temperature range at which the double
phase transition is expected to exist, as shown in the double-
peak structures for C(T ). However, whether the sign change
exhibits this structure is difficult to determine. The magnetic
field range of phase 1 may be too narrow for the two phase
boundaries to be distinguished by the MCE measurements
under these conditions.

D. H-T phase boundary

The H-T phase boundaries of 3-Cl-4-F-V, defined by the
present χ (T ), C(T ), and MCE measurements, are summa-
rized in Fig. 6 [39]. Below 4 T, the shape of the phase
boundaries is almost the same as previously reported phase
boundaries [26]. In the phase diagram, the upper phase 1 is
closed before the saturation field is reached, i.e., from 4.9 T
to the saturation field, there only exists the phase transition di-
rectly from paramagnetic phase to phase 2. This type of phase
diagram structure is analogous to the TLL regime on a 3D
BEC phase in quasi-1D spin systems [18,21,40,41], although
in such systems a crossover exists between the paramagnetic
phase and the TLL regime. This analogy implies that the phase
transition from the paramagnetic state to phase 1 originates
from the development of quasi-1D spin correlations, i.e.,
intraladder correlations. Stripe-FM-like ordering is a probable
candidate for phase 1. Theoretical predictions suggest that

FIG. 6. H -T phase boundaries determined from the present mea-
surements. The circles show the critical temperatures determined
from χ (T ) (Figs. 1 and 2). The squares present temperatures de-
termined the onset of the upper and single-peak anomalies for
C(T ), and the triangles displays temperatures obtained from the
lower anomalies of C(T ) (Figs. 3 and 4). The diamonds present
values obtained from the MCE measurements (Fig. 5). The dashed
line marks the magnetic field (∼4.9 T) at which the double phase
transition appears to merge into a single phase transition.

a small XY -like anisotropy in a spin- 1
2 FM-leg ladder can

induce stripe-FM ordering in a finite magnetic field [33]. We
can also mention the characteristics of the two phases based
on nuclear magnetic resonance (NMR) measurements for
the isostructural compound 3-Br-4-F-V [28]. The 19F-NMR
spectra for 3-Br-4-F-V revealed that the higher- and lower-
temperature phases indicate partial magnetic order and in-
commensurate long-range order, respectively. Although these
compounds are different in the existence of the spin gap, the
predominant interladder couplings of 3-Cl-4-F-V evaluated by
ab initio molecular orbital calculations are the same as those
of 3-Br-4-F-V [27]. Thus, the two phases in 3-Cl-4-F-V are
also considered to form similar magnetic states. Microscopic
measurements may still be required to reveal more detailed
magnetic structures of phases 1 and 2.

E. Universal critical behavior of the phase
boundary near saturation

Critical phenomena near saturation can reveal the intrin-
sic nature of the symmetry and dimensionality without a
knowledge of the detailed magnetic structures. Figure 7(a)
shows an enlarged plot of the phase boundary near saturation.
The critical temperature for all measurements appears to be
linear with respect to the magnetic field above ∼4.9 T, which
corresponds to the single phase boundary region indicated in
Fig. 6. We extracted the critical field at zero temperature Hc

from the linear fit for each data set below 1 K, as plotted
in Fig. 7(a), which yields μ0Hc = 5.834(6), 5.844(5), and
5.93(3) T for the χ (T ), MCE, and C(T ) data, respectively.
The critical behavior near saturation can be seen in the log-log
plot of the critical temperature with respect to the magnetic-
field difference μ0(Hc − H ) for each critical field, as shown
in Fig. 7(b). The criticality can be characterized by the φ =
1 behavior at phase boundary T ∝ (Hc − H )1/φ for a wide
temperature range below ∼0.8 K, which is distinguished from
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FIG. 7. (a) Enlarged plot of the H -T phase boundary in the
single phase boundary region. The solid lines present linear fits
for the measurement data above 4.9 T. (b) Log-log plot of the
critical temperature vs μ0(Hc − H ), where μ0Hc is estimated from
each fitted line in (a). The crosses indicate the critical temperatures
obtained from χ (T ) data for another spin- 1

2 FM-leg ladder, 3-I-V, as
previously reported [25]. The dotted line indicate T ∝ Hc − H .

the φ = 3/2 critical exponent for the 3D BEC universality
class (see also the Appendix). The slight deviation of the
MCE data from the φ = 1 line near the lowest temperature
may be due to some symmetry breaking terms for the BEC
universality such as dipole anisotropy or an effect of nuclear
Schottky contributions for C(T ), which can become valid at
sufficiently low temperatures and high magnetic fields.

The φ = 1 criticality can be also observed in another spin-
1
2 FM-leg ladder, 3-I-V, which we previously reported [25]. In

FIG. 8. (a) Enlarged plot of the H -T phase boundary in the single
phase boundary region and (b) log-log plot of the critical temperature
vs μ0(Hc − H ), in the same format as Fig. 7 for the upper peak
temperatures of the specific heat (squares), indicated by the triangles
in Fig. 4.

FIG. 9. Temperature dependence of (C − Cnuc)/T for magnetic
fields ranging from 4.9 to 5.55 T in 0.05 T steps, where Cnuc is
the estimated nuclear Schottky contributions for each magnetic field.
Each curve is shifted by +0.25 J/mol K2 for clarity. The arrows show
the midpoints of the two extrema (see text).

Fig. 7(b) the critical temperature determined from the χ (T )
data for 3-I-V is also shown (see Fig. 6(b) in Ref. [25]), which
displays the φ = 1 behavior over a temperature range similar
to that for 3-Cl-4-F-V. This trend implies that the universal
criticality arises from the predominantly FM interactions in
the strong-leg-type FM-leg ladder in these materials. This
situation is similar to that for the quasi-1D BEC addressed
in Ref. [22].

Several potential reasons may explain how these FM-leg
ladders satisfy the conditions of quasi-1D BEC criticality dis-
cussed in Ref. [22], i.e., elucidating why they can be regarded
as spin- 1

2 FM chains with sufficiently weak AFM interchain
interactions. First, a spin- 1

2 FM-leg ladder can be mapped onto
a spin- 1

2 FM chain with easy-plane anisotropy [33], corre-
sponding to the model Hamiltonian treated in Ref. [22]. The
effective easy-plane anisotropy can reinforce the saturation
field and thus takes advantage of the observation of the φ = 1
region. By contrast, in an isotropic FM chain, sufficiently
weak AFM interchain interactions yield a fairly low saturation
field. Second, the frustration of the interladder interactions
may suppress the effective interladder magnon interactions.
This explanation has already been described for the case of
3-I-V [25]. The weakness of interchain magnon interactions
is crucial for observing the φ = 1 crossover, as concluded in
Ref. [22].

Other phenomena may be considered causes of the φ = 1
criticality. One possibility is the quasi-2D BEC, but it has
already been excluded for 3-I-V [25]. Another possibility is a
disorder-induced transition from BEC to Bose glass [42–45].
However, in the case of the FM-leg ladders, magnetic and
nonmagnetic impurities are less than only 1% [27], which will
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not affect the intrinsic nature of the magnetic ordering [46].
Therefore, the φ = 1 criticality in the strong-leg-type FM-leg
ladders is promising for the realization of quasi-1D BEC.

IV. CONCLUSIONS

We have performed detailed thermodynamic measure-
ments of the spin- 1

2 strong-leg-type FM-leg ladder 3-Cl-4-F-V
near the saturation field Hc. A double phase transition is
observed up to ∼4.9 T, followed by a single phase boundary
region for fields up to μ0Hc ∼ 5.9 T, as revealed by the
specific heat and MCE measurements. The critical exponent
of the phase boundary T ∝ (Hc − H )1/φ exhibits the φ = 1
behavior over a wide temperature range in the single phase
boundary region for all measurements. This behavior is sim-
ilar to that of another spin- 1

2 strong-leg-type FM-leg ladder,
3-I-V, as previously reported [25]. This universality provides
substantial evidence that the strong-leg-type FM-leg ladders
are promising candidates for quasi-1D BEC in quasi-1D fer-
romagnets as theoretically predicted [22].
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APPENDIX: COMPARISON OF THE DEFINITIONS OF
THE PHASE BOUNDARY FROM THE SPECIFIC HEAT

Here we discuss two other definitions of the critical tem-
perature in the specific heat instead of the onset temperature
of the peak as shown in Sec. III B. It reveals that the onset
temperature is more relevant, and the φ = 1 behavior of the
phase boundary is not dependent on the definitions of the
critical temperature.

Simple case of the definition of the critical tempera-
ture is the peak temperature as shown in Fig. 4 (triangles).
Figure 8(a) shows enlarged plot of the H-T phase boundary
in the single phase boundary region for the peak temperatures
of C(T ). The slope of the phase boundary defined by the
peak temperatures of C(T ) obviously deviates from the other
measurements.

One of the best ways to define the critical temperature is
to estimate the entropy from numerical integration of Cmag/T ,
where Cmag is the magnetic contributions of the specific heat,
and to consider entropy balance on the phase transition. For
this purpose, we estimated simple nuclear Schottky contri-

FIG. 10. (a) Enlarged plot of the H -T phase boundary in the
single phase boundary region and (b) log-log plot of the critical
temperature vs μ0(Hc − H ), in the same format as Fig. 7 for the
midpoint temperatures of (C − Cnuc)/T (squares), indicated by the
arrows in Fig. 9.

butions for each magnetic field Cnuc, primarily arising from
1H, 14N, and 35Cl, and subtracted Cnuc from C(T ) in Fig. 4.
Figure 9 shows the temperature dependence of (C − Cnuc)/T
in the single phase boundary region. Unfortunately, it is dif-
ficult to estimate the entropy S because Cnuc is overestimated
especially below 0.2 K. Instead, we estimated the midpoint
value of the two extrema, the peak and trough in each curve,
and defined the critical temperature which corresponds to the
midpoint value (arrows in Fig. 9).

Figure 10(a) shows enlarged plot of the H-T phase bound-
ary in the single phase boundary region for the midpoint tem-
peratures of the (C − Cnuc)/T as defined above. The midpoint
temperatures are good agreement with the MCE data above
about 0.7 K, but it deviates from the other measurements’ data
below 0.7 K. An effect of nuclear Schottky contributions may
be a cause of the deviation from the other measurements near
the lowest temperature. Thus, considering good agreement of
the slope of the phase boundary in the whole single phase
boundary region, we adopted the onset temperature for the
critical temperature in the main text.

We also checked the critical behavior for these definitions
in the specific heat. Figures 8(b) and 10(b) are log-log plots
of the critical temperature vs μ0(Hc − H ) for the peak and
midpoint temperatures, respectively, in the same format as
Fig. 7(b). The φ = 1 behavior can also be seen in these
plots in the wide temperature range. This fact means that
those three defined critical temperatures are also characteristic
temperatures for the phase transition and also supports that the
φ = 1 behavior is intrinsic nature of 3-Cl-4-F-V.
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