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Spin-wave dispersion of 3d ferromagnets based on quasiparticle self-consistent GW calculations
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We calculate transverse spin susceptibility in the linear response method based on the ground states determined
in the quasiparticle self-consistent GW (QSGW) method. Then we extract spin-wave (SW) dispersions from the
susceptibility. We treat bcc Fe, hcp Co, fcc Ni, and B2-type FeCo. Because of the better description of the
independent-particle picture in QSGW, calculated spin stiffness constants for Fe, Co, and Ni give much better
agreement with experiments in QSGW than those in the local density approximation (LDA); the stiffness for Ni
in LDA is two times greater than in experiment. For Co, both acoustic and optical branches of SWs agree with
experiment. As for FeCo, we have some discrepancy between the spin stiffness in QSGW and that in experiment.
We may need further theoretical and experimental investigations on the discrepancy.
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I. INTRODUCTION

Spin waves (SWs) are one of the important factors to
control magnetic properties of material. SWs are excited at
considerably lower temperatures than room temperature (RT),
and their energy range typically lies within a few hundred
meV. When one magnetic moment is tilted from the paral-
lel spin configuration, the exchange interaction triggers the
SW propagation throughout the material as collective exci-
tation. We can observe SWs in bulk materials by inelastic
neutron scattering experiments, e.g., in bcc Fe [1], fcc Ni
[2], and even in half metals like perovskite La0.7Sr0.3MnO3

[3]. In addition to collective excitation, another magnetic
excitation like spin-flip excitation is called Stoner excitation,
whose excitation energy is related to the exchange splitting
�Ex. We can experimentally observe Stoner excitation by
high-energy experiments such as spin-polarized electron en-
ergy loss spectroscopy (SPEELS) [4]. High-energy SWs are
strongly damped because of the hybridization with the Stoner
excitation.

Let us explain how we determine the spin stiffness D exper-
imentally. From the macroscopic point of view, the Bloch T

3
2

rule [5] in the temperature dependence of magnetization M(T )
is derived from the SW theory. For the wave vector q ∼ 0,
the SW dispersion ω(q) behaves as ω(q) = Dq2. Since this
behavior of ω(q) results in the T

3
2 rule in low temperature, we

can determine D by analyzing the temperature dependence of
magnetization [6].

*okumura.haruki@mat.eng.osaka-u.ac.jp

We mainly have three methods to calculate ω(q) in the
first-principles methods. The first one is the Lichtenstein for-
mula (LF) [7]. Assuming the Heisenberg model, we calculate
exchange interaction Ji j or its Fourier transform J (q) based
on the magnetic force theorem [8]. Here i, j are for site
indices. Then ω(q) is calculated from J (q). In Ref. [7], Ji j

was calculated up to the second nearest neighbors, resulting
in D, which are in good agreement with experiments for Fe
and Ni. Later, Pajda et al. investigated the convergence of D
for a range of neighbors and found that converged D are in
good agreement with experiments for Fe but overestimated for
Ni [9].

The second method is the frozen magnon method (FMM)
[10], which assumes the Heisenberg model as in LF. In
FMM, we employ the adiabatic approximation; namely, we
neglect motions of the magnetic moment compared to electron
motions. Then we calculate J (q) from the constraint of spin-
spiral configurations with the fixed magnitude of the magnetic
moment. Once we get J (q), we solve the eigenvalue problem
for deriving ω(q). This method works well for bcc Fe [10,11].
Note that we cannot describe the decay of collective SWs
(Stoner damping) in either of these two methods.

The third method is the linear response (LR) method for
transverse spin susceptibility R+−(q, ω) [12]. The LR method
directly gives ω(q) in the reciprocal space. Cooke et al.
first introduced the LR method for calculating R+−(q, ω),
and they discussed Stoner damping in SWs in bcc Fe and
fcc Ni [13]. Savrasov treated spin fluctuations based on the
many-body perturbation theory and reproduced the experi-
mental ω(q) [14]. Karlsson and Aryasetiawan also calculated
R+−(q, ω) based on the Green’s function method [15]. From
a view of computational efficiency, Şaşıoǧlu et al. proposed
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FIG. 1. Calculated band structures of Fe in QSGW [(a) majority spin, (b) minority spin] and in LDA [(d) majority spin, (e) minority spin].
The interpolated bands based on 9 MLWFs are also shown (broken line) with original bands (bold gray line). Size of colored circles on the
bands shows the weight of MLWF bands. Partial density of states for 4s, t2g, and eg in QSGW and LDA are shown in (c) and (f). Fermi energy
EFermi is set to 0 eV.

a LR method with the maximally localized Wannier function
(MLWF) [16]. In the method, we decrease to the second power
of the number of a Wannier basis set and we can decrease the
calculation cost. With this efficient method, we can use fine q
mesh for calculating R+−(q, ω).

These three methods mainly have been applied to the
ground states given in the local density approximation (LDA).
However, the ground state given in LDA is not necessarily
good enough. For example, Sponza et al. show that 3d
bandwidth and �Ex in LDA are not good enough to cal-
culate ω(q) [17]. In antiferromagnetic transition metal ox-
ides such as NiO and MnO, the calculated ω(q) does not
agree with the experiment due to too small �Ex and too
small band gap [18]. Serious disagreement is also found
in the ω(q) in La0.7Sr0.3MnO3, for which LDA fails to

reproduce the half-metallic electronic structure of that com-
pound [19]. It is possible to start from the ground states of
LDA + U ; however, we sometimes have difficulty in deter-
mination of U . This may suggest a limitation of LDA + U
itself.

To overcome such limitations in LDA, Kotani et al. calcu-
lated ω(q) for strongly correlated materials in an LR method
for the ground states determined in the quasiparticle self-
consistent GW (QSGW) method [18,19]. Then we see reason-
able agreement with experiments for NiO and MnO because
QSGW gives good descriptions of the band quantities such
as �Ex and band gaps [20]. We expect such good agreement
for a wide-range of materials. However, Kotani’s LR method
used in Refs. [18,19] is too simple to apply to a wide range of
materials.
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TABLE I. t2g level of Fe at � for the minority spin, and that at N
for the majority spin. These are in LDA and QSGW, in addition to
the experimental data by ARPES [34]. Energy is relative to EFermi.

Band Energy (eV)

LDA QSGW Expt. [34]

� (minority) −0.32 −0.11 −0.19
N (majority) −0.74 −0.68 −0.57

Thus we implemented the efficient LR method to calculate
R+−(q, ω) based on the MLWF given by Şaşıoǧlu et al.
[16] in the QSGW calculation package ECALJ compiled by
Kotani et al. [21]. We demonstrate how the method works for
typical ferromagnets such as bcc Fe, fcc Ni, hcp Co, and B2
FeCo (CsCl structure), and we discuss the difference between
LDA and QSGW. Except for FeCo, the SWs in QSGW

agree with experiments. We find some discrepancies for
FeCo.

II. COMPUTATIONAL METHODS

A. Quasiparticle self-consistent GW

Until now, varieties of GW calculations based on Hedin’s
GW approximation [22,23] have been performed since it was
introduced in first-principles calculations by Hyberstein and
Louie [24]. Most of the GW calculations are so-called one-
shot GW . Starting from G0 for the one-body Hamiltonian
in LDA HLDA

0 , we calculate corrections to the eigenvalues
of HLDA

0 to reproduce quasiparticle energies. In the one-shot
GW , the self-energy for the corrections is given as �(1, 2) =
iG0(1, 2)W (1+, 2), where we use the notation 1 ≡ (r1, t1).
The screened Coulomb interaction W (1+, 2) is calculated as
W = (1 − vP)−1v from the bare Coulomb interaction v and
the polarization function P = −iG0 × G0. The one-shot GW
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FIG. 2. (a) Calculated −Im[K+−(q = 0, ω)] in Fe in QSGW (red bold line) and in LDA (blue broken line). The inset is the total density of
states in Fe. Panels (b) and (c) show calculated −Im[K+−(q, ω)] along the BZ symmetry line in LDA and QSGW, respectively. � is the unit
cell volume.

054419-3



H. OKUMURA, K. SATO, AND T. KOTANI PHYSICAL REVIEW B 100, 054419 (2019)

Liechtenstein formula
Frozen magnon method

(a) LDA (2.22 μB)

Liechtenstein formula
Frozen magnon method

En
er

gy
 [m

eV
]

100

200

300

400

600

0

500

En
er

gy
 [m

eV
]

100

200

300

400

600

0

500

Γ H N P Γ N[ξξξ] ]0ξξ[]00ξ[

Γ H N P Γ N[ξξξ] ]0ξξ[]00ξ[

(b) QSGW (2.22 μB)

5

4

2

3

0

1

lo
g[

Im
[R
+−

]]

5

4

2

3

0

1

lo
g[

Im
[R
+−

]]

Fe

Fe

FIG. 3. Im[R+−(q, ω)] for Fe (a) in LDA and (b) in QSGW,
showing the SW dispersion; we see slight discontinuities because of
the mesh of used k points. Results with LF [9] (solid line) and those
with FMM [10] (broken line) are superposed. Experimental data by
neutron scattering are indicated by open squares (Fe (12% Si) at RT
[1]) and open circles (pure Fe at 10 K [36]).

has a shortcoming since the one-shot GW is just a perturbation
on top of HLDA

0 .
To overcome the shortcoming of the one-shot GW , we

utilize the QSGW method [25–27] implemented in the ECALJ

package [21]. Let us summarize the QSGW method. First,
recall the above GW procedure which can be applicable to
any static one-body Hamiltonian H0(r, r′) as

H0(r, r′) = −∇2

2
+ Vext + VH + Vxc(r, r′), (1)

where we have the external potential Vext, the Hartree po-
tential VH, and the nonlocal exchange-correlation potential
Vxc(r, r′). With �(1, 2) = iG0(1, 2)W (1+, 2), where G0 =
1/(ω − H0), we have the energy-dependent one-body Hamil-
tonian H(r, r′; ω) as

H(r, r′; ω) = −∇2

2
+ Vext + VH + �(r, r′; ω). (2)

That is, the GW approximation gives a procedure H0 → H.
QSGW requires “quasiparticle self-consistency,” that is, min-
imization of the difference between H0 and H. The minimiza-
tion gives the procedure H → H0, replacing the ω-dependent
� in Eq. (2) with the static nonlocal exchange-correlation

potential V xc as

V xc = 1

2

∑
i j

|ψi〉 {Re[�(εi)]i j + Re[�(ε j )]i j} 〈ψ j | , (3)

where eigenvalues εi and eigenfunctions ψi are those of H0.
This defines a procedure to give a new H0, H → H0. Thus
we finally have a “quasiparticle self-consistency” cycle H0 →
H → H0 → H → · · · (or G0 → G → G0 → · · · ) until con-
verged.

B. Dynamical magnetic susceptibility

In LR, we follow the procedure given in Refs. [16,28].
Here we treat the transverse spin susceptibility R+−(1, 2),
which describes the response of the expectation value of a
spin density operator σ̂+(1) to the the external magnetic field
B−(2) as

R+−(1, 2) = δ 〈σ̂+(1)〉
δB+(2)

, (4)

where 1 = (r1, t1). See Eq. (20) in Ref. [28]. Here the expec-
tation value of σ̂+(1) is given as

〈σ̂+(1)〉 = −i
∑
α,β

σ+
βαGαβ (1, 1+) (α, β ∈ {↑,↓}), (5)

where G(1, 1+) is the single-particle Green’s function from 1
to 1+. For our calculation below, it is convenient to consider
the four-point representation R(4)

↑↓(12, 34). The trace of matrix

R(4)
↑↓(11, 33) leads to the two-point representation R+−(1, 2).

In order to obtain R(4)
↑↓(12, 34), we solve the Bethe-Salpeter

equation where we use the static screened Coulomb interac-
tion W (1+, 2) which is ∝ δ(t1 − t2). It is

R(4)
↑↓(12, 34) = K↑↓(12, 34) +

∫ ∫
K↑↓(12, 56)

×W (5+, 6) R↑↓(56, 34) d5d6, (6)

where K↑↓(12, 34) is the noninteracting two-particle (particle-
hole with opposite spin) propagator given as

−K↑↓(12, 34) = −iG0
↑(1, 3)G0

↓(4, 2+), (7)

where we consider t1 = t2 and t3 = t4, i.e.,
K↑↓(r1, r2; r3, r4; t1 − t3). The Fourier transform is
from t1 − t3 to ω. We symbolically solve Eq. (6) to be
R = K + KW K + KW KW K + · · · = K (1 − W K )−1, where
the numerator K describes the Stoner excitations, whereas
zeros of the denominator (1 − W K ) give the collective
excitation.

This K↑↓ is given as

−K↑↓(r1, r2; r3, r4; ω)

=
occ∑
k,n

unocc∑
k′,n′

∗
kn↓(r2)kn↓(r4)k′n′↑(r1)∗

k′n′↑(r3)

ω − (εk′n′↑ − εkn↓) + iδ

+
unocc∑
k,n

occ∑
k′,n′

∗
kn↓(r2)kn↓(r4)k′n′↑(r1)∗

k′n′↑(r3)

−ω − (εkn↓ − εk′n′↑) + iδ
, (8)

where k, k′ are in the first Brillouin zone, n(n′) is the band
index summed over occupied (unoccupied) states, εkn↑ (εkn↓)
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is the nth majority (minority) band energy at k, and  is the
eigenfunction of H0.

As mentioned in Ref. [16], in order to satisfy the Goldstone
theorem ω(q) → 0 (q → 0), we need to introduce a factor η

for R = K (1 − ηW K )−1. In principle, the Goldstone theorem
should be automatically satisfied with the LR method since
we expect that the LR method evaluates the second derivative
of the total energy of the ground states. However, our LR is
not formulated to reproduce the second derivative exactly;
furthermore, QSGW is not formulated to minimize the total
energy. This simple scaling by introducing η is a quick remedy
to satisfy the theorem; its deviations from unity show the
size of vertex corrections, which should be added to the
interaction W . The calculated η of LDA (QSGW) are 1.15
(1.19), 1.41 (1.87), 1.26 (1.33), and 1.05 (0.87) for Fe, Ni,
Co, and FeCo, respectively. These η are in good agreement
with previous calculations 1.28, 1.5, and 1.33 for Fe [28], Ni
[16], and FeCo [28]. The deviations are not small enough. We
may need to treat the vertex correction accurately in order

to override the ambiguity due to this quick remedy in the
future.

C. Wannier representation

Based on Refs. [29,30], we generate MLWFs from eigen-
functions of LDA or QSGW. Once we generate MLWFs, we
can obtain the Wannier representation of R↑↓ as follows.

In the Wannier basis, we expand eigenfunctions as

kn(r) = ∑
Ri akn

Riw
k
Ri(r), (9)

where akn
Ri is the expansion coefficient, R is atomic position

in a primitive cell, and i is the Wannier orbital (e.g., i = 3dxy)
of each atom on R. wk

Ri(r) is represented as a complete set of
orthogonal basis {wRi(r)},

wk
Ri(r) = 1√

N

∑
T

wRi(r − R − T) exp(ik · T), (10)

054419-5
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TABLE II. Calculated stiffness constant D for Fe, Ni, Co, and FeCo. The results by other groups are shown together: the LR [28], with the
LF [9], and with the time-dependent DFT (TDDFT) [37] (on average). In addition we show inelastic neutron scattering data [1,2,6,40,44,44,46].

D (meV Å
2
)

Material LR (LDA) LR (QSGW) Expt. LR (GGA) [28] LF [9] TDDFT [37]

bcc Fe 155 222 230 (RT) [1] 248 250 189
280 (4.2 K) [6]

fcc Ni 873 449 433 [2] 756 1097
555 [40]

hcp Co [100] 565 486 478 [43]
hcp Co [001] 752 532 410 [43]

510 [44]
B2 FeCo 407 307 450–500 [46]

where T is the lattice translation vector and N is the nor-
malization constant satisfying the Born–von Karman bound-
ary condition. By using the orthogonality, the eigenvalue
equations Hkn(r) = εknkn(r) can be rewritten with this
Wannier representation,∑

R′ j

Hk
RiR′ ja

kn
R′ j = εknakn

Ri, (11)

where the Hamiltonian matrix with Wannier ba-
sis Hk

RiR′ j is the Fourier transform of HT−T′
RiR′ j ≡

〈wRi(r − R − T)|H |wR′ j (r − R′ − T′)〉.
Substituting Eqs. (9) and (10) into Eq. (8) and using

the Fourier transform of real space, we will obtain the
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FIG. 5. Im[R+−(q, ω)] for Ni in LDA (a) and in QSGW (b),
showing the SW dispersion. We superpose other results with the
LF [9] (solid line) and with FMM [10] (broken line). Experimental
results by neutron scattering [41] are indicated by circles.

time-ordered linear response function for a noninteracting
system represented in a restricted Hilbert space,

−K↑↓
Ri j,R′kl (q, ω)

= 1

N

BZ∑
k

occ∑
n

unocc∑
n′

akn∗
R jβ akn

R′lβ ak+qn′
Riα ak+qn′∗

R′kα

ω − (εq+kn′↑ − εkn↓) + iδ

+ 1

N

BZ∑
k

unocc∑
n

occ∑
n′

akn∗
R jβ akn

R′lβ ak+qn′
Riα ak+qn′∗

R′kα

−ω − (εkn↓ − εq+kn′↑) + iδ
. (12)

We calculate the imaginary part of −K↑↓
Ri j,R′kl (q, ω) by a

tetrahedron method and obtain its real part by the Hilbert
transform. The matrix element of R↑↓

Ri j,R′kl is calculated
through R = K (1 − ηW K )−1, where W is calculated in the
random phase approximation (RPA) in the product basis tech-
nique developed in Ref. [31].

D. Calculation details

All of the calculation procedures above are implemented in
the first-principles package ECALJ [20,21]. The ECALJ package
is based on the linearized augmented plane wave and muffin-
tin orbital (MTO) method (PMT method), which combines
augmented plane wave (APW) and MTO basis sets. We also
generate MLWFs in ECALJ. We perform LDA and QSGW
calculations for band structures with 20 × 20 × 20 and 16 ×
16 × 16 k-point meshes, respectively. We consider 9 MLWFs
(spd) for the 3d elemental materials (Fe and Ni) and 18 ML-
WFs for hcp Co and binary FeCo. In the calculations of K↑↓,
we use a 48 × 48 × 48 q-point mesh for the 3d elemental
material and 24 × 24 × 24 for binary FeCo. We use static and
on-site W ; i.e., we take Wi jkl (ω) = WRi j,Rkl (ω = 0). We use
experimental lattice parameters a = 2.867 Å, a = 3.524 Å,
and a = 2.850 Å for Fe, Ni, and FeCo, respectively. For hcp
Co, we use a = 2.507 Å and c = 4.070 Å.

III. RESULTS AND DISCUSSION

A. bcc Fe

Figures 1(a)–1(c) show the majority and minority band
structures and the partial density of states in QSGW for
Fe, while Figs. 1(d)–1(f) in LDA as well. Calculated total
magnetic moments in LDA and QSGW are both 2.22 μB for
Fe, in agreement with the experimental value 2.22 μB [32], in
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FIG. 6. (a) −Im[K+−(q = 0, ω)] in Co in QSGW (red bold line) and in LDA (blue broken line). The inset is total density of states in Co.
Panels (b) and (c) show calculated −Im[K+−(q, ω)] along the BZ symmetry line in LDA and QSGW, respectively. � is the unit cell volume.

contrast to 2.93 μB in the fully self-consistent GW method
[33]. Our results are consistent with Ref. [17] by Sponza
et al. The superposed Wannier band structures in Eq. (11)
by broken lines are entirely on the original band structures
by bold gray lines. The size of the colored circles shows the
weights of each MLWF. In Table I, we show the t2g of the
minority spin at � and that of the majority spin at N in LDA
and QSGW. QSGW gives better agreement with the angle-
resolved photoemission spectroscopy (ARPES) data [34]. The
3d bandwidth in QSGW is a little smaller than that in LDA.
Except for this difference, the overall shapes of the majority
and the minority bands are similar in both LDA and QSGW.

Figure 2(a) shows −Im[K+−(q = 0, ω)] in LDA and in
QSGW, where K+−(q, ω) means the trace of the matrix
K↑↓ given as K+−(q, ω) = ∑

R,i, j K↑↓
Rii,R j j (q, ω). We use a

slightly different definition from Refs. [16,28,35]; thus it is
not meaningful to compare absolute value of K+−(q, ω) with
their results. As shown in the figure, QSGW gives smaller
�Ex and 3d bandwidth, which is consistent with results by

Sponza et al. Roughly speaking, the shape of −Im[K+−(q =
0, ω)] agrees with the shape of the density of states (DOS)
of the majority spin. The peak around 2 eV originates from
the t↑

2g-t↓
2g and e↑

g -e↓
g transitions, i.e., vertical transitions to

the unoccupied minority states above the Fermi energy EFermi

from the occupied majority states just below the EFermi in
Fig. 1. The second peak around 4 eV stems from another
e↑

g -e↓
g transition to EFermi + 2 eV in minority states from

EFermi − 2 eV in majority states.
We see two features in the difference between LDA and

QSGW in −Im[K+−(q = 0, ω)] shown in Fig. 2(a). One is
that the width of the peak around 2 eV in QSGW is wider
than that in LDA. The difference of DOS in LDA and QSGW
cannot explain this fact; it can be due to the difference of
eigenfunctions. The peak becomes wider in QSGW, probably
because of the general tendency of QSGW that it makes a
more significant difference between occupied 3d states and
unoccupied 3d states. The former is more localized, and the
latter more extended in comparison with the case in LDA. The
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FIG. 7. Im[R+−(q, ω)] for Co in LDA (a) and in QSGW (b),
showing the SW dispersion. The LF [9] (bold line) and the FMM
calculation [10] (broken line) are also shown. Experimental data by
neutron scattering [43] are indicated by circles. The inset shows the
BZ for hcp Co and its symmetry lines.

other is the width due to the 3d band; corresponding to the
width of the 3d band shown in the inset of Fig. 2(a), we see a
narrower width in −Im[K+−(q = 0, ω)] in QSGW.

Figures 2(b) and 2(c) show the Stoner excitation spectrum
−Im[K+−(q, ω)] in LDA and QSGW. Our LDA results give
good agreement with Fig. 6 in Ref. [35]. We see red triangle-
like strong intensity around �, especially in LDA. The center
of the peak moves up as a function of q. This is because
the shifted q from � requires a corresponding energy shift to
trace the peak of −Im[K+−(q, ω)] as a function of ω. This is
explained in Fig. 7 of Ref. [35].

Figure 3 shows Im[R+−(q, ω)] in LDA (a) and in QSGW
(b), where R+−(q, ω) means the trace of the matrix R↑↓ given
as R+−(q, ω) = ∑

R,i, j R↑↓
Rii,R j j (q, ω). We superpose experi-

mental data [1,36] on it. We also superpose the SW dispersion
calculated with the LF [9] in LDA, and that with FMM in
LDA [10]. These are not only in (a) but also in (b) as a
guide to the eye. As shown in Fig. 3, the peak broadening
due to the Stoner damping can be seen even below 100 meV
because bcc Fe is a weak ferromagnet, whose majority and
minority 3d have relatively large DOS at EFermi as shown
in the inset of Fig. 2(a). This results in relatively large low-
energy Stoner excitations. It means that SWs are getting to
be hybridized well with Stoner excitation immediately after
departing from �. The strong damping around H is also seen
in the previous calculation combining the the generalized
gradient approximation (GGA) and the MLWF approach with
6 MLWFs (sd) [28]. Our LDA calculation indicates Kohn

anomalies in �-H , H-N, and �-N , which are also found in
the other calculations [9–11]. We checked calculations with a
denser q-point mesh (60 × 60 × 60) and confirmed the strong
anomaly at 2/3 along �-N in LDA, and especially in QSGW.
Reference [35] explains how such anomalies can be traced
back to the band structures, although it does not give an
explicit analysis. Real metals such as Fe can have complicated
band structures, resulting in too complicated Fermi-surface-
nesting-like phenomena to be analyzed. Thus, we also have
not yet done such an analysis. We are somewhat skeptical as
to whether it is worthwhile to do it or not.

In Table II, we summarize the calculated results of the
stiffness constant D, with another LR result based on the GGA
[28], and with that of the time-dependent density functional
theory (TDDFT) [37]. To obtain D, we fit the calculated SW
dispersion by quadratic functions. For the fitting, we just
take peaks for small q as |q| < 0.20( 2π

a ) where little Stoner
damping occurs. Details for Fe and Ni are in the Supplemental

Material [38]. LDA gives D = 155 meV Å
2
, which is a little

smaller than experiments D = 230, 280 meV Å
2

[1,6]. On the

other hand, QSGW gives D = 222 meV Å
2

in much better
agreement with the experimental values. Note that we see
a contradiction between our LR (LDA) and the other two
previous calculations, the LR (GGA) and the LF. Our value

D = 155 meV Å
2

is too low in comparison with the other data

248, 250 meV Å
2
, although there is a smaller difference from

D = 189 meV Å
2

in TDDFT. However, we currently have no
definite idea to resolve the discrepancy from these previous
works.

B. fcc Ni

The calculated magnetic moment for Ni in LDA is in
agreement with the experiment, 0.62 μB [32]. On the other
hand, QSGW gives 0.80 μB. Sponza et al. [17] indicate that
this is reasonable because we have not taken into account
the longitudinal quantum spin fluctuation. In LDA, we may
have accidentally had a good agreement because of too small
exchange splitting canceling the fact that calculations do not
include the fluctuation.

Figure 4(a) shows the −Im[K+−(q = 0, ω)] in Ni. Peaks
at 0.7 eV and 0.8 eV in LDA and QSGW are the Stoner gaps,
corresponding to the difference of peaks between majority
and minority spins in DOS shown in the inset. �Ex given
in LDA and QSGW are about two times larger than 0.3 eV,
which is the value obtained by ARPES at the L3 point [39].
Sponza et al. [17] indicate that the overestimation is due to
the missing of spin fluctuations. Figures 4(b) and 4(c) show
−Im[K+−(q, ω)] in LDA and QSGW. Our LDA results give
good agreement with Fig. 6 of Ref. [35]. We see that strong
intensity around � gets broadened as a function of q as in
the case of the homogeneous electron gas shown in Fig. 5 of
Ref. [35]. In QSGW, the q dependence of −Im[K+−(q, ω)]
looks slightly weakened around �, probably because of the
reflection of the flattened (weakly q-dependent) 3d band.

In Fig. 5(a), we show Im[R+−(q, ω)] in LDA. We can
identify the SW dispersion in the whole Brillouin zone (BZ)
in contrast to the case of Fe in Fig. 3. Our SW dispersion
in LDA is consistent with a previous LR calculation by
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Savrasov [14] and a TDDFT calculation by Niesert [37].
As superposed in Fig. 5, results with FMM [10] and with
the LF [9] give a little lower ω(q). Let us compare the
QSGW result shown in Fig. 5(b) with Fig. 5(a), where we
can use black lines as a guide to the eye. ω(q) curvature
around � is smaller in QSGW. In fact, Table II shows that
QSGW gives very smaller D = 449 meV Å

2
around � than

D = 873 meV Å
2

in LDA. This is in agreement with the

experimental values D = 433, 555 meV Å
2

[2,40]. This is
the reflection of weak q dependence of −Im[K+−(q, ω)]
around � in the previous paragraph. Along �-L, QSGW
successfully traces an experiment [41] even up to half of
the BZ boundary. Although (b) may be taken as a simple
elongation of (a) at a glance, it is not true if we take the
behavior around � into account. In Ref. [15], Karlsson and
Aryasetiawan give good agreement with the SW dispersion
along [100] by adjusting the �Ex of Ni. However, such a
procedure may give a simple shrinkage. Thus the physical
mechanism in QSGW is very different from their method

even though both our QSGW and their method reproduce the
experimental D.

C. hcp Co

Figure 6(a) shows the −Im[K+−(q = 0, ω)] in Co and
Figs. 6(b) and 6(c) show −Im[K+−(q, ω)] in LDA and
QSGW. The calculated magnetic moment per Co atom is
1.67 μB in LDA, 1.76 μB in QSGW. These are a little larger
than the experiment value 1.58 μB [42]. It is reasonable in
the sense that the QSGW value relative to experiment is
1.76 μB/1.58 μB, in between 2.22 μB/2.22 μB (Fe) and
0.80 μB/0.62 μB (Ni). Let us compare peaks of 3d shown
in insets with those for Fe and Ni (Figs. 2 and 4). In QSGW,
3d bands are narrower than LDA in both the majority and
minority spins in Co and Ni, in contrast to the case of Fe where
there is little narrowing of DOS in the minority spins. This
is probably because the bcc structure has more hybridization
with sp bands than fcc and hcp. In Co, the largest peaks of
3d are pushed down by QSGW relative to LDA, with keeping
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the exchange splitting. Thus changes of −Im[K+−(q = 0, ω)]
from QSGW to LDA are similar in Fe and Co. As we already
noted in Sec. III A, we admit several universal tendencies of
QSGW relative to LDA; however, such changes of DOS and
−Im[K+−(q = 0, ω)] are hardly predicted without calcula-
tions in practice.

In Fig. 7(a), we show Im[R+−(q, ω)] in LDA together
with plots of the SW dispersion given by the FMM [10]
(black broken lines) and by the LF [9] (black lines). In
these plots, two branches appear because of two atoms per
primitive cell. The LF traces peaks of our Im[R+−(q, ω)] very
well especially along �-A-K-H-A. Around M, the black lines
are slightly lower than the peak of Im[R+−(q, ω)] seen at
∼800 meV. Near �, Im[R+−(q, ω)] shows no optical branch.
Experimental data shown by oval circles [43,44] are a little
lover than the plots and peaks of Im[R+−(q, ω)].

In contrast, we have an impressive agreement with the
experiment in QSGW. As seen in Fig. 7(b), oval circles are
on the peak of Im[R+−(q, ω)] in QSGW. The calculated D

shown in Table II in QSGW are 486 meV Å
2

along [100] and

532 meV Å
2

along [001]. These give much better agreements
with experiments, consistent with the agreement in Fig. 7(b).
This agreement of the SW energy probably originates from
a narrower 3d band in QSGW, resulting in weaker q depen-
dence of −Im[K+−(q, ω)], rather than LDA.

D. B2 FeCo

We treat B2 FeCo in the CsCl structure. Calculated mag-
netic moments per cell are 4.44 μB in LDA, 4.80 μB in
QSGW. The latter is close to experiment 4.70 μB [45]. It is
consistent with other compounds [18,19] where QSGW gives
agreement with experiments as for magnetic moments when
LDA gives underestimation. Alternatively, we may take FeCo
as a case between Fe and Co. Since QSGW/experiment =
2.22 μB/2.22 μB for Fe, = 1.76 μB/1.58 μB for Co, we may
say that slight overestimation 4.80 μB/4.70 μB is reasonable.

Figure 8(a) shows −Im[K+−(q = 0, ω)] in LDA and
QSGW. In its inset, �Ex is ∼2.8 eV in QSGW while
∼2.2 eV in LDA. The difference results in the difference of
peaks in −Im[K+−(q = 0, ω)]. Figures 8(b) and 8(c) show
−Im[K+−(q, ω)] in LDA and QSGW, although we see no
specific features worth mentioning.

Figure 9 shows Im[R+−(q, ω)] in (a) LDA and (b) QSGW,
together with the previous SW calculation in the FMM [11].
Im[R+−(q, ω)] in LDA shows the lower peaks of ω(q) than

FMM. Im[R+−(q, ω)] in LDA gives D = 407 meV Å
2

a

little smaller than 500 meV Å
2

by Grotheer [11]. The optical
branch is weakened as in the case of Fe. The weak peak
around ∼600 meV is close to ω(q) in FMM.

In QSGW, there is lower ω(q) in the whole BZ as in the
case of Co. Table II shows that D = 307 meV Å

2
in QSGW

is much smaller than the experiment value 450–500 meV Å
2

by inelastic neutron scattering [46]. Considering the success
on Fe, Ni, and Co, this FeCo was the case for which we
could expect good agreement with experiments. We have not
yet found a reason why QSGW gives such discrepancy from
experiment.
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FIG. 9. Im[R+−(q, ω)] for FeCo (a) in LDA and (b) in QSGW,
showing the SW dispersion. The black bold line shows the FMM
result [11] in LDA.

IV. SUMMARY

In order to calculate SW dispersion in QSGW, we have
implemented an effective numerical method for calculating
R+−(q, ω) with the package ECALJ. This is in the linear re-
sponse formulation based on the maximally localized Wannier
functions as given in Ref. [16].

Then we apply the method to Fe, Ni, Co, and FeCo. We
compare the peak of Im[R+−(q, ω)] with inelastic neutron
scattering data and with the spin stiffness D. For Fe, Ni, and
Co, QSGW gives much better agreements with experiment
than LDA does. Notably, too large D of Ni in LDA is reduced
by half, resulting in a good agreement with the experiment.
We see similar agreement for Co in comparison with the
neutron scattering data. For FeCo, we have not yet understood
why D in QSGW disagrees with experiment.

Such good agreements are owing to the reliable description
of the electronic structure in QSGW. QSGW gives a good
description of 3d bandwidth, �Ex, and magnetic moments,
except for the case of Ni, where we have a too large magnetic
moment. Our method developed here is promising in the sense
that it covers a wide range of materials from the metals treated
here to transition metal oxides where LDA can be hardly
applicable.
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