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Analytical modeling of the interaction between skyrmions and extended defects
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The performance of skyrmion-based spintronic devices can be greatly affected by the presence of defects in
the materials. Here we develop an analytic model for describing the interaction between skyrmions and defects in
ultrathin films focusing on the case of extended defects. The dynamics of skyrmions under the driving of in-plane
polarized current is studied, considering several types of torques. The system is modeled with Thiele’s equation
in the complex plane and described with a reduced number of parameters. We start by considering a Gaussian-like
interaction with point defects and extend the treatment to segment, line, and grid defects. Conditions for dynamic
regimes of pinning, guiding, accelerating, or arranging skyrmions by defects are established and discussed. In
particular, expressions for the threshold driven current density to pin or depin skyrmions in such defects, the
position of the critical points, as well as the guiding conditions along long defects are found, analytically in
some cases. This enables a deeper understanding of the parameter dependence of the skyrmion dynamics under
the influence of defects. Micromagnetic simulations show qualitative agreement with the analytical treatment.
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I. INTRODUCTION

Defects are ubiquitous in materials. From atomic to macro-
scopic scale, they can drastically affect some of the main
properties of materials. For example, the introduction of small
amounts of foreign atoms can drastically change the conduc-
tivity of semiconductors [1]. In superconducting materials, the
introduction of controlled defects is a long-standing strategy
to increase their critical-current density [2,3]. The optical,
electronic, mechanical, and magnetic properties of graphene
and other two-dimensional materials are also being tuned by
defect engineering [4–6]. In general, the ultimate control of
the physical properties of materials requires knowledge of the
effect of defects over them.

In the case of magnetic materials, the defects not only
change the magnetization properties [7], but they can also
have a strong influence in the nucleation and motion of the
magnetic structures that can be generated and moved in them,
such as domain walls [8], vortices [9,10], or, particularly
interesting for the present work, skyrmions [11–18].

Indeed, there is a large interest in the study of the dy-
namics of skyrmions, magnetic structures that can be stabi-
lized in ferromagnetic thin films with the aid of interfacial
Dzyaloshinskii-Moriya (DM) interaction with a nonmag-
netic heavy-metal substrate with strong spin-orbit coupling
[14,15,19,20]. The relevance of these works relies on the fact
that skyrmions are small in size, can be driven by low-density
spin-polarized currents, and can be stabilized at room tem-
perature [15,17,21–25]. They have the potential for becoming
information carriers in next-generation ultradense magnetic
memories, logic devices, or computational systems [26–30].

Defects in the material where skyrmions are nucleated
affect their dynamics. The presence of a threshold current
density for moving skyrmions has been attributed to the
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presence of randomly distributed defects or grains [31–34].
A global phenomenological friction force was considered to
account for these randomly distributed impurities [35–37].
Also, it has been shown that local variations of magnetic
properties [38–44] have relevant influence over the skyrmions.
In particular, Müller and Rosch [38] considered a vacancy
in the magnetization distribution and evaluated numerically
the energy coming from the resulting system. The fitting
of the energy allowed one to find an effective numerical
pinning potential and to study the dynamics of skyrmions
in the presence of this potential. Choi et al. [43], in a more
atomistic treatment, used density functional theory to study
the influence of atomic modifications over skyrmions. Their
conclusions were based on the electronic density of states
without focusing on the particular dynamics of the skyrmion.
Hanneken et al. [39] used scanning tunneling microscopy to
find profiles of the pinning potential created by defects of
different origins (local variation of anisotropy, exchange, or
DM interactions). In [44], analytic expressions for the forces
acting over a skyrmion considering also different local varia-
tions of interaction parameters were derived without exploring
the dynamics produced by these forces.

Other types of phenomenologically introduced potentials
have also been used to describe particular cases. For example,
periodic potentials have been introduced to simulate periodic
substrates [45,46], and linear forces (harmonic potentials) to
describe pinning sites [41,47], or several types of potentials
to describe the effect of borders [23,48–52]. In most of these
works, the skyrmion dynamics is studied through Thiele’s
equation [53]. In this approximation, the skyrmion is treated
as a rigid object, without internal degrees of freedom, and
following a non-Newtonian dynamical equation in which the
external potentials enter as extra terms in the equation. This
rigid model, valid as long as the skyrmion is not substantially
deformed during the movement, helps to set the relevant
parameters of the dynamics, to establish the relevant orders
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of magnitude of the physical magnitudes involved, as well as
to find the dependence of these magnitudes upon the relevant
parameters.

In spite of all these efforts, a general and systematic
analytic treatment of the skyrmion-defect interaction and the
resulting dynamics is still lacking, especially when consid-
ering extended defects, where it has been recently numeri-
cally found that this kind of defect can accelerate and guide
skyrmions along predefined defect paths [54]. Here, we fill
this gap by developing an analytic model of the skyrmion-
defect interaction and, from this interaction and using Thiele’s
equation, describe the dynamics of the skyrmions in the
presence of defects. The starting point is the interaction of
a skyrmion with a point defect modeled as a Gaussian-like
potential (a good approximation of what was found in [38,44]
or in [55,56] for vortices). This potential is extended here
to account for elongated defects. The analytic treatment is
verified by numerical simulations.

The rest of the paper is structured as follows. In Sec. II
we present an alternative Thiele’s equation in complex form.
In Sec. III, we present the model for skyrmion-point defect
interaction. In Sec. IV the treatment is extended to consider
linear defects, including finite, infinite, L-shaped, and cross-
shaped cases. The case of a grid of defects is treated in Sec. V.
Some final remarks are presented in Sec. VI.

II. THE RIGID (THIELE’S) MODEL FOR
THE DYNAMICS OF SKYRMIONS

A. Torques over the magnetic structure

Within the micromagnetic model used in this work, the
magnetization structure in a ferromagnet is considered as a
continuous magnetization function M(r) of the position r
inside the ferromagnet. It is assumed that the modulus of M
is constant and uniform, |M| = Ms (the saturation magnetiza-
tion), and that the variation of this function with time results
in the dynamics of the magnetization structures that can be
formed in the material. These dynamics can be evaluated
through the Landau-Lifshitz-Gilbert equation, which reads

dM
dt

= −γ M × Heff + α

Ms
M × dM

dt
+ T. (1)

Heff is the effective field and contains the different interactions
that describe the system (in our case, we consider exchange,
uniaxial anisotropy, and DM), γ = 2.21 × 105 m A−1 s−1

is the gyromagnetic constant, α is a positive dimensionless
constant (Gilbert constant) accounting for the damping of the
precession of the magnetization around the axis defined by the
direction of the effective field, and T represents extra torques
that could affect the magnetization distribution.

In this work we focus on a thin planar ferromagnetic layer
of thickness d deposited on top of a heavy-metal substrate
with strong spin-orbit coupling (see Fig. 1). We consider that
d is small enough so that all magnitudes are assumed uniform
across the thickness. The ferromagnetic layer is located on the
xy plane.

When applying a current perpendicular to the ferromag-
netic plane and spin polarized in the direction mp, two
torques appear, T1 ∝ M × (mp × M) and T2 ∝ −M × mp.
These torques can trigger the nucleation of skyrmions [40,57]

FIG. 1. Sketch of the considered system. JF and JH represent
the current densities flowing in the ferromagnet (blue region) and
the heavy metal (red region), respectively. The skyrmion (red-white
circular structure) moves towards the defect (green line), whose
attractive force is represented by a vector field (light-blue arrows).

and skyrmionic spin-torque-driven nano-oscillators [57,58].
However, the driving of skyrmions is usually done through
in-plane currents [59]. Here we will focus on this latter case.

If an in-plane current-density JF = JFφ̂ (φ̂ has only x̂ and ŷ
components) flows through the ferromagnet, in the adiabatic
approximation the spins of this current align in the direction
of the magnetization, resulting in a reaction torque over the
magnetization [60]

T3 = −μBPJF

eM3
s

M × [M × (φ̂ · ∇)M] = μBPJF

eMs
(φ̂ · ∇)M,

(2)
where μB is the Bohr magneton, e the charge of the electron
(e > 0), and P is the spin-polarization factor of the current.
When there is some spatial mistracking of the spins of the
conduction electrons and the local magnetization (nonadia-
batic approximation) an extra torque term appears, given by
[61,62]

T4 = −β
μBPJF

eM2
s

M × (φ̂ · ∇)M, (3)

where β is a dimensionless constant accounting for the nona-
diabaticity of the spin alignment with the local magnetization.

If another in-plane current flows through the heavy metal
with current density JH = JH η̂ (η̂ has also only x̂ and ŷ com-
ponents), it generates, due to the spin-Hall effect (SHE) in the
heavy metal, an accumulation of spin-polarized electrons on
the interface which are polarized in the σ̂ = ẑ × η̂ direction.
These spin-polarized electrons diffuse into the ferromagnet
generating a dampinglike torque given by [63]

T5 = −μBθH JH

eM2
s d

M × [M × σ̂], (4)

where θH is the spin Hall angle factor. It represents the
ratio between the electronic current density through the heavy
metal and the spin-polarized current density diffusing through
the ferromagnet. There also appears a fieldlike torque given
by [64]

T6 = −ν
μBθH JH

eMsd
M × σ̂, (5)
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FIG. 2. Sketch for the geometrical interpretation of the complex version of Thiele’s equation. The skyrmion is represented by the red-white
circle, and a linear defect by the green vertical line. Different vectors correspond to the different complex velocities or external forces, using
the same notation as in the text. The rotated and rescaled vectors [according to the indicated complex constants; see Eq. (14)] are represented
as dotted vectors and primed (′) magnitudes. The velocity of the skyrmion at the present point, ωs, is the sum of the dotted vectors [Eq. (15)].
In (b) the situation is repeated for a new position of the skyrmion. For uniform current densities only the external force ζext changes. The new
velocity is found in the same way when the skyrmion is at the position indicated in (c).

where ν is a dimensionless parameter indicating the strength
of T6 with respect to T5.

B. Thiele’s equation: Definitions and normalization

Thiele’s equation can describe the rigid (without inter-
nal degrees of freedom) movement of a magnetic structure.
Within this approximation the dynamics of a skyrmion is
characterized by the movement of its center-of-mass position
rs (and velocity Vs) on the xy plane. That is, under the as-
sumption of M(r) = M0[r − rs(t )] where M0 represents the
magnetization distribution centered at r = 0, and following
the derivations in [53], Eq. (1) becomes

(G − MsαD)Vs + γ M2
s Fext

−(G − MsβD)VF + Ms(N + νMsY )VH = 0, (6)

where the elements of the matrices G,D, N, and Y , and the
definitions of the vectors VF , VH , and Fext are given by

Guv =
∫

V
M0 ·

(
∂M0

∂u
× ∂M0

∂v

)
dV, (7)

Duv =
∫

V

(
∂M0

∂u
· ∂M0

∂v

)
dV, (8)

Nuv = 1

d

∫
V

(
∂M0

∂u
× M0

)
v

dV, (9)

Yuv = 1

d

∫
V

∂M0,v

∂u
dV, (10)

(Fext )u =
∫

V
Hext · ∂M0

∂u
dV, (11)

VF = −μBP

eMs
JF, (12)

VH = −μBθH

eMs
(ẑ × JH). (13)

In the above equations, u and v are either x or y. V is the
volume where the magnetization changes. Hext is the effective
field due to external interactions. The first term in Eq. (6)
contains the Magnus and the dissipation terms that depend
on the velocity of the skyrmion. The second term is due to
external forces acting over the skyrmion (such as pinning,
borders, gradient of fields or temperature, substrate, etc.). The
third term comes from the spin-transfer torque of the current
flowing in the ferromagnet, and the last term arises from the
SHE-induced spin-polarized currents in the heavy metal. Note
that Vs, VF , and VH have units of velocity.

In the rest of the paper we consider a radially symmetric
skyrmion on a ferromagnetic background pointing to −ẑ. In
this case Gxy = −Gyx ≡ G, Dxx = Dyy ≡ D, Nxy = −Nyx ≡
−N , and Yxx = Yyy = Y . All other elements of the matrices
are zero. With the present definitions and background, G > 0,
D > 0, N > 0, and Y > 0.

It is convenient to normalize Eq. (6) and use nondi-
mensional variables. We use for normalization a typ-
ical length involved in the system L (could be the
radius of the skyrmion, the exchange length, etc.), the typ-
ical time t0 = (γ Ms)−1, and define the dimensionless vari-
ables G = G/(M3

s d ), D = D/(M2
s d ), N = N/(M2

s L), Y =
Y/(M3

s L), vs, f ,h = Vs,F,H/(γ MsL), and fext = Fext/(M2
s dL).

Alternatively, in the present two-dimensional case, Eq. (6)
can be rewritten in terms of complex variables [65–67].
Defining ω(s, f ,h) ≡ v(s, f ,h),x + i v(s, f ,h),y, ζext = fext,x + i fext,y

for the velocities and external forces, respectively, Eq. (6) is
converted to

ωs = 1

Dα + iG ζext + Dβ + iG
Dα + iGω f + −N + iνY

Dα + iG ωh. (14)
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The geometrical interpretation of Thiele’s equation is
sketched in Fig. 2. ωs, ζext, ω f , and ωh can be represented
as vector fields in the complex plane. For each position of
the skyrmion (a point in the complex plane), ωs, ωh, and the
external force ζext are rescaled and rotated according to the
complex constant that accompanies them in Eq. (14). The
rescaling is equal to the modulus of the constant and the angle
of rotation is equal to its argument. Once rotated and rescaled,
the complex velocity of the skyrmion at each point can be just
obtained as the sum of three complex numbers

ωs = ζ ′
ext + ω′

f + ω′
h, (15)

with ζ ′
ext = ζext/(Dα + iG), ω′

h = ωh(−N + iνY )/(Dα +
iG), and ω′

f = ω f (Dβ + iG)/(Dα + iG).
The previous expression indicates that whatever the origin

and directions of the driving current densities, all the torques
can be put together in a single term ω′ = ω′

f + ω′
h, which

is unambiguously defined after knowing JF and JH and the
constants G, D, N , and Y . Several combinations of ω f and
ωh, or modification of polarization direction [68] can be
considered in this way.

One of the key aspects when solving the previous equation
is to find the critical points of the trajectory of skyrmions.
They are defined as those points with ωs = 0.

In order to simplify our treatment, in the following sections
we consider that currents flow uniformly. Without loss of
generality, we also consider ω f = 0 (JF = 0) and ν = 0. Just
a rescaling and rotation of the global vector field ω f + ωh

would be enough to consider ω f �= 0 and/or ν �= 0. Note
that in the present treatment we are also assuming that the
defects are far from the edges of the ferromagnetic sample.
Using exponential [48], harmonic [47], oscillating [23], or
other forces, one could consider also the effect of the presence
of edges just by adding an extra ζ function coming from them.
We will also use ωh = vhei ϕh , ϕh being the angle between the
direction of the current density in the heavy metal and the
x axis. Moreover, from now on, we use for the (complex,
normalized) position the standard notation z = x + iy, since
there is no confusion with the real-space z coordinate (which
is always, by construction, zero in the present planar system).

III. SKYRMION-POINT DEFECT INTERACTION

Consider a point defect localized at the origin of coor-
dinates. We choose the current density to flow along the
x axis (ϕh = 0, thus ωh is a real number ωh = vh). According
to [38,44,69], different types of point defects (created by
a diversity of local mechanisms) generate different forces
over the skyrmion. When the defect is considered as a local
variation of the DM interaction, the force can be well approx-
imated by a radially symmetric force, that linearly increases
close to the pinning center and decays when far from it. An
adequate potential for describing this force is a Gaussian-like
function U (ρ) = −U0e−ρ2/λ2

0 , where λ0 (>0) is a parameter
that indicates the radial scope of the defect and U0 its intensity.
ρ is the radial distance from the origin. (Other types of
defects can also be approximated by similar functions, as
discussed at the end of this section; for simplicity we choose
here this Gaussian-like potential.) Here we consider attractive
defects, so that U0 > 0. The force created by this kind of po-
tential is Fext = Fpnt = −(2U0/λ

2
0)ρe−ρ2/λ2

0 ρ̂. In the complex

FIG. 3. (a) The vector field corresponding to ζpnt attractive
Gaussian-like forces [Eq. (16)]; (b) the vector field corresponding to
ζ ′

pnt; (c),(d) phase portraits of Thiele’s equation considering driving
velocities vh below (c) and above (d) the threshold value [Eq. (18)].
The background color [in (c) and (d)] indicates the speed of the
skyrmions. The green dot corresponds to the position of the defect.
The red dot (cross) indicates the position of the attractor (saddle)
point. Blue arrows indicate the direction of the driving current
density ωh (left) and the direction of the velocity of skyrmion in
the absence of defects ω′

h (right). In this particular example G = 3π ,
D = 5π , N = 2π , λ = 1, ζ0 = 1, α = 0.1, and vh = vth,pnt/2 and
2vth,pnt. The black line indicates the length scale.

normalized form, one finds

ζpnt (z) = −ζ0ze−|z|2/λ2
, (16)

where ζ0 = 2U0L/λ2
0 and λ = λ0/L are dimensionless param-

eters.
Inserting this force into Eq. (14) one sees that there are, at

most, two critical points located on the axis of application of
current, at positions x = sλ0 where the two s values are the
solutions of the real equation

se−s2 = N vh

λζ0
. (17)

When they exist, the two solutions can be classified into a
spiral attractor point z• (the solution closer to the origin), and a
saddle point z×. The condition of existence of these solutions
sets a threshold value for the velocity vh, below (above) which
there can (cannot) exist critical points. This threshold value is
found to be

vth,pnt = λζ0√
2eN

. (18)

Note that vth,pnt does not depend on α. We show in Fig. 3(a)
the vector field corresponding to the Gaussian force ζpnt (z)
and in Fig. 3(b) the corresponding rescaled and rotated ζ ′

pnt (z).
In Figs. 3(c) and 3(d) we show the phase portraits of Thiele’s
equation [Eq. (14)] when the driving current density is below
and above the threshold value, respectively. The presence of
a spiral trapping point z• does not mean that the skyrmion
will always be trapped, but that it can be trapped if it passes
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close enough to the attractive point (as described in [38] using
numerical simulations).

The harmonic pinning potential can be obtained as a
limiting case of the present Gaussian-like potential when
the skyrmion is close (as compared with λ0) to the pinning
center, U (ρ) � U0[1 − (ρ/λ0)2] for ρ � λ0. In this case one
recovers the known damped spiral trajectories, in the present
case around the critical point z• = vhN /ζ0 [41,47,48,70].

A natural extension of the present Gaussian-like potential
could be applied when the defect produces an attractive force
at short distances but repulsive far from it. This is the case, for
example, of defects produced by local variation of anisotropy
[44] and also could be a good approximation for the potential
created by holes or other local defects [38,71]. In this case, a
good approximation (useful for the analytical treatment) of the
potential could be obtained by adding an extra b term acting
at larger distances: U = −U0(1 − bρ2

λ2
0
)e−ρ2/λ2

0 , which results
in the normalized complex form

ζ (z) = −ζ0z

(
1 − b

[ |z|2
λ2

− 1

])
e−|z|2/λ2

. (19)

In this case, several scenarios can appear with respect to
the parameters. One finds that for small current densities,
there are four critical points (two saddles, one repulsive, and
one attractor), at intermediate velocities there are two critical
points (one attractor and one saddle), and for large velocities
there are no critical points.

IV. LINE DEFECTS

When a defect is large as compared with the dimensions
of the skyrmion, it can no longer be considered as a pointlike

defect. Actually, a common defect is an elongated one pro-
duced by dislocations or grain boundaries in a thin film. Little
work has been devoted to the description of line defects,
especially finite ones. In this section we extend the analytic
analysis to consider an extended finite line defect of (nor-
malized) length a. The force created by line defects can be
obtained by considering point defects very close one to each
other. In this case the relevant magnitude is the density of force
as the force of one defect divided by the distance between two
consecutive defects, � (normalized). � can be associated to
the interatomic distance. Studying systems at scales a 	 �

enables the use of the continuous limit. The force is then
evaluated as the integral of the contribution along all the
continuous extension of the defects

ζsgm(z) =
∫

l

1

�
ζpnt (z − z0)dz0, (20)

where l indicates the segment over which the defects are
extended. Now, the angle at which the current is applied with
respect to the defect line will influence the trajectories of the
skyrmions.

Consider a segment defect located at x ∈ [−a/2, a/2] and
that the current is applied at an angle ϕh with respect to this
x axis: ωh = vheiϕh . The force can be analytically evaluated
after Eq. (20) using Eq. (16) for the point force. The result is

ζsgm(z) = ζ0λ
2

2�

[
L

(
Re(z) − a/2

λ
,

Im(z)

λ

)

− L

(
Re(z) + a/2

λ
,

Im(z)

λ

)]
, (21)

FIG. 4. (a) Vector field corresponding to the force ζsgm produced by a segment [Eq. (21)]. (b) The corresponding ζ ′
sgm vector field.

(c)–(e) Phase portrait of Thiele’s equation for the finite segment for different values of the driving angle (c) ϕ = 0, (d) ϕ = π/4, and (e)
ϕ = π/2. The solid purple lines correspond to trajectories of the center of a skyrmion calculated solving the Landau-Lifshitz-Gilbert equation
for several initial positions. The meaning of symbols, bars, and arrows is the same as in Fig. 3. For these particular plots G = 3π , D = 5π ,
N = 2π , ζ0/� = 0.13, α = 0.1, and vh = 0.0049.
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FIG. 5. (a) Position of the attractor points (red dots) and the
saddle points (red crosses) for different angles of the driving current
density. The defect is indicated by a green horizontal line; arrows
indicate the critical points at the angles used in (b). (b) Threshold
velocity as a function of the size of the defect, evaluated after
Eq. (22), for two angles ϕh = π/4 (blue square) and ϕh = 3π/8
(black triangle). The vertical line indicates the size of the defect
shown in (a). The parameters used in this case are G = 3π , D = 5π ,
N = 2π , ζ0/� = 0.13, α = 0.1, and vh = 0.0049.

where the function L(u, v)−v2
[eu2 − i

√
πv rf (u)]. The erf (·)

function is the error function. Re(·) and Im(·) indicate the real
and the imaginary part, respectively. In this case Re(z) = x
and Im(z) = y. The above expression recovers the limit of a
point defect [Eq. (16)] for small a and considering a = �.
The field vector expressed in Eq. (21) is shown in Fig. 4(a)
together with the corresponding ζ ′

sgm vector field [Fig. 4(b)]
and the phase portraits of Eq. (15) for current flowing parallel
to the segment [ϕh = 0; Fig. 4(c)].

It is observed that there can be, in general, an attractive
and a saddle point, their positions depending on the angle of
the current, as indicated with dots and crosses, respectively,
in Figs. 4(c)–4(e). The threshold velocity for having critical
points depends on the length of the defect a and the angle ϕh,
and is proportional to the minimum value between the two
maximums of the real and imaginary parts of ζsgm:

vth,sgm = − 1

N min

{
max

[
Re[ζsgm(z)]

cos ϕh

]
, max

[
Im[ζsgm(z)]

sin ϕh

]}
.

(22)

In Fig. 5(a) we show the numerically found position of
the critical points as a function of ϕh for a given length of
the defect and a given velocity below the threshold. We
observe that both the attractor and the saddle points move
around the defect as the angle of the driving current changes.
In Fig. 5(b) we show the numerically evaluated threshold
velocity, vth,sgm, as a function of a, for two particular angles
of driving current. For other angles, one can find the threshold
velocity using Eq. (22).

To confirm the analytic results we have performed mi-
cromagnetic calculations solving the Landau-Lifshitz-Gilbert
dynamical equation. We have used the same homemade code
as in [54] considering magnetization saturation Ms = 580 kA
m−1, exchange interaction constant A = 15 pJ m−1, DM inter-
action constant DM = 3 mJ m−2, uniaxial effective anisotropy
constant K = 0.425 MJ m−3, Gilbert damping constant α =
0.1, driving current densities JH = 1.75 × 1010 A m−2, and
θH = −0.33. The thickness has been fixed to d = 1 nm. The
defect has been simulated considering a local variation of the
DM constant by a factor of 1.5, which results in a ζ0/� fitting
value of 0.13. λ has been taken as the radius of the skyrmion
far from the defect (22 nm according to the micromagnetic
simulations), so that λ0 = 1. We show in Figs. 4(c)–4(e),
the calculated micromagnetic trajectories for the center of
the skyrmion. We observe a good agreement with Thiele’s
equation predictions. The discrepancies are associated to the
fact that the skyrmion is deformed during the interaction with
the defect line. However, this deformation is not drastic and
Figs. 4(c)–4(e) demonstrate that Thiele’s equation would be
valid in this range of parameters.

An especially relevant limiting case is obtained when
a 	 λ, corresponding to a linear defect much larger than the
typical radius of the skyrmion. These kinds of defects were
numerically studied in [54] using micromagnetic codes. As
found numerically, skyrmions can be guided along the defect
or can cross it if the driven velocity is above a given threshold.
Analytically, the force exerted by the defect is, after Eq. (21)
in the limit a → ∞,

ζinfx(z) = −i
ζ0λ

√
π

�
Im(z)e−Im(z)2/λ2

. (23)

In this case, no critical points exist (except when ϕ = ±π/2).
However, it is possible that the component of the velocity
perpendicular to the defect line cancels, whereas the parallel
component does not. This results in a guiding regime along
the defect if the driving velocity is below

vth,infx =
√

πζ0λ
2

N�
√

2e
sin ϕh, (24)

which corresponds to the saturation value in Fig. 5(b). More-
over, when the skyrmion is guided along the defect line,
ωs = vhG cos ϕh/(αD) (a real value). This result indicates that
the guiding velocity (i) does not depend on the parameters of
the potential ζ0 or λ (note that the conditions for being guided
do depend on ζ0 and on λ); and (ii) is inversely proportional to
α, indicating the possibility of a large acceleration along the
defect if α is small [47]. This 1/α dependence is confirmed
in the micromagnetic simulations performed with the above
parameters.
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FIG. 6. Force vectors ζsgm and ζ ′
sgm and phase portraits of Thiele’s equation for an L-shaped [(a), upper row] and a cross-shaped [(b), lower

row] defect. The phase portraits are shown for three different angles (from left to right ϕh = 0, π/4, and π/2). The meaning of symbols, bars,
and arrows is the same as in Fig. 3; open red circle indicates repulsive critical point. For these particular plots G = 3π , D = 5π , N = 2π ,
ζ0/� = 1.0, α = 0.1, and vh = 0.15.

Another extension is to consider several defect shapes
that could be obtained asa combination of finite segments.
As examples, we show in Fig. 6 the velocity vector fields
of the velocity for cross-shaped [Fig. 6(a)] and L-shaped
[Fig. 6(b)] defects, as well as the corresponding phase por-
traits of Thiele’s equation. As a general rule, when the defect
ends or when there is a crossing or merging of defects in
different directions, if the driven current density is below
a given threshold, attractor points z•, where the skyrmion
can be trapped appear. In addition, we observe that in the
cross-shaped case, close to the crossing point, there can appear
repulsive critical points z◦, in addition to saddle points z×.
Also, when the defect is large enough in comparison with
the typical range of the defect (λ) there can be guiding of
skyrmions along defect lines.

V. GRID DEFECTS

The previous results of guiding skyrmions along defect
lines and trapping them close to the crossing position with
another perpendicular defect line open the possibility of hav-
ing an artificial arrangement of skyrmions in a regular lattice.
In this sense, consider a set of infinite-line defects arranged
as a periodic rectangular grid, where the different lines are
separated a distance δx in the x axis and δy in the y axis.
Using Eq. (23) the total force at a given position z is described
by

ζgrd(z) = −ζ0

√
πλ

�

[ ∞∑
m=−∞

(x − δxm)e−(x−δxm)2/λ2

+ i
∞∑

n=−∞
(y − δyn)e−(y−δyn)2/λ2

]
. (25)

This expression can be expressed in terms of the elliptic theta
prime functions ϑ ′

n(|) [72] as

ζgrd(z) = −ζ0
π2λ4

2�

(
1

δ2
x

ϑ ′
3

( − πx/δx|e−(πλ/δx )2)

+ i
1

δ2
y

ϑ ′
3

( − πy/δy|e−(πλ/δy )2))
. (26)

If πλ � δx, δy, the force can be approximated by

ζgrd(z) � −2ζ0
π2λ4

�

(
1

δ2
x

e−(πλ/δx )2
sin(2πx/δx )

+ i
1

δ2
y

e−(πλ/δy )2
sin(2πy/δy)

)
. (27)

Note that the dependencies on x and y are only through
the sin(·) functions. Such kind of periodic functions were
phenomenologically used to describe periodic or ratchet
substrate-induced potentials [46,73].

The above force predicts the presence of one attractive, one
repulsive, and two saddle critical points per unit cell if the
driving velocity is below

vth,grd = 2ζ0
π2λ4

N�
min

[
e−(πλ/δx )2

δ2
x

,
e−(πλ/δy )2

δ2
y

]
. (28)

For particular angles one could find a more restrictive thresh-
old current. As shown in Fig. 7, the skyrmions, wherever
they would be formed, will move to an attractor node. For
ζ0 > 0 (attractive defects) the attractors will be close to the
crossing lines, whereas for ζ0 < 0 (repulsive defects) they will
be located close to the center of each cell enclosed by the
defects.
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FIG. 7. Vector field (a) for ζgrid and (b) for ζ ′
grid for a grid

of defects. (c),(d) Phase portraits of Thiele’s equation for a grid-
shaped defect. Solid purple lines correspond to the trajectories of the
center of a skyrmion calculated solving the Landau-Lisfshitz-Gilbert
equation for several initial positions. The meanings of symbols, bars,
and arrows are the same as in Fig. 3; open red circle indicates
repulsive critical point [for simplicity, we have only plotted the
critical point symbols in one cell in (c); they are repeated in each
cell; in plot (d) there are no critical points]. For this particular
example G = 3π, D = 5π , N = 2π , λ = 1, ζ0/� = 0.05, α = 0.1,
δx = δy = 2.8, and vh = (c) 0.0049 and (d) 0.0098. For the numerical
calculations the local DM constant of the defect is 1.2 times the DM
constant of the plain sample.

VI. FINAL REMARKS

The interaction of skyrmions with defects is a necessary
ingredient in the study of their dynamics, since defects are
inevitable in materials. We have modeled this interaction
of skyrmions with extended defects in the shape of finite
segments and different combinations of them. We have found
that skyrmions can either cross line defects or be trapped
by or guided along them. In the case of a gridlike defect,
skyrmions can be arranged in periodic positions. Moreover,
since most of our results are analytic, the points where
skyrmions are trapped, the velocity of guiding along defects,
or the conditions for such trapping to exist, can be obtained

as a function of the relevant parameters of the system. These
parameters include the forces generated by the defects, but
also the controllable agents capable of driving the skyrmions.
The presented results can also be seen from another point of
view: we could also engineer the skyrmion-defect interaction
to better control the skyrmion dynamics. We have provided
some modeling tools for developing such strategies.

We have developed expressions for the forces and threshold
velocities considering extended geometries for the defects,
with special attention to the case of a finite segment. We
have also found that if a long defect is capable of capturing a
skyrmion in one direction, the skyrmion will be guided along
it with a speed independent of the strength of the defect and
inversely proportional to the Gilbert constant α. When critical
points appear small perturbations in the initial positions of
skyrmions may result in drastically different trajectories.

Being that skyrmions are coherent emerging magnetic
structures that can evolve (move) in a thin ferromagnetic layer,
one can study them using generalized variables. Within the
approach presented here, the internal degrees of freedom,
such as deformations (including destruction or creation) or
rotations are not described by the rigid model. In spite of this,
direct comparison of our results with micromagnetic calcula-
tions (using the model parameters as fitting parameters) shows
a good qualitative and quantitative agreement for the range of
parameters used here, showing that the used potentials are a
good approximation for the skyrmion-defect interaction and
that the internal deformation of skyrmions is small enough
to consider Thiele’s equation as a useful description of the
skyrmionic dynamics.

Thus, the model presented is a powerful analytic model
for studying the dynamics of skyrmions in the presence of
extended defects. It may help and guide further theoretical
modeling of skyrmion-defects interaction considering other
types of defects and also in further modeling of the interaction
of skyrmions with influencing agents other than defects.
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