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Torque equilibrium spin wave theory study of anisotropy and Dzyaloshinskii-Moriya interaction
effects on the indirect K-edge RIXS spectrum of a triangular lattice antiferromagnet
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We apply the recently formulated torque equilibrium spin wave theory (TESWT) to compute the 1/S-order in-
teracting K -edge bimagnon resonant inelastic x-ray scattering (RIXS) spectra of an anisotropic triangular lattice
antiferromagnet with Dzyaloshinskii-Moriya (DM) interaction. We extend the interacting torque equilibrium
formalism, incorporating the effects of DM interaction, to appropriately account for the zero-point quantum
fluctuation that manifests as the emergence of spin Casimir effect in a noncollinear spin spiral state. Using
inelastic neutron scattering data from Cs,CuCl, we fit the 1/S-corrected TESWT dispersion to extract exchange
and DM interaction parameters. We use these new fit coefficients alongside other relevant model parameters to
investigate, compare, and contrast the effects of spatial anisotropy and DM interaction on the RIXS spectra at
various points across the Brillouin zone. We highlight the key features of the bi- and trimagnon RIXS spectrum
at the two inequivalent rotonlike points, M (0, 277 /+/3) and M'(r, 7t /+/3), whose behavior is quite different
from an isotropic triangular lattice system. While the roton RIXS spectrum at the M point undergoes a spectral
downshift with increasing anisotropy, the peak at the M’ location loses its spectral strength without any shift.
With the inclusion of DM interaction the spiral phase is more stable and the peak at both M and M’ point exhibits
a spectral upshift. Our calculation offers a practical example of how to calculate interacting RIXS spectra in a
noncollinear quantum magnet using TESWT. Our findings provide an opportunity to experimentally test the

predictions of interacting TESWT formalism using RIXS, a spectroscopic method currently in vogue.

DOI: 10.1103/PhysRevB.100.054410

I. INTRODUCTION

In a recent publication Cheng et al. [1] highlighted the fea-
tures of the indirect K-edge resonant inelastic x-ray scattering
(RIXS) bi- and trimagnon spectrum of an isotropic triangu-
lar lattice antiferromagnet (TLAF). The TLAF is known to
possess a 120° long-range ordered state even after quantum
fluctuations are considered [2—-14]. The authors considered
the self-energy corrections to the spin wave spectrum to
pinpoint the nontrivial effects of magnon damping and very
weak spatial anisotropy on RIXS. It was shown that for a
purely isotropic TLAF model, a multipeak RIXS spectrum
appears which is primarily guided by the damping of the
magnon modes. Interestingly enough it was demonstrated that
the roton momentum point is immune to magnon damping
(for the isotropic case) with the appearance of a single-peak
RIXS spectrum. It was suggested that this feature could be
utilized as an experimental signature to search for or detect
the presence of rotonlike excitations in the lattice. However,
including XXZ anisotropy leads to additional peak splitting,
including at the roton wave vector.

At present no theoretical guidance exists for experimen-
talists on how to interpret the RIXS spectrum of the ordered
phase in a geometrically frustrated triangular lattice quantum
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magnet, though a proposal has been put forward to detect spin-
chirality terms in triangular-lattice Mott insulators via RIXS
[15]. Furthermore, as discussed in this article the existing
spin wave theory formulation used for the isotropic case fails
beyond the isotropic point and with Dzyaloshinskii-Moriya
(DM) interaction included in the model.

Lately, the nature of the ground and excited states of
the TLAF has garnered some attention [16-25]. A high
magnetic field phase diagram study of the TLAF has also
been performed [26]. An appropriate theoretical treatment of
interactions in a TLAF must consider spin wave quantum
fluctuation effects [27]. Zero-point quantum fluctuations of
a noncollinear ordered quantum magnet gives rise to spin
Casimir effect [28,29]. As a spin analog of the Casimir effect
in vacuum, the spin Casimir effect describes the various
macroscopic Casimir forces and torques that can potentially
emerge from the quantum spin system. The physical conse-
quence of the Casimir torque, generated due to the underlying
lattice anisotropy, is the modification of the ordering wave
vector, which is much smaller than the classical value. The
modification in the ordering wave vector can cause the spin
spiral state to become unstable, in turn rendering the standard
spin wave theory expansion (1/S-SWT) approach inapplica-
ble. Thus, the generic interacting spin wave theory is not
appropriate.

To remedy the effect of singular behavior (which is not
a precursor to the onset of quantum disordered phases) that
naturally arises in noncollinear systems due to the presence
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of spin Casimir torque, Du et al. [28,29] proposed the torque
equilibrium spin wave theory (TESWT). The regularization
scheme of TESWT formalism removes the naturally occurring
divergences within the interacting 1/S-SWT formalism of
the anisotropic quantum lattice model. It was shown that
TESWT gives a much closer final ordering vector to the
results of series expansion (SE) and modified spin wave
theory (MSWT) method [18,30]. Furthermore, its prediction
of the phase diagram is consistent with the previous numerical
studies [18,30].

Historically, the concept of a roton minimum and a roton-
like point in the TLAF was introduced by Zheng et al. [31,32].
Using SE method the authors identified a local minimum
in the magnon dispersion at the high symmetry M’ point
(, /~/3). Drawing analogy with the appearance of a sim-
ilar dip (local minimum) that is observed in the excitation
spectra of superfluid “He [33] and the fractional quantum Hall
effect [34], the authors proposed the “roton” nomenclature to
describe the minimum in the magnon dispersion. The dip in
the spectrum is also present at the other high symmetry M
point (0, 277 /+/3) in the middle of the Brillouin zone (BZ)
face edge. Zheng et al. noted that a roton minimum is absent
in the linear spin wave theory (LSWT) spectrum. Thus, the
occurrence of the rotonlike point is a consequence of quantum
fluctuations arising in a frustrated magnetic material [35,36].
In a subsequent publication the concept of the rotonlike point
was extended to the case of an anisotropic lattice by Fjaerestad
et al. [27]. Additionally, a square lattice system with J'/J > 2
has also been predicted to support the roton minima [31,35].

Further support of the roton feature was provided by the
1/S-SWT study of Starykh et al. [37]. Based on their work, it
was proposed that rotons are part of a global renormalization
(weak local minimum), with large regions of (almost) flat
dispersion. The appearance of rotonlike minima and what
was dubbed as a roton excitation has also been studied in
an anisotropic spin-1/2 TLAF from the perspective of an
algebraic vortex liquid theory [38,39]. Several anomalous
roton minima were predicted in the excitation spectrum in
the regime of lattice anisotropy where the canted Néel state
appears. From the perspective of the algebraic vortex liquid
theory formulated in terms of fermionic vortices in a dual
field theory, it was proposed that the roton is a vortex antivor-
tex excitation, thereby lending credence to use of the word
roton as an apt description. Rotons have also been predicted
to exist in field-induced TLAF magnetic systems [40]. The
field-induced transformations in the dynamical response of
the XXZ model create the appearance of rotonlike minima
at the K point. Experimental evidence of the rotonlike point
can be found in recent inelastic neuron scattering (INS) spec-
trum of the a-CaCr,0; system [10,11]. Examples of TLAF
where anisotropy and DM interaction are present are plethora
[6-12,27,41-43].

With advancements in instrumental resolution of the next-
generation synchrotron radiation sources, RIXS spectroscopy
presents itself as a novel experimental tool to investigate the
nature of the bimagnon RIXS spectrum and the influence
of the roton [44]. As a spectroscopic technique RIXS has
the ability to probe both single-magnon and multimagnon
excitations across the entire BZ [45-47]. Using RIXS it is

possible to probe high energy excitations in cuprates [48,49].
Considering the physical behavior that has been studied
within the context of RIXS TLAF and the fact that departures
from the isotropic triangular lattice geometry is a norm in a
frustrated TLAF, this begs the question “What is the influence
of spatial anisotropy and DM interaction on the bi- and
trimagnon K-edge indirect RIXS bimagnon spectrum at the
rotonlike points and the other BZ points of an anisotropic
triangular lattice ?”

In this article we utilize material parameters relevant to
Cs,CuCly to elucidate the K-edge RIXS behavior of the
rotonlike points and also the bimagnon behavior at the Y
point. We apply TESWT to our quantum Heisenberg model
with spatial anisotropy and DM interaction on a triangular
lattice. Using a TESWT up to first order in 1/S, we compute
the final ordering vector, the spin wave energy, and phase
diagram with different anisotropy parameters. We find the
phase diagram has a physically consistent behavior in the
ordering wave vector Q. We find that the presence of a
relatively small DM interaction can make the spiral state
more stable. We calculate the interplay of x-ray scattering
and bi- and trimagnon excitation. We find that the evolution
of the RIXS spectra at rotonlike points is nontrivial. In the
isotropic case all the rotonlike points are identical due to the
60° rotation symmetry of the underlying isotropic triangular
lattice. However, in the presence of symmetry breaking DM
interaction terms the equivalence breaks down to give rise to
two distinct points M and M’, see Fig. 9. Thus we investigate
and track the evolution of the spectra at these two points
separately. With increasing anisotropy the spectral weight at
these points are subdued, even though the rotonlike points lie
outside the region of magnon damping. Additionally, we find
that the RIXS spectrum at the rotonlike M point undergoes
a spectral downshift. However, for the M’ point the location
of the peak is stable, albeit suppressed as the strength of the
perturbation is increased. We also track the bimagnon RIXS
evolution at the Y point in the Brillouin zone to compare
and contrast with the behavior at the rotonlike points. The
spectrum at Y shows more peaks than at M or M’. Thus, the
roton excitation spectrum is more stable [1].

This paper is organized as follows. In Sec. II we introduce
the model spin-1/2 anisotropic TLAF with DM interaction.
In Sec. IIT A we state the spin wave formalism required to
compute the wave vector renormalization (Sec. IIIB) and
renormalized dispersion (Sec. III C). In Sec. IV we extend the
applicability of the TESWT formalism to include the effects
of DM interaction. In Sec. IV A we elaborate on the TESWT
method, compute the ordering vector and dispersion, and
perform a TESWT INS fitting (Sec. IV B). We then calculate
the phase diagram in Sec. IV C. In Sec. V we compute the
indirect RIXS spectra. In Sec. V A we compute the noninter-
acting bi- and trimagnon spectrum. In Sec. VB we outline
the formalism to compute the interacting bimagnon RIXS
spectrum by including the quartic interactions. In Sec. VC we
track the evolution of the roton energy to provide a physical
explanation of the trend exhibited by the RIXS spectrum with
anisotropy and DM interaction. In Sec. VD we state the
results for the total indirect K-edge RIXS intensity. Finally,
in Sec. VI we provide our conclusions.
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II. MODEL HAMILTONIAN

The antiferromagnetic Heisenberg model on the
anisotropic triangular lattice is widely believed to be well
described by Cs,CuBr4 and Cs,CuCly [51]. While Cs,CuCly
exhibits spin-liquid behavior over a broad temperature range
[43,52], the Cs,CuBrs compound exhibits a magnetically
ordered ground state with spiral order in zero magnetic
field [6]. For «o-CaCr,Q4, though it is reported to have
two inequivalent Cr’* ions and four different exchange
interactions, the nature of the distortion is such that the
average of the exchange interactions along any direction is
approximately equal.

We consider the spin-1/2 antiferromagnetic Heisenberg
model on the anisotropic triangular-lattice perturbed by a DM
interaction, described by the Hamiltonian

WzZJijSi'Sj-G-HDM, (1)
(i)

where (i j) refers to nearest-neighbor bonds on the triangular
lattice, J;; = J denotes the exchange constants along the hor-
izontal bonds, and J;; = J' are the diagonal bonds, see Fig. 1.
The asymmetric DM interaction between neighboring spins is
given by

Hoy = — Y D -[8; x (Siys, + Sits,)]. (@)

1

where D = (0, D, 0) with (D > 0) and §;, are the nearest-
neighbor vectors along the diagonal bonds as shown in Fig. 1.
In the classical limit, the spin operators are replaced by the
three-component vectors

S;/S = cos(Q - 1;)Zp + sin(Q - r;)%o, (3

where the spin forms a spiral with the ordering vector Q. The
classical ground state energy is given by

Ey(Q) = 3NJS* (g — ng) = 3NJS?yq, 4)
(@) (b) M K’
N v V
6] + (52 J
T 2 X /K
2z ky
[

ke

X0

FIG. 1. Sketch of the triangular lattice and the Brillouin zone.
(a) The anisotropic triangular lattice with exchange constant J along
the horizontal bonds and J' along the diagonal (zigzag) bonds.
The lattice vectors are denoted by 8,,. (b) The first Brillouin
zone and the high-symmetry points defined as I' = (0,0), £ =
(27/3,0),X = (7,0),K = (47/3,0), K’ = 27 /3,27/v/3), M’ =
(r, /N3), M = (0,27 /~/3), and Y = (0, 7 /+/3). The choice of
coordinate orientation is in keeping with the convention adopted in
Refs. [1,50].

with
1 ky 3
A = 3 (cos ke + 2a cos > cos %I@), 5)
2 ke
Nk = 577 sin > cos Tky’ 6)

where the dimensionless ratios « = J'/J and n = D/J denote
the relative interaction strengths. For the determination of the
ordering vector Q we have to minimize the classical ground
state energy

VoEo(Q) =0, (N
which amounts to finding the roots of the equations
¢ 3
sin Qy + « sin % cos TQy + 71 cos % cos \/T_Qy =0,
X . 3 . X . 3
acos%sm %Qy—nsm%sm %Qy =0. ®)

Anticipating that this condition leads to a spiral along the x
axis Q = (Qy, 0), we obtain the solution in the absence of DM
interaction as

0y = {Zaxccos (-%), a<2,

27, a =2, ©)

A priori, it is not clear whether the classical ordering vec-
tor correctly describes the long-range order in the quantum
frustrated system. In fact, the classical wave vector will be
renormalized by quantum fluctuations as will be discussed in
Sec. IV A.

III. LINEAR SPIN WAVE THEORY

A. 1/S expansion

Before we set up the spin wave expansion, it is convenient
to transform the spin components from the laboratory frame
(x0, zo) to the rotating frame (x, z) through

§10 = S7sin6; + S} cos 6, (10)
S = S cos6; — S¥sin6;, (11)
where 6; = Q - r;. The rotating Hamiltonian takes the form

Ho=Y [1;SS] + I (SiS5 + S18%)
(i)

+J;; (8787 — 8753)], (12)

where we have defined
Ji-}_ :J;,»cos(@i—Gj)—i—D,»j Sin(@,‘ —9,-), (13)
JJ = J,/ Sin(@,‘ — 09,) — D,‘j COS(@,‘ — 9/) (14)

SWT amounts to applying the Holstein-Primakoff (HP)
transformation to bosonize the rotating Hamiltonian (12)

ST =d"V2S—n;, ST=(), 15
.

where n; = a/a; and a;r (a;) is the magnon creation (annihi-
lation) operator for a given site i. Under the assumption of
diluteness of the HP boson gas n;/(2S) < 1, one arrives at the

SZ-ZIS—HI‘,
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interacting spin wave Hamiltonian to the first-order expansion
of the square root

H=Ey(Q)+ H, + H; + H,, (16)

where the first term is the classical energy and H, denotes
terms of the nth power in the HP boson operators a'(a).

B. Quadratic terms: First-order corrected LSWT

After Fourier transformation we obtain the quadratic
Hamiltonian in momentum space as

By .
Hy=Y" [Akalak + Tk(al'(aik + akak)], (17)

k
with
Ak = 3JS[hk + &k — 270l
By = 3JS[ék — k], (18)
where
£ =3 (Yo+k + Yo-k)- (19)

Diagonalization of H, is performed with the canonical Bogoli-
ubov transformation

ax = ughi + veb' |, (20)

with the parameters uy and vk defined as

e — Ay + &x ; _ Bk Ak —a 21
« 2 ¢ B\ 2e

As a result we obtain the linear spin wave dispersion

ex = /AL — B2 (22)

It is noted that the magnon spectrum has zeros at k = 0 while
a gap is opened at k = Q in the presence of DM interaction.
The diagonalized Hamiltonian H, is given by

Hy = E;(Q) + ) axbibx, (23)
k

where the zero-point energy
1
ExQ) =3NSIyq+ 5 ) e (24)
k

is the 1/S correction to the classical ground-state energy. Gen-
erally, the first-order correction of LSWT Q; = Q¢ + AQ is
determined by minimizing the sum Ey(Q) + E>(Q):

VolEo(Q) + E2(Q)] = 0. (25)
Neglecting higher order terms, we obtain
VolEo(Q1) + E2(Q1)] = VoE2(Qo) + AQ - K =0, (26)
with
Ky = 32E0(Qo)'
908 0Qq

A straightforward calculation gives 1/S correction to the
classical wave vector

AQ=—-w-K!, (28)

27)

(a)

(b)

— TESWT

; ---LSWT+AQ -~
5 L ——LswT R

Q/m

15 . /.

FIG. 2. The evolution of ordering wave vector Q for the § =
% spiral antiferromagnet on the anisotropic triangular lattice as a
function of @ = J'/J. The ordering vectors of TESWT, LSWT, and
1/§ corrected LSWT are compared: (a) n =D/J =0 and (b) n =
D/J =0.05.

where

_ 9E5(Qo)
CT00,

In Fig. 2 we display the variation of the ordering wave
vector renormalization against lattice anisotropy computed
using LSWT, 1/S corrected LSWT, and TESWT. It is clear
that while the LSWT formulation extends the spiral phase
region, the first-order correction from 1/S-LSWT gives an
unphysical result as ¢ — 2 while n = 0. Inclusion of DM
interaction rounds the singularity with an angle that is greater
than 2m. The root cause of this divergence originates from
spin Casimir torque [28,29]. In a frustrated spiral system, the
strong quantum fluctuation effect leads to failure in the first-
order correction. In Sec. IV we will discuss and implement
the TESWT approach which offers a solution to this issue.
The equations to generate the TESWT results are reported in
that section.

(29)

C. Cubic and quartic terms: Renormalized dispersion

The 1/S correction to the spin wave dispersion has to be
accounted for in a noncollinear structure. The interplay of
magnon decay as it arises from the noncollinear structure
is also considered [53-55]. The three-boson term that arises
from the coupling between transverse and longitudinal fluctu-
ations in the noncollinear spin structure takes the form [50]

S .
H; = _\/; > Jjldjai@} + a;) — dlaj(al +anl.  (30)
(i)

In momentum space, we obtain

3JSi | 3 _ Nt i
H3 = T M Z ()/1 + yz)(a{aécn - a;alaZ)v (31)

142=3
where we have defined
_ 1
K= %(VQH« — YQ-k)- (32)

In the above we have adopted the convention that 1 = k;,2 =
k,, etc. For example, a; = a,. Performing the Bogoliubov
transformation in H3 we obtain the interaction terms expressed
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via the magnon operators as

1 .
Hs = o 22:3 Va(1,2;3)(bblbs + Hec.)
142=

1 .
+3 > V(1,2 3)(b(bib} + He).  (33)
14243=0

The three-boson vertices are given by
Van(1,2;3) = 3Ji\/§\7,1 »(1,2;3), (34)
: A
with V,;, given by
Va(1,2:3) = 1(uy 4 v1)(uauz + v203) + P2 (uz + v2)(uyu3
+vi1v3) — P33 + v3) (W02 + viwa), (35)

Vip(1,2,3) = 1 (uy + v1)(uavs + vauz) + 722 + v2)(uiv3
+viuz) + y3(uz + v3)(uvy + viug). (36)

We notice that the three-magnon vertices are of order 1/+/S

occur in pairs in any self-energy or polarization diagram. The
quartic term Hy in the interacting spin wave Hamiltonian (16)
reads

| 1
H, = Z I:EJle“al‘ aia]‘.aj—i—g(Jij — Jijf)(a;fa,va,-aj + aj-ajajai)
(i)

— l(J~ + J*)(a%aTa‘a' +aldta a;)| +H.c (37)
g Wi i Naa; didi T dd;ddi <
To obtain the explicit forms of the quasiparticle representation

of Hy4, we introduce the following mean-field averages:

Ay — B
EP Ag = (akak) = ——%. (38)
28k 28k

ng = (apax) =

The Hartree-Fock decoupling of the H, yields the quadratic
Hamiltonian

1 .
SHy =Y [SAka,tak + E<319k(al;cﬂ_k + a_kak)], 39)
k

relative to the linear spin wave Hamiltonian and they must where
|
1 1 By
B = Ak + 7o qu oo | Aaka t Bog — A=A+ By 5+ By )| (40)
8By = B ! Lig (Ao +B A _Aa) 4 (B4 Ba (41)
FTTR SN g [T TR a*T )
We then obtain the Hartree-Fock corrected H, term as
t Ok 11t
SHy =Y | Senbbi + —(bibT, + bub i) |, (42)
- 2
where
Sex = (up + vi)8Ax + 2uxvi8Bx, (43)
Ok = (uy + vy)8Bx + 2ukviSAx. (44)

Finally, the normal-ordered quartic term Hj in the quasiparticle representation describes the multimagnon interactions. In the
hierarchy of 1/S expansion, terms relevant for our calculations are the lowest order irreducible two-magnon scattering amplitude

= Y

ki +ky=k3+ky

with the vertex function given by

Ve(ky, ko ks, ke)by bl b, by, (45)

1
Ve(1,253,4) = ——={—(B1 + By + By)(uiuouzv4 + vivav3ug) — (By + By + B3)(uiuzv3us + vivauzvy)

8SN

— (B2 + B3 + B4)(u1v2usug + v1upv3vs) — (B + B3 + Ba)(u1v203v4 + viuouziis)

+[(C1 3+ Co3+Crg+Cryg) — (A + Az + Az + AD)](mupuz g + v1V20304)

+[(Cry2 + Ca +Ci_3 + Coy) — (A1 + Az + A3 + A)(u1 v2u3v4 + ViU V3U4)

+[(Cr12 + Capa + Cig + Co3) — (A1 + Az + A3 + AP ](u1v2v3u8 + ViuouzV4)}, (46)

where we have defined

Cx = Ak + Bx. 47

054410-5



JIN, LUO, DATTA, AND YAO

PHYSICAL REVIEW B 100, 054410 (2019)

The effective 1/S interacting spin wave Hamiltonian in terms of the magnon operators reads

Ok .+
Hee = Z |:(3k + Sex)b] by + Tk(bl'(bT_k + bkb—k)]

k

1 : 1 .
+ 57 > Va(bibibs +Hee.) + 3 D Vi(bbibl 4+ He) + > Vebblbsbs.

{ki}

At zero temperature the bare magnon propagator is defined as

Gy'(k, ) = w — e +i07. (49)
The first-order 1/S correction to the magnon energy is deter-
mined by the Dyson equation

w—e¢ — Xk, w)=0, (50)
with the one-loop self-energy X(k,w)= X,(k, w) +
Ypk, w) + X.(k), where X.(k)=3Jex is a frequency-
independent Hartree-Fock correction, while %, ,(k, w) are
calculated as

1 IVa(p, k — p; k)|
Yk, o) = = —, (5D
“ ZXP:w—sp—sk,P—i—lOJf
1 IVs(p, —k — p, k)|
Ypk, ) = 3 E et (52)
-  + &p + egyp — 10

The on-shell solution consists of setting w = g in the self-
energy Eqgs. (51) and (52) leads to the following expression
for the 1/S renormalized spectrum:

wx = ok — Iy = ex + X(k, &), (53)
where @k = Re[wg] is the renormalized spin wave energy and

'k = —Im[wx] represents the magnon decay rate. In Fig. 3 we
plot the 1/S LSWT dispersion of Cs,CuCly [27].

Re{EK}-TESWT
1.5k —Im{EK-TESWT
: = = =1/S-LSWT

O INSdata ,=.

X M K r X (2m,0)

FIG. 3. Magnon dispersion ¢, within TESWT and 1/S-LSWT
approach. The red line is fitted by TESWT with o = 0.316 and
n = 0.025 [J = 0.480(9) meV]. The circles are experimental data
of inelastic neutron scattering for Cs,CuCly [52]. The black dashed
line is the fitting result of 1/S-LSWT with @ = 0.417 and n = 0.021
[/ = 0.573(9) meV]. The energies of all results are normalized by
J = 0.480 meV. The momentum points in the path are defined in
Fig. 1.

(48)
{k;} {k;}

(
IV. TORQUE EQUILIBRIUM SPIN WAVE THEORY

Zero-point quantum fluctuation in a noncollinear ordered
spin structure can lead to deviations in the measured ordering
wave vector compared to the classical one. The correction
emerging from the spin Casimir effect is usually neglected,
but it was recently shown that this is not a bonafide as-
sumption. In Du et al. [28,29] it was clearly established
that in certain situations a standard spin wave theory is no
longer applicable due to the spin Casimir quantum effect,
even when the system is long-range ordered. An important
consequence of these quantum fluctuations is on the spiral
state which can become unstable, which is different from the
case of long-range-order melting. As mentioned earlier the
classical signatures of these instabilities are the divergences
of the ordering wave vector at the quantum critical point
and the strongly singular one-loop expansions of the energy
spectrum and the sublattice magnetization. In this section we
extend the applicability of the TESWT formalism to include
the effects of DM interaction in an anisotropic TLAF. Using
INS experimental data from Cs,CuCly [52], we obtain fitting
parameters for the exchange constants and DM interactions
utilized in subsequent indirect K-edge RIXS calculations.

A. TESWT formalism

Spin Casimir effect will change the classical ground state
to a new saddle point. This new ground state can be unam-
biguously determined once we compute the value of Q. An
ordinary approach is considering the 1/S correction AQ, as
we show in Sec. III B. However, such a method gives an
unphysical result, see Fig. 2. As o — 2, the 1/S correction
AQ becomes infinite.

The basic idea of TESWT is to minimize the ground state
energy. The spin Casimir torque is defined as

0Hqw
T = Wyae |~ | Wyac )
@ = 3 ([ g )
where |W,,.) represents the quasiparticle vacuum state. Then
the torque equilibrium condition is

(54)

8(st +Hcl)
Tsc Tc = \Ijvac T \Ijvac = O,
Q)+ Ta(Q) ;( 50 >
3JS Ax — Bk 0
Te@n =5 = =08 59
k €k Qo
d
Ta(Q) = 3NJS* 22 Ty(Qq) =0,

0Q’
where Q is the final ordering vector, H, = Ey(Q) is the classi-
cal energy. Using the fact that the spin wave spectrum function
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ek is only well defined at Q, we try to find a system whose
classical ordering vector is Q for convenience of calculation.
Thus we shift the function depending on classical ordering
vector Q. to Q by

Hy(a,n, Q) = Hy(&, 7, Q) + Hs, (56)

Ax = A+ AS, By =B+ B, (57)

where ﬁz, Zk, and Ek are functions of another spin system
whose classical ordering vector Q. equals Q. The coun-
terterm is given by Hj whose effects are considered in the
Ax(By) coefficients through Aj (By). In principle, we have
many combinations of (a,7) that satisfy this condition. As
n/a is small, within perturbation theory, we believe 77 = 7 is
a reasonable choice. Thus the new parameters can be deduced

by solving the following self-consistent equations:
ad=— Q _ Q
g = —2cos > —ncots, (58)
n=n.

The spin Casimir torque is then expressed approximately as

~

Ts(Q) = Tsc(Q). Thus the torque equilibrium equation in
J

Eq. (55) can be written as

v _ 1 ZAV"_E"W‘”Q (59)
3Q ~ NS4 & Q-

Note, the exchange parameters on the left-hand side of
the equation are exact as «, . While the parameters on the
right-hand side approximate as @ = —2 cos % — ncot % We
solve this equation numerically and give the results in Fig. 2.
If there is no DM interaction, TESWT gives Q = 2m for
o« > 1.2, which are similar to the results of numerical methods
[18,30]. The LSWT, however, gives a wider region for spiral
order phase, and cannot describe the region for 1.2 < o <
2. As anticipated, even a small DM interaction n = 0.05
changes our final ordering vector. The DM interaction im-
proves the spiral order stabilization and enlarges its region of
validity. -

We diagonalize H>(«, 77, Q) and treat Hs as a counterterm.
Since we are considering a 1/S theory, we neglect the coun-
terterm contributions from Hy and Hjf [28,29]. Thus, we can
write the Hamiltonian as

Hy = Hy + H; + H; + H,. (60)

Following the procedure outlined in Sec. III, the effective TESWT Hamiltonian now reads

7 ~ ~ 0 ¥ G Oy
Hr =) [(gk + 83 )b] by + Tk(bkzﬁ_k + bb_x) + egbybx + Tk(blbik + bkbk)]

k

| R 1 . -
+ 57 > Va(bibibs +He.) + 3 > V(bbb + He) + > Veb{blbsbs, (61)

{ki}

where F means F (a,7, Q) (F is an arbitrary operator) and

. ~ _
[AxAx — BiBi] — &k,

ey = (U + Vp)Ag + 2By = =
k
(62)

UV B -
k= (B + 5By + 20Ay = <~ [AwBx — Brdw]. (63)
k

Thus, we shifted the classical ordering vector Q. to the final
ordering vector Q using TESWT. Therefore, the first-order
1/S corrected magnon dispersion can now be changed to

Wi = B + & + 881 + T4k, B) + S0k, F). (64)

B. INS fitting

As discussed above, with anisotropy the application of
1/S-LSWT formalism is tricky. But, application of TESWT
requires magnetic interaction parameters computed within
that formalism. The most direct way to achieve this goal is
to compare the theoretical dispersion with the experimental
data. We fit the INS data of Cs,CuCly [52] to Eq. (64)
using iterative least squares estimation both by TESWT and
1/S-LSWT. Our fitting parameters along with results from
other sources are reported in Table I. Our dispersion line fits
are reported in Fig. 3. The absence of higher order terms
within our TESWT could be a source of disagreement with

{ki}

(

the series expansion results [27], which is an all numerical
method that considers higher order terms [32]. As the fitted
dispersion by TESWT gives a reasonable comparison with
the experimentally fitted SE method parameters, we believe
that our TESWT can capture the essential physical behavior.
While it maybe fruitful to investigate the above mentioned
discrepancy, within the context of our RIXS calculation we do
not expect the improved interaction constants to bring about
much qualitative or quantitative differences.

C. Sublattice magnetization

Next, we study the phase diagram of the anisotropic tri-
angular lattice. In a spin system, the sublattice magnetization

TABLE 1. Parameter values of Cs,CuCl, using different meth-
ods. The first line is our TESWT fitting results. The second line
is our 1/S-SWT fitting parameters. The third line gives the fitting
parameters of series expansion (SE) method [27]. The last line gives
the parameters measured by electron-spin resonance (ESR) [56].

Method J (meV) J' (meV) D (meV)
TESWT 0.480 £+ 0.009 0.152 £0.015 0.012 £ 0.002
1/S-LSWT  0.573+£0.009  0.239 £0.014  0.012 +0.001
SE 0.374 + 0.005 0.128 + 0.005 0.020 + 0.002
ESR 0.41+0.02 0.122 + 0.006 -
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FIG. 4. Variation of sublattice magnetization (S) with spatial anisotropy «. The blue (red) circles (solid line) represents TESWT (LSWT)

results: (a) n = 0, (b) n = 0.03, and (c¢) n = 0.05.

can describe the phase transition behavior. The second-order
correction of the sublattice magnetization contributes little to
the result. Thus, we only consider the first-order correction to
the sublattice magnetization as

(S) =8 -85 =8 — (a]a;), (65)
where
(alai) = (agai) = (v5)- (66)

In Fig. 4 we plot the sublattice magnetization (S) variation
with spatial anisotropy. Our result without DM interaction is
consistent with previous numerical studies [18,30]. Consistent
with our previous analysis of Fig. 2, the spiral order is
destroyed at o > 1.2. In addition, the spiral order is unsafe at
a < 0.5, consistent with modified spin wave results [18]. The
DM interaction, which originates from spin-orbit coupling,
helps to generate a noncollinear spin ground state. It is evident
from Fig. 4, as n gets bigger, the phase transformation point
in the region o < 0.5 diminishes until it disappears. On the
opposite end, the sublattice magnetization recovers thereby
making the o > 1.2 zone less susceptible to drastic effects
of quantum fluctuation. These findings suggest that the DM
interaction enlarges the region of the spiral state. Our focus
in this article is on the multimagnon RIXS spectrum in the
spiral phase. Thus, we can use the computed phase diagram
to extract the appropriate choice of parameters. We find that
TESWT not only gives a consistent physical estimate of the
final ordering vector, but also correctly predicts the phase
diagram of an anisotropic TLAF, helping to better understand
the behavior of the spiral ground state of such a geometrically
frustrated system.

V. INDIRECT RIXS SPECTRA
A. Noninteracting bi- and trimagnon RIXS

In this section we calculate the bi- and trimagnon RIXS
spectrum. The results in this part use TESWT while the
LSWT approach is shown in the Appendix. The indirect RIXS
scattering operator is given by [57,58]

Ry =D Jise""S; - Siss, (67)
i,8

where q is the scattering momentum. In quasiparticle repre-
sentation, the magnon creation parts of the RIXS scattering
operator can be given by

Ry= Y MA2bb+ Y N(1,2,3)bibibl, (68)
14+2=q 14+2+3=q

where the bimagnon scattering matrix element is

M(1,2) = 3;]—;9{[51 + AL +E& + Ak — 2y +E9)]
x (10 + V1)
+ & — A+ & = A)Wu +0102)),  (69)
and the trimagnon scattering matrix element is

3JS. | 3 _ _ Lo\~ |~

KT ZS_N[(VI — 7243+ 17q) (@ + 7))

X (03 + 02i3) + (72 — V143 + §7q) (2 + 72)
X (103 + 0113) + (73 — 7142 + 574) (3 + T3)

x (107 + 0y ﬁz)] (70)

N(1,2,3) =

We neglect the corrections from magnon interactions for the
trimagnon intensity, which appear at 1/5? order. Next, using
Egs. (A4) and (AS) stated in the Appendix we obtain the
following expressions for I>(q, @) (noninteracting bimagnon)
and 3(q, w) (trimagnon) scattering intensity

L(q, ®) =2 Zﬂﬁﬂ,_ka(w — oty — O, (71)
k

N 0 0 0
L(q,w) =6 ZNk,q—k—p,p(S (a) o wl(( = w((]—)k—]) - wl(3 ))’
k.p

(72)

where a)l((o) =%k +¢.

In Fig. 5 we display our results of the noninteracting bi-
and trimagnon RIXS spectra at various points across the BZ.
Overall the agreement between the LSWT and the TESWT
formalism is reasonable. Our TESWT result generates more
peaks for the bimagnon intensity. We note that in the isotropic
regime o = 1, our TESWT results are identical with the
LSWT formalism since the final ordering vector Q equals
the classical vector Q,;, see Fig. 11. As discussed earlier, the
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FIG. 5. Noninteracting bimagnon spectra across high symmetry
BZ points. The line plots compare results from TESWT against
LSWT fora = 0.8 and n = 0.

TESWT is the physically correct formalism in the presence of
anisotropy.

B. Interacting bimagnon RIXS spectra

We now proceed with the analysis of 1/S correction to
the two-magnon Green’s function by taking into account both
the self-energy correction to the single magnon propagator
G according to the Dyson equation and the vertex insertions
to the two-particle propagator IT which satisfies the Bethe-
Salpeter (BS) equation [1,59] Using the procedure outlined in
our prior work [1] and Feynman rules in momentum space, we
obtain the following equations for the two-particle propagator
and the associated vertex function as

[ do
M (q, w) = 21/ 5 Oktal@+ @")G_k(— T (0, @),
(73)
’ . dwl
D (0, 0) = 8kk’+kz 2i | 5—=Gq(@+0)Gi (1)
1
x Vig, (@', 0Dk (@, 1), (74)

where the basic one-magnon propagator up to 1/S order is
now given by

Gk 0) =0 — o +i0". (75)

The lowest order two-particle irreducible interaction vertex in
Fig. 6(c) reads

VR = Vi + VP + VP + VO + VD, (76)

in which the frequency-independent four-point vertex V,
coming from the quartic Hamiltonian can be written as

Vi = Vo(k; + q. —ki:k 4 q. —K), (77)

k +q,0+0'

(@) Hw(q,w) = |Te

-k,-o'

k1 +(q ,wtwi

Ok
(b) rkkl = e -+ rkl K'
-k ,—w;
Vi Ve e
(©) = + +
c d
Vo Ve
+ + + 0(1/8%)

FIG. 6. Diagrammatic representation for the two-magnon inter-
actions. (a) Two-magnon propagator [Tk (q, ), (b) Bethe-Salpeter
equation of the vertex function Iy (w, @), and (c) the 1/S order
irreducible interaction Vig. Solid lines with an arrow in (a) and
(b) stand for the single-magnon propagators. The total irreducible
bimagnon scattering vertices can be classified into direct (V4) and
indirect ((Vg’d) contributions. Note, the direct ladder interaction
leads to a stable magnon interaction event, but the indirect collision
process has contributions from virtual decays and recombination.

and the other four vertices (Vg“_d) in the same 1/S order
which are assembled from two three-point vertices and one
frequency-dependent propagator can be written as

1 - /
(v(30) = 22 [Vuki +q,.k—ki;; k+ q)Gok — k|, o —w)
x V*(—k, k — ki3 —k))], (78)
1 4 /
V¢ = GplVetk+a.ki —kiki + @)Go(ki — k. o1 = o)
x Va(—kp, k| — k; —K)], (79)
c 1 -4
VO = W[mkl +q, —k1;9)Go(q, ®)
x V*(k 4 q, —k; q)], (80)
(v‘f“—L[V(k +q. ki, —q)Gy(—q, —o)
3T Ge b (K1 T q, =Ki, =q)Go(—q, —w
x Vi (k + q, -k, —q)]. @1)

054410-9



JIN, LUO, DATTA, AND YAO

PHYSICAL REVIEW B 100, 054410 (2019)

In the above we have retained only the bare propagator Gy for
each intermediate line in (Vé[’_d) in the spirit of 1/S expansion.
Note, the vertex expressions here are different from those
stated within the traditional 1/S-SWT approach [1]. The
vertex expressions here are shifted by the correct TESWT
wave vector as represented by the tilde notation. Based on the
above generalization, we now derive the final solution of the
interacting RIXS intensity from the ladder approximation BS
equation.

We adopt a numerical approach to compute the interact-
ing bimagnon RIXS intensity. We assume that two on-shell
magnons are created and annihilated in the repeated ladder
scattering process with o’ =~ —a)l((o) =tk —e¢f and o &
—wy) = —%, — & . We substitute (73) and (74) into (A6) to
obtain

X2 = ZMkMk/ [Skk/nk + Ik Zka, Iy, Hklk’:|7 (82)
Kk’ k;

where T = 2[® — wkiq — ok + i07]7! is the renormalized
two-magnon propagator in the absence of vertex correction.
To proceed further we divide the BZ into N points and replace
the continuous momenta (k, k', k;) with discrete variables
(m, n, 1). Thus we can write

)A(mn = A’Zmﬁn [Smnnm + I Z lenlrln]9 (83)
1

where

Fion = 8mn + Z IV . (84)
1

Adopting the matrix notation I' = (I — VIT)~! we obtain the
final form of the ¥ matrix as

T=o1-11"'"g (85)

where we have defined the following N x N matrices,
imn = 8mns Z)mn = 8mnlqmv (86)
IAﬂmn = I—[men, amn = SmnHmMm (87)

The interacting bimagnon RIXS susceptibility is computed as

X2(q, @) =Y fn- (88)

We use Eqgs. (73)-(88) and Eq. (A4) stated in the Appendix

to numerically compute our interacting bimagnon RIXS in-
tensity at M, M’, and Y BZ points.

In Fig. 7 we show the spectra at the Y point. The first panel
is a reproduction of our previous result reported in Ref. [1]. In
Fig. 7(b) we display the result of TESWT Cs,CuCly RIXS.
Compared to the isotropic case or to the other anisotropic
situations, Figs. 7(c) and 7(d), this spectrum is substantially
broadened. With enhanced anisotropy the lattice can be envi-
sioned as disintegrating into a set of loosely coupled chains.
Thus, instead of bimagnons one can expect the emergence
of spinons as is expected in one-dimensional (1D) systems.
1D RIXS has been able to capture multispinon excitations
[60,61]. Thus, the predicted RIXS spectrum feature could
be used to confirm quasi-1D to 2D crossover features of

—0.20 0.02
£ (a) (b) — VitV
E -~V
"D l’ ‘\
=] U \
= 0.10 i 0.01 \
>§ ! '\ " W
o ! ‘' 9
=] ’ s 1
= )
= 0 0
—~0.10 0.10
2z (c) (d)
=1
=
o]
S
& 0.05 0.05
=)
IS
=
S = A
g / \
+ ’ by
S o
= 0 0

0 1 2 0

w/385J

FIG. 7. Interacting bimagnon RIXS intensity at q = ¥ (0, 77 /+/3)
point with (a) « =1,7n=0, (b) « =0.316,7=0.025, (c) @ =
0.7,7=0,and (d) « = 0.7, = 0.05.

Cs,CuCly [16]. In Fig. 7(c) or 7(d) we can compare the effects
of including a tiny DM interaction. We find that there is a
prominent low energy peak with a relatively muted higher
energy response. This tiny DM interaction does not bring
about any spectral downshift or upshift. The spectral weight
is simply redistributed.

C. RIXS signatures at roton points

In Fig. 8 we display the interacting RIXS intensity vari-
ation at the two anisotropic roton points q =M and q =
M’ with varying lattice anisotropy and DM interaction. The

0.6
— (b) q =M’ —a=10
h=
2
5 0.4
-
=
>
e
g 0.2
)
=
=}
—

0
0.4 (C) q=M—0a=077=0 (d) q:l\,{;a:(],ln:o
= —a=0.7,7=0.05 —a=0.7,7=0.05
g - - -a = 0.316,7 = 0.025 - - -a = 0.316,7 = 0.025
3 0.3
o
=
> 0.2
e
£ o1 .
S ’y
— .
0 e
0 0.5 1 15 2 0
w/38J

FIG. 8. Influence of spatial anisotropy and DM interaction on the
interacting bimagnon intensity at the two inequivalent roton points
MO0, 271/«5) and M'(r, rr/«/?). The first row shows the effect of
spatial anisotropy. The second row is the influence of DM interaction.
The dashed line utilizes TESWT fitting parameters for Cs,CuCly.
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FIG. 9. The evolution of the roton minimum at M (the first two columns) and M’ (the last two columns) points for the S = % spiral

antiferromagnet on the triangular lattice with (the first and third column) n = 0 and (the second and fourth column) n = 0.05. (a)-(d) ¢ =

1, (e)—-(h) @ = 0.7, (i)—~(1) @« = 0.5. The abscissa is defined as AQ = %”Sq for parallel to 'M and AQ =

soas 'M’.

anisotropy parameter choices ensure that the TLAF does not
decouple into a set of loosely coupled 1D chains, where
the bosonization description has been shown to apply [16].
The upper panel Figs. 8(a) and 8(b) are results for zero DM
interaction. Note, the two spectrum coincide in the isotropic
limit since the two roton points are equivalent due to Cs,
symmetry of the isotropic triangular lattice [1], while they
evolve differently in the presence of spatial anisotropy. In
particular, we find that the roton spectra at @ = M point (the
roton point along the k, direction in BZ) is very sensitive to
anisotropy. Though the single-peak structure is stable against
J'/J, the peak position undergoes a spectral downshift with
increased anisotropy. On the other hand, for the ¢ = M’ point
(along the diagonal BZ direction), the peak location of the
spectra does not change much, in comparison to the M point,
in the presence of anisotropy. In the lower panel, Figs. 8(c)
and 8(d), we display the behavior of the RIXS spectra with
DM interaction. Contrary to the isotropic case, the presence
of DM interaction introduces a spectral upshift at both q = M
and q = M. The dashed line in the lower panel is the result of
using realistic parameters generated from the Cs,CuCly INS
data fit based on TESWT.

To gain insight into the roton behavior of the RIXS spectra
we track the evolution of the roton minimum in the single
magnon dispersion along I' — M and M’, both parallel and
perpendicular to the BZ path, see Fig. 9. A bimagnon excita-
tion requires an wgq + wi amount of energy. We notice that
the one magnon dispersion along M displays more sensitivity
compared to that along M’. The asymmetrical sensitivity to
the dispersion stiffness explains the origins of the differing
roton RIXS spectra behavior. Increasing anisotropy reduces

2

ﬁSq for perpendicular to 'M,

the one magnon energy (softening) near the M point (the first
column in Fig. 9), thus leading to a spectral downshift in
Fig. 8. Whereas for the M’ point, the overall energy scale of
the dispersion is not affected (the third column in Fig. 9). We
observe neither a drastic hardening nor softening. Thus, the
RIXS spectrum holds steady without any shift. The softening
and subsequent flattening of the dispersion at the M point
suggests that for the anisotropic TLAF, the roton feature is
retained more at the M point compared to the M’. However,
inclusions of the DM interaction increases the one magnon
energy both near M and M’ points (the second and fourth
column in Fig. 9), introducing a spectral upshift. This could
be understood by the fact that DM interaction introduces a
gap, thus it requires more energy to create a single magnon
and in turn a bimagnon excitation.

The evolution of the spectral height in Fig. 8 can also
be explained. As anisotropy weakens the coupling between
the TLAF spins to transform the material to a quasi-1D spin
chain, it is more difficult to create a bimagnon excitation. In
RIXS, this will cause a decrease in the value of the bimagnon
scattering matrix element |[M (k + q, —K)| in turn leading to a
reduction in the spectral weight, see Figs. 8(a) and 8(b). On
the contrary, the presence of the DM interaction encourages
interactions beyond the traditional Heisenberg type. Thus, it
assists with the creation of bimagnons, see Fig. 8(c), where
the spectral weight increases. But for the q = M’ point, the
actual nature of the magnon bands is not affected by the DM
interaction, see Fig. 9 fourth column. Thus, the height of the
RIXS spectrum does not change with DM interaction. Note, in
all the above discussion we have assumed that the triangular
lattice does not break down to a set of coupled 1D spin chains.
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FIG. 10. Total indirect RIXS spectra I, 4 I3 (black solid line) at
q=M(©O,27//3), q=M'(m,n/v/3), and q = Y (0, w/+/3) with
TESWT fitting parameters o = 0.316, n = 0.025. The individual
interacting bimagnon spectra /I, (blue dashed line) and noninteracting
trimagnon spectra /3 (red dashed line) contributions are shown.

The o = 0.5 RIXS spectra could well describe the Cs,CuBry4
compound.

D. Total RIXS

In Fig. 10 we report the total RIXS spectrum for Cs,CuCly
with TESWT fitting parameters. The total RIXS spectrum
comprises of the bi- and trimagnon response. We use
Egs. (A4) and (AS) to compute the spectrum. The interacting
bimagnon [Eq. (88)] and noninteracting trimagnon intensity
[Eq. (72)] are summed over to get the total RIXS spectrum.
As expected, the trimagnon peak is located at a higher energy
than the bimagnon response. In the response for the M and
Y points, the main peaks are separated, see Figs. 10(a) and
10(c). At the M’ point in Fig. 10(b), a small bimagnon peak is
obvious while the main peaks of bi- and trimagnon are mixed.

We note that the spectrum height of the bimagnon un-
dergoes a special evolution. Bimagnon has a height near the
boundary of BZ (M and M’ points) but vanishes when it is
close to the center of BZ (Y point). A similar trend for the
bimagnon can also be observed in Figs. 5 and 11. This is
due to the behavior of the RIXS scattering element from the

015/ (@) q=T (b)q=Y ()q=%
0.1
:Fg\
§ 0.05
a
—
\:ﬁ/
£ (d)a=X (e)ag M (f) a=K
%
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FIG. 11. Noninteracting bimagnon spectra without spatial
anisotropy or DM interaction. The line plots compare results from
TESWT against LSWT for J'/J =1,D/J =0. The curves of

TESWT completely coincide with those of LSWT [1].

indirect K-edge RIXS scattering operator in Eq. (67). For
wave vector choice q close to the high symmetry I' point,
the RIXS bimagnon matrix element occurring from R gives a
vanishingly small contribution. Thus the spectral weight of the
bimagnon is substantially weakened near the I" point. Without
DM interaction, the contribution is purely from the trimagnon
excitations at the I" point in the isotropic TLAF, see Fig. 11(a).
The above observations on the total RIXS spectrum should be
helpful in distinguishing the contributions of the two different
multimagnon excitations.

VI. CONCLUSION

Due to the possible realization of various unusual ordered
or disordered phases, frustrated magnetism is an active area
of research in condensed matter physics [62]. Traditionally,
information on the magnetic ground state and single magnon
excitations is inferred from inelastic neutron scattering (INS)
experiments [43,63]. However, with the advent of RIXS spec-
troscopy experimentalists now have a probe that can compre-
hensively investigate a wide range of energy and momentum
values in BZ.

In this article we have demonstrated the application of a
recently proposed spin wave theory scheme called TESWT
to the indirect K-edge RIXS. As highlighted in this paper it
is not a trivial matter to ensure that the sanctity of the spin
spiral state is preserved. We performed a TESWT fitting of
Cs,CuCly INS data, which gives o =~ 0.316 and n =~ 0.025.
Using these realistic parameters we computed the indirect
K-edge bi- and trimagnon RIXS spectra within TESWT for-
malism. Our results allow us to confirm that in contrast to
the isotropic model, quantum fluctuations in the noncollinear
anisotropic TLAF can generate divergent fluctuations with
drastic effects on the magnetic phase diagram. We find that
the behavior of the RIXS spectra is influenced with the occur-
rence of two inequivalent rotonlike points, M (0, 27 / V3 ) and
M'(7r, 7w /+/3). While the roton RIXS spectra at the M point
undergoes a spectral downshift with increasing anisotropy,
the peak at the M’ is not affected. However, the peak at M’
does not exhibit any downshift. We believe in the anisotropic
case the M point retains more of the roton feature. Finally,
we find that in the total RIXS spectra, the features of the
bimagnon and the trimagnon are certainly different and thus
can be easily distinguished within an experimental setting.
While resolution and intensity issues may plague the K edge,
we hope the calculation in this paper and our past publication
[1] will inspire experimentalists to improve resolution to test
our predicted K-edge RIXS behavior.

In conclusion, our theoretical investigation of the indi-
rect RIXS intensity in the spiral antiferromagnets on the
anisotropic triangular lattice demonstrates that RIXS has the
potential to probe and provide a comprehensive characteri-
zation of the dispersive bimagnon and trimagnon excitations
in the TLAF across the entire BZ, which is far beyond
the capabilities of traditional low-energy optical techniques
[41,42,64,65].

ACKNOWLEDGMENTS

We thank Radu Coldea for sharing with us the
INS data for Cs,CuCly. T.D. acknowledges invitation,

054410-12



TORQUE EQUILIBRIUM SPIN WAVE THEORY STUDY OF ...

PHYSICAL REVIEW B 100, 054410 (2019)

hospitality, and kind support from Sun Yat-Sen University
Grant No. OEMT-2017-KF-06. T.D. acknowledges funding
support from Augusta University Scholarly Activity Award.
SJ., CL., and D.X.Y. are supported by NKRDPC Grants
No. 2017YFA0206203, No. 2018YFA0306001, No. NSFC-
11574404, and No. NSFG-2015A030313176, National Super-
computer Center in Guangzhou, and Leading Talent Program
of Guangdong Special Projects.

APPENDIX: ISOTROPIC TLAF RIXS SPECTRA

In this Appendix we compare the results of LSWT and
TESWT for the isotropic lattice. We apply linear spin wave
theory to the calculation of indirect K-edge RIXS spectrum
in this section. After the usual HP and Bogoliubov transfor-
mation application, the magnon creation parts of the RIXS
scattering operator can be expressed as

Ry= Y M(1.2)bjb+ Y N(1,2,3)bbibl, (Al
1+2=q 1+243=q

where the bimagnon and trimagnon scattering matrix element
expression are given by

3JS
M(,2) = 7{[51 + A+ &+ =2y +E9)]
X (u1vy + viuy)

+ & =M+ & — ) + v}, (A2)

3JS. ) 3 _ _ 1=

N(1,2,3) = =iy 5es[(7 = 720+ 570) G+ 01)
X (203 + v2uz) + (72 — 7143 + §7q) (2 + v2)
X (u1v3 + viuz) + (73 — 7142 + 37q) (s + v3)

X (u1v2 + vluz)]. (A3)

Note that all the coefficients and functions are defined at
the classical ordering vector Q. in LSWT. The frequency
and momentum dependent magnetic scattering intensity is
related to the multimagnon RIXS response function via the
fluctuation-dissipation theorem
1

I(q, w) = —;Im[)(mxs(q, o)], (A4)
where the total indirect K-edge RIXS susceptibility is given
by

xrixs (q, @) = x2(q, ®) + x3(q, ). (A5)

In the above x»(q, @) could be either a noninteracting or inter-
acting two-magnon susceptibility, but x3(q, ) is the nonin-
teracting three-magnon susceptibility. The susceptibilities can
be expressed explicitly from the corresponding multimagnon
Green’s function defined as

x2(q, @) = ZMkMk’Hkk’(qa w), (A6)
kk’
X3(q, @) = Y NipNip Aoy (@, @), (A7)
kpk'p'

where IT and A denote the bi- and trimagnon propagator, re-
spectively. The momentum-dependent two-magnon and three-
magnon Green’s function in terms of Bogoliubov quasiparti-
cles are defined as

iMao(q, 1) = (Thiq (Db (Db b1y ), (A)
iAkpaep (@, 1) = (Thi()bgk—p(Obp()bY b)Y,
(A9)

where 7 is the time-ordering operator and (-) is the average of
the ground state. Using Eq. (A8) and Eq. (A9), we can com-
pute the noninteracting and the interacting RIXS spectra. The
noninteracting spectrum can be calculated by applying Wick’s
theorem to Eq. (A8) and Eq. (A9). The final expressions are
stated in Eqgs. (71) and (72).
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