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Dynamics of noncollinear antiferromagnetic textures driven by spin current injection
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We present a theoretical formalism to address the dynamics of textured, noncollinear antiferromagnets subject
to spin current injection. We derive sine-Gordon type equations of motion for the antiferromagnets, which are
applicable to technologically important antiferromagnets such as Mn3Ir and Mn3Sn, and enables an analytical
approach to domain wall dynamics in those materials. We obtain the expression for domain wall velocity, which
is estimated to reach ∼1 km/s in Mn3Ir by exploiting spin Hall effect with electric current density ∼1011 A/m2.
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I. INTRODUCTION

Since the prediction of staggered magnetic order [1] and
its experimental observation in MnO [2], antiferromagnetic
(AFM) materials have occupied a central place in the study
of magnetism. The absence of macroscopic magnetization
in AFMs, however, indicates that they cannot be effectively
manipulated and observed by external magnetic field. This
fact has hindered active applications of AFMs in today’s tech-
nology, despite consistent development of theoretical under-
standing on the nature of AFM dynamics [3]. Research in the
emergent field of antiferromagnetic spintronics [4] has shown
that electric and spin currents can access AFM dynamics
through spin-transfer torques [5–13] and spin-orbit torques
[14,15]. Similar to ferromagnets, AFMs can also accommo-
date topologically nontrivial textures such as domain walls
(DWs) [16–18] and skyrmions [19,20], which play crucial
roles in spintronics applications, e.g., racetrack memories
[21]. The studies on current-driven dynamics of AFM textures
have opened an avenue toward AFM-based technologies.

Recently, AFMs with noncollinear magnetic configura-
tions are generating increasing attention as they exhibit large
magnetotransport and thermomagnetic effects; e.g., anoma-
lous Hall effect [22–24], anomalous Nernst effect [25,26] and
magneto-optical Kerr effect [27,28]. These phenomena have
their origins in the topological character of the electronic band
structures, which in turn are associated with the noncollinear
magnetism. To take full advantages of noncollinear AFMs
in spintronics applications, it is also important to achieve
efficient manipulation of magnetic textures, such as DWs, in
those materials. The studies on current-driven dynamics of
AFMs, however, have thus far mostly focused on collinear
structures. Understanding the effects of electric and spin cur-
rents in noncollinear AFMs is a crucial issue in the community
[29–31].

In this paper, we focus on the dynamics of noncollinear
AFMs induced by spin current (SC) injection, which may be
realized by exploiting spin Hall effect/spin-polarized elec-
tric current in an adjacent heavy-metal/ferromagnetic layer.
We derive sine-Gordon type equations of motion for the
AFMs, including effective forces due to SC injection, external

magnetic field, and internal dissipation. Our model can be
applied to technologically important triangular AFMs such as
Mn3Ir and Mn3Sn. We then study DW dynamics, where an
analytical expression for the DW velocity is derived.

II. MODEL

We consider an antiferromagnet (AFM) composed of three
equivalent magnetic sublattices (A, B, and C) with constant
saturation magnetization MS. In our coarse-grained model,
the classical vector �mA(�r, t ) (| �mA(�r, t )| = 1) is a continuous
field that represents the magnetization direction in sublattice
A, with similar definitions for �mB(�r, t ) and �mC (�r, t ) (Fig. 1);
all three sublattice magnetizations are defined as each spatial
point �r. This continuous treatment is appropriate when the
spatial variation of each sublattice magnetization is suffi-
ciently slow compared to the atomistic length scale.

The magnetic energy density u of the AFM is modeled as
follows,

u = J0

∑
〈ζη〉

�mζ · �mη + A1

∑
xi=x,y,z

∑
ζ=A,B,C

(
∂ �mζ

∂xi

)2

− A2

∑
xi=x,y,z

∑
〈ζη〉

∂ �mζ

∂xi
· ∂ �mη

∂xi
+ D0�ez ·

∑
〈ζη〉

�mζ × �mη

+ uani − μ0MS �H ·
∑

ζ=A,B,C

�mζ , (1)

where J0(> 0) is the homogenous exchange coupling en-
ergy, A1 and A2 are the isotropic inhomogeneous ex-
change stiffnesses [32], D0 characterizes the homogeneous
Dzyaloshinskii-Moriya interaction (DMI), �H is the exter-
nal magnetic field, and μ0 is the vacuum permeability.
The symbol 〈ζη〉 indicates the sum over the pairs (ζ , η) =
(A, B), (B,C), and (C, A). For the anisotropy part uani we
assume

uani = −K
∑

ζ=A,B,C

(�eζ · �mζ )2, (2)

where K (> 0) is the anisotropy constant, and the unit vec-
tors �eζ indicate the easy axes for �mζ in the x-y plane;
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FIG. 1. Scheme of the studied system; bilayer of noncollinear
antiferromagnet (AFM) and nonmagnetic (NM) heavy metal, where
the spin current with polarization along �p is injected into the AFM.
Spin current may be created via spin Hall effect (as shown) or by
alternative techniques, such as spin pumping and injection of spin-
polarized electric current from a ferromagnetic layer. The domain
wall (DW), connecting the all-in (blue) and all-out (red) domains, is
driven into motion by the spin current.

�eA = (−�ex + √
3�ey)/2, �eB = −(�ex + √

3�ey)/2, and �eC = �ex.
The magnetic anisotropy of this form applies to triangular
AFMs such as the L12 phase of Mn3Ir [33] and the hexagonal
phase of Mn3Sn [31], with the (1,1,1) plane of their fcc
crystals identified as our x-y plane. Although there can also
be a smaller out-of-plane anisotropy in realistic materials,
Eq. (2) suffices for our present purpose of understanding the
fundamental response of triangular AFMs to SC injection.

The dynamics of �mζ (ζ = A, B,C) are assumed to obey the
coupled Landau-Lifshitz-Gilbert equations;

∂ �mζ

∂t
= − �mζ × γ �Hζ + α �mζ × ∂ �mζ

∂t
− �mζ × ( �mζ × �p), (3)

where γ and α are the the gyromagnetic ratio and the
Gilbert damping constant, respectively, which are assumed
for simplicity to be sublattice independent, and �Hζ =
−(μ0MS)−1δu/δ �mζ is the effective magnetic field for the
sublattice ζ . The last term in Eq. (3) is the Slonczewski-Berger
spin-transfer torque [34] due to SC injection. The vector �p
represents the value and polarization of the SC, which depend
on the way of SC injection, device materials, geometry, etc.
We have assumed that the injected SC transfers the angular
momentum equiprobably to each of the sublattices [30].

III. IN-PLANE TRIANGULAR APPROXIMATION

We here introduce

�n1 = �mA + �mB − 2 �mC

3
√

2
, �n2 = − �mA + �mB√

6
, (4)

�m = �mA + �mB + �mC

3
. (5)

FIG. 2. Triangular magnetic configurations with (a),(b) R+π/2

and (c),(d) R−π/2 chiralities. They are parametrized by (a),(c) ϕ = 0
and (b),(d) ϕ = π . Dotted lines indicate the easy axes of the magnetic
anisotropy.

Because the AFM exchange coupling responsible for the
formation of triangular structure is usually dominant over
the other energies, one can safely assume | �m(�r, t )| � 1. The
vectors �n1 and �n2 are then approximated to be orthogonal to
each other and have the fixed length as |�n1| � |�n2| � 1/

√
2.

These two vectors can be regarded order parameters of the
AFM [30], specifying the particular triangular configuration.

We further assume that the in-plane anisotropy is suffi-
ciently large that the triangle is formed in the x-y plane with
|mz

ζ | � 1, ∀ζ . This leads to an approximation where only the
x and y components of �n1 and �n2 are nonzero (while �m can
still have a finite z component). In this case the orientations
of �n1 and �n2 in the x-y plane can be parameterized by a single
azimuthal angle ϕ [3,30,31,33] as

�n1 = 1√
2

⎡
⎢⎣

cos ϕ

sin ϕ

0

⎤
⎥⎦, (6)

�n2 = R±π/2�n1 ≡ 1√
2

⎡
⎢⎣

cos(ϕ ± π/2)

sin(ϕ ± π/2)

0

⎤
⎥⎦. (7)

In Eq. (7), R+π/2 and R−π/2 select the +π/2 and −π/2
rotations of �n2 against �n1, respectively, corresponding to the
two different chiralities of the triangular structure, defined
by sgn(�ez · �n1 × �n2); in Fig. 2, four different triangular con-
figurations are shown as examples. Which of R+π/2 and
R−π/2 should be chosen is dictated by the DMI and mag-
netic anisotropy. The DMI favors the R+π/2 (R−π/2) chi-
rality if the sign of D0 is negative (positive). The magnetic
anisotropy, on the other hand, can never be fully respected
by R−π/2 [Figs. 2(c) and 2(d)], in contrast to R+π/2 where
the anisotropy energy is minimized by taking ϕ = 0, π .
[Figs. 2(a) and 2(b)] The R−π/2 chirality is thus favored when
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the DMI satisfies the condition 2
√

3D0 > K . As a result of
the competition between the anisotropy, exchange coupling,
and DMI, the R−π/2 triangles carry the weak in-plane ferro-
magnetic moment �m [Figs. 2(c) and 2(d)]. Typical materials
that host the R+π/2 triangles include the L12 phase of IrMn3

[35,36], while the R−π/2 configurations are observed in, e.g.,
the hexagonal phase of Mn3Z (Z = Sn, Ge, Ga) [37].

It turns out that, for either chirality, the AFM responds to
the injected SC in a similar way. In the following we mostly
focus on the R+π/2 case and later consider configurations with
R−π/2.

With the parametrization in Eqs. (6) and (7), the state of
an AFM is described by four variables (ϕ, �m). By rewriting
Eqs. (3) in terms of (ϕ, �m) and assuming J0 � |D0| � K ,
one obtains, up to the first order of �m, the closed equation
of motion for ϕ,

c2�ϕ − 3ωEωK

2
sin 2ϕ = 3ωE pz − γ

∂Hz

∂t
+ ωα

∂ϕ

∂t
, (8)

and the explicit expression for �m,

�m = 1

3ωE

(
−∂ϕ

∂t
�ez + γ �H

)
, (9)

for the R+π/2 case. We have introduced ωE =
γ J0/μ0MS, ωK = 2γ K/μ0MS, ωα = 3αωE , and � =
∇2 − (1/c2)∂2/∂t2 with c = √

3ωEγ (2A1 + A2)/μ0MS

the group velocity of spin wave.
Equation (9) shows that �m is expressed in terms of ϕ and

vanishes in the absence of magnetic dynamics (∂ϕ/∂t = 0)
and external magnetic field. Equation (8) is one of our main
results. The rhs of this equation contains the effective forces
originating from SC injection, time-varying magnetic field,
and internal damping. In the absence of these forces, Eq. (8) is
reduced to a sine-Gordon equation, consistent with the work
in Ref. [33]. In the limit of homogeneous systems (∇ϕ = 0)
without external magnetic field, Eq. (8) then reproduces the
result of Ref. [30]. Now, our Eq. (8) allows one to study in-
homogeneous AFM textures under the external driving forces
due to SC and magnetic field, and the internal damping.

Notice that only the out-of-plane (z) component of the SC
polarization and of the magnetic field can induce the dynamics
of ϕ. We should also remark that the DMI does not appear
in Eqs. (8) and (9). This is because the DMI energy, which
can be written as 3

√
3D0�ez · �n1 × �n2, is constant within the

present approximation, and its contribution to the equations of
motion is higher order. The DMI plays a crucial role, however,
in lifting the degeneracy with respect to the chirality (Fig. 2) as
discussed above. In the following, we discuss the translational
motion of a DW driven by SC (setting �H = 0).

IV. DOMAIN WALL DYNAMICS

The doubly-degenerate ground states for the R+π/2 case
are given such that the magnetic anisotropy energy is mini-
mized by ϕ = 0 and π , corresponding to the all-in and all-out
configurations, respectively [Figs. 2(a) and 2(b)]. A DW can
be formed as a transition region connecting the two ground
states (Fig. 1). Here let us consider a one-dimensional DW
extending along the z axis. (Due to the isotropic character of
the exchange stiffnesses, our conclusions will be independent

of the choice of the direction of DW extension, as long as
the SC is polarized along the z axis so defined.) When the
rhs of Eq. (8) is absent, a standard solution ϕe(z) for a static
DW with the boundary condition ϕe(z = ±∞) = (0,±π )
or (±π, 0) (notice that ϕ is defined in −π � ϕ � π ) is
obtained as ϕe(z) = 2F tan−1 [exp (Q z−z0

�0
)]; z0 is the coordi-

nate of the DW center, �0 = √
(2A1 + A2)/2K is the DW

width parameter, and (Q, F ) = (±1,±1), satisfying QF =
(1/π )

∫ ∞
−∞ dz(∂ϕe/∂z), specifies the boundary condition.

To study steady motion of the DW driven by SC, we
employ the following ansatz

ϕ(z, t ) = 2F tan−1

[
exp

(
Q

z − V t

�

)]
, (10)

where V is the velocity of DW center and � is the dynamical
width parameter. By substituting this ansatz into Eq. (8),
multiplying the subsequent equation by sin ϕ, and integrating
it along the z axis from z = −∞ to +∞, one finds the relation
V = (FQπ�/2α)pz.

In the special case where the DW exhibits an inertial mo-
tion in the absence of the rhs of Eq. (8), the width parameter
�in is given by

�in = �0

√
1 − V 2

c2
. (11)

Equation (11) implies the Lorentz contraction of the DW,
stemming from the Lorentz invariance of the sine-Gordon
equation. The rhs of Eq. (8) may be regarded perturbation, if
3ωE pz and ωα|∂ϕ/∂t | ∼ ωαV/� are sufficiently small com-
pared to each term in the lhs. In this perturbative regime one
can use the approximation � = �in, which leads to

V = FQ
μpz√

1 + (μpz/c)2
, (12)

where we have introduced the DW mobility (in the unit of
length)

μ = π�0

2α
. (13)

Equation (12) is one of our central results, revealing important
natures of the DW dynamics. The sign of V is determined by
that of pz, i.e., the polarization of the SC, and the factor FQ
that characterizes the DW structure. For μ|pz|/c � 1, the DW
velocity depends linearly on pz as V � FQμpz. Importantly,
V monotonically increases with |pz|, in a similar manner as
in collinear AFMs [15]. Our result thus indicates that the
absence of the so-called Walker breakdown [38] is ubiquitous
for general AFMs, and a high DW velocity can be achieved
by increasing the SC injection. The previous studies showed
that noncollinear AFMs have an advantage over collinear ones
in the large magnetotransport effects [22–24,27,28], which
provide efficient ways to detect DWs. Now that Eq. (12)
reveals that the noncollinear AFMs can accommodate DWs
moving as fast as in collinear ones, the former are indeed
a potential candidate for future spintronics applications. In
Fig. 3, Eq. (12) is plotted by the solid line as a function of
μpz with (F, Q) = (+1,+1).

To check the validity of Eq. (12), we compute the DW
velocity by numerically solving Eq. (3) with the fourth order
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FIG. 3. The DW velocity V as a function of SC μpz, calculated
numerically from Eq. (3) (open symbols) and analytically from
Eq. (12) (solid line). Both V and μpz are measured in the unit
of c (� 16 km/s with the present parameter set shown below).
The parameter values are typical for Mn3Ir [35,36]: J0 = 2.4 ×
108 J/m3, A1 = 0 (corresponding to taking into only account the
nearest-neighbor coupling in the kagome lattice), A2 = 2 × 10−11

J/m, D0 = −2 × 107 J/m3, K = 3 × 106 J/m3, μ0MS = 1.63 T,
γ = 1.76 × 1011 Hz/T, and α = 10−2. When the SC is created
via spin Hall effect, as in Fig. 1, the electric current density jc,
corresponding to μpz = 0.1c and V � 4.7 km/s, is estimated as
jc � 8.5 × 1011 A/m2, using pz = (γ h̄/2eμ0MS)θSHE jc/d [34] with
the spin Hall angle θSHE = 0.15 for NM and the sample thickness
d = 1 nm.

Runge-Kutta method. We consider a nanowire with dimen-
sions of 1 × 1 nm2 × 20 μm, dividing it into the unit cells of
1 × 1 × 1 nm3. We employ the periodic boundary condition
along the x direction, to mimic a thin (in the y direction), wide
(in the x direction) nanowire. The results of the simulations
are indicated by the open symbols in Fig. 3, which agree well
with the analytical calculation in the relatively low current
regime. The discrepancy starts visibly developing as μpz is
increased as large as ∼c, where the rhs and lhs of Eq. (8)
become comparable (with our present choice of parameters)
and the perturbative approach is invalid. The deviation of the
numerical results from Eq. (12) in the high current regime
may be attributed to several factors. First, the out-of-plane
components of the magnetizations grow with pz, thus re-
ducing the accuracy of the in-plane approximation. Second,
the homogeneous SC, represented by the spatial-independent
pz term in Eq. (8), acts not only within the DW region but
also on each domain. The SC thus causes the rotation of the
domains away from ϕ = 0,±π , and the ansatz (10) becomes
inappropriate. In this regime, one may be able to find some
quantitative difference in the detailed DW dynamics between
collinear and noncollinear AFMs. We leave more systematic
and thorough study on the high current regime for future work.

V. R−π/2 CHIRALITY

Lastly, we show that qualitatively similar conclusions are
obtained for the R−π/2 case. The equations of motion are

derived with the same line of approximations used in deriving
Eqs. (8) and (9). For the weak ferromagnetic moment �m one
obtains

�m = 1

3ωE

(
−∂ϕ

∂t
�ez + γ �H + ωK√

2
M�n

)
, (14)

where the external magnetic field �H is restored, and M�n =
2−1/2(− cos ϕ, sin ϕ, 0). Equation (14) differs from Eq. (9) in
the third term, which arises from the competition between
the magnetic anisotropy, exchange coupling, and DMI, as
discussed above.

The equation of motion for ϕ, up to the first order of �m, is

c2�ϕ = 3ωE pz − γ
∂Hz

∂t
+ 3αωE

∂ϕ

∂t

− ωKγ

2
(Hx sin ϕ + Hy cos ϕ). (15)

There are two major differences between the magnetic dy-
namics for the R+π/2 [Eq. (8)] and R−π/2[Eq. (15)] cases:
First, for R−π/2, in-plane magnetic fields can create addi-
tional driving forces [the last terms in the rhs of Eq. (15)],
which originates from the direct Zeeman coupling between
the weak ferromagnetic moment [the last term in Eq. (14)]
and the magnetic field. Second, the sin 2ϕ term does not
appear in Eq. (15), which indicates the absence of effective
anisotropy for ϕ. In the R−π/2 case, effective anisotropies
arise from higher-order terms of �m [31]. For Mn3Sn, indeed,
a small anisotropy ∼10 J/m3 of the form of cos 6ϕ has
been predicted, which leads to formations of 60◦ DWs [31].
Although a DW is in general not a 180◦ wall depending on
the symmetry of the effective anisotropy, the SC acts on the
DW in essentially the same way as on the 180◦ walls in the
R+π/2 case, since the pz term is identical in Eqs. (8) and (15).
Most of the conclusions on the DW motion derived before
thus hold qualitatively, with renormalization ϕ → n

2ϕ for a
n-fold anisotropy with n an even integer.

VI. CONCLUSIONS

We have derived sine-Gordon type equations of motion for
the noncollinear antiferromagnets, with spin current injection,
external magnetic field, and dissipative terms included. We
have demonstrated that the injected spin current, when it
is polarized perpendicular to the triangular plane, can drive
a translational motion of a domain wall. When the spin
current is injected by exploiting the spin Hall effect, the
domain wall velocity as high as ∼1 km/s can be achieved for
typical noncollinear antiferromagnets, with realistic electric
current density ∼1011 A/m2. As the spin current injection into
noncollinear antiferromagnets remains to be experimentally
demonstrated, our findings provide a guideline for devising
future experiments.
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APPENDIX: DERIVATION OF EQS. (8) AND (9)

Here we show a derivation of the effective equations of
motion (8) and (9) for the case with R+π/2. Equation (3) can
be rewritten by using Eqs. (4), (5), (6), and (7) as

∂�n1

∂t
= −�n1 × (γ �H − 3ωE �m + �ωKm + D′ �m) − �m × (�ωD × R+π/2�n1 + �ωKn1 + D�n1) + ωK

2
√

2
(mx sin ϕ + my cos ϕ)�ez

+ 1

2
√

2
[(px cos 2ϕ + py sin 2ϕ)�ex + (px sin 2ϕ − py cos 2ϕ)�ey], (A1)

∂R+π/2�n1

∂t
= −R+π/2�n1 × (γ �H − 3ωE �m + �ωKm + D′ �m) − �m × (−�ωD × �n1 + �ωKn2 + DR+π/2�n1

)

− ωK

2
√

2
(mx cos ϕ − my sin ϕ)�ez + 1

2
√

2
[(px sin 2ϕ − py cos 2ϕ)�ex − (px cos 2ϕ + py sin 2ϕ)�ey], (A2)

∂ �m
∂t

= − �m × γ �H + px�ex + py�ey

2
+

[(
− c2

3ωE
∇2 + α

∂

∂t

)
ϕ + ωK sin 2ϕ

2
+ pz

]
�ez, (A3)

up to the first order of �m, where

D =
[
γ (2A1 + A2)

μ0MS
∇2 − α

∂

∂t
− �p×

]
, D′ =

[
2γ (A1 − A2)

μ0MS
∇2 − α

∂

∂t
− �p×

]
, (A4)

�ωD =
√

3γ �D0

μ0MS
, (A5)

�ωKn1 = ωK
(�eA · �mA)�eA + (�eB · �mB)�eB − 2(�eC · �mC )�eC

3
√

2
, (A6)

�ωKn2 = ωK
−(�eA · �mA)�eA + (�eB · �mB)�eB√

6
, (A7)

�ωKm = ωK
(�eA · �mA)�eA + (�eB · �mB)�eB + (�eC · �mC )�eC

3
. (A8)

Let us ignore the STTs and all the �m-dependent terms but the HE term, assuming that they are sufficiently small;

∂�n1

∂t
= −�n1 × (γ �H − 3ωE �m), (A9)

∂R+π/2�n1

∂t
= −R+π/2�n1 × (γ �H − 3ωE �m). (A10)

Multiplying by �n1× the latter equation and using �n1 × ∂R+π/2�n1/∂t = 0, one is led to �n1 · �m = �n1 · γ �H/3ωE . Substitute this
into the expression of �n1 × ∂�n1/∂t to obtain

�m = 1

3ωE

(
γ �H − ∂ϕ

∂t
�ez

)
. (A11)

This is Eq. (9). It is then straightforward to obtain Eq. (8) by substituting Eq. (A11) into (A3).
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