
PHYSICAL REVIEW B 100, 054408 (2019)

Geometric orbital magnetization in adiabatic processes
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We consider periodic adiabatic processes of gapped many-body spinless electrons. We find an additional
contribution to the orbital magnetization due to the adiabatic time evolution, dubbed geometric orbital magneti-
zation, which can be expressed as derivative of the many-body Berry phase with respect to an external magnetic
field. For two-dimensional band insulators, we show that the geometric orbital magnetization generally consists
of two pieces, the topological piece that is expressed as third Chern-Simons form in (t, kx, ky ) space, and the
nontopological piece that depends on Bloch states and energies of both occupied and unoccupied bands.
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I. INTRODUCTION

We consider periodic adiabatic processes of spinless short-
range entangled phases with period T at zero temperature.
The ultimate goal when attacking this type of time-dependent
problems on the general ground would be to obtain an expres-
sion for the physical observables induced by the time evolu-
tion in terms of instantaneous eigenstates and eigenenergies
of the system.

In their pioneering works, Niu and Thouless [1,2] found
such an expression for the current operator uniformly av-
eraged over the entire space. In the formulation, they as-
sumed the periodic boundary conditions with the period Li

for i = x, y and introduced the solenoidal flux φ = (φx, φy) as
illustrated in Fig. 1. For concreteness, we work in two spatial
dimensions throughout this work. Then the current operator
can be expressed as

ĵ i
tφ ≡ 1

Li

∫
d2x ĵi

tφ(x) = ∂φi Ĥtφ, i = x, y. (1)

(For brevity, we show the dependence on time t , flux φ, etc.
in the subscript.) Further taking an average over all values
of φ, the expectation value of the current operator induced
by the adiabatic time evolution can be expressed as the time
derivative of the many-body Berry phase for varying φ∫

d2φ

(2π )2
〈 ĵtφ〉 = ∂t

(∫
d2φ

(2π )2
〈�tφ|i∂φ|�tφ〉

)
, (2)

where |�tφ〉 is the instantaneous ground state of the Hamil-
tonian Ĥtφ. This expression assumes the periodicity in φ [see
Eqs. (17) and (18) below]. It is not possible to further im-
pose the periodicity in time simultaneously. Instead, we have
|�T φ〉 = e−iφ·Q|�0φ〉, where Q = ∫ T

0 dt
∫ d2φ

(2π )2 〈 ĵtφ〉 ∈ Z2 is
the pumped charge during in one cycle.
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The result (2) is formally similar to the constitutive relation
for Maxwell’s equations

j(t, x) = ∂t p(t, x) + ∇ × m(t, x), (3)

where p and m are the bulk polarization and the bulk mag-
netization. Later it was shown [3–6] that Thouless result (2)
combined with constitutive relation (3) gives a useful formula
for the bulk polarization—this development marked the birth
of “the modern theory” of electric polarization. The bulk
polarization is given by the integral of the Berry connection
(the first Chern-Simons form) P1 [see Eq. (11) for the formula
for band insulators].

Alternatively, let us impose the periodicity in time |�T φ〉 =
|�0φ〉 instead. In this setting, it is useful to integrate over time
rather than the solenoidal flux. Then the Thouless result reads
[2] ∫ T

0
dt〈 ĵtφ〉 = −∂φϕφ, (4)

ϕφ ≡
∫ T

0
dt〈�tφ|i∂t |�tφ〉, (5)

where ϕφ is the many-body Berry phase associated with the
adiabatic time evolution. In the thermodynamic limit, ∂φϕφ is
independent of φ [2,7] and one can set φ = 0, for instance.
There is also a contribution from ∂φEtφ in Eqs. (2) and (4)
but it is negligibly small for the same reason. We find this
formulation of the Thouless pump more useful because it can
be generalized to wider class of physical observables as we
discuss below.

The persistent current associated with a part of the orbital
magnetization can also be expressed using the instantaneous
eigenstates and eigenenergies of the Hamiltonian. For band
insulators, it can be written as the curl of a vector [see
Fig. 2(a)], which together with the constitutive relation (3),
allows one to define the orbital magnetization mpers. (The sub-
script refers to the contribution associated with the persistent
current.) Alternatively, one can evaluate the change of the
instantaneous ground state energy with respect to the external
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FIG. 1. Two-dimensional system with periodic boundary con-
ditions viewed as toroidal topology. The two solenoidal fluxes are
denoted by φx and φy. The averaged current operator can be ex-
pressed as the derivative of the Hamiltonian with respect to the fluxes
[Eq. (1)].

magnetic field. This recent development [8–11] goes under the
name of “the modern theory” of the orbital magnetization [see
Eq. (12)]. Unlike the bulk polarization, mpers is not related to
topological response.

In this work, we develop a general formulation of the re-
maining contribution to the electric current in the constitutive
relation (3) that are neither captured by the averaged current in
Eqs. (2), (4) nor by the persistent current ∇ × mpers(t, x). We
find that, after coarse-graining in time, this contribution can
be expressed as the curl of an additional term m to the orbital
magnetization so that m in Eq. (3) is given by

m = mpers + m. (6)

Our main result is that m can be obtained as a derivative
of the many-body Berry phase with respect to an external
magnetic field Bz applied in z direction

TV mz = ∂BzϕBz |Bz=0, (7)

where V represents the system size and ϕBz is defined by
Eq. (5) upon substitution φ → Bz. This expression is well-
defined in two-dimensional systems with the open boundary
condition at least in one direction. There are known subtleties
when applying uniform magnetic field to periodic systems.
See Sec. III A for the detailed discussion. In the following,
we assume vanishing Chern numbers in (φx, φy), (t, φx ) and
(t, φy) spaces.

As comparison, in the presence of an external uni-
form magnetic field B = (0, 0, Bz )T, the instantaneous or-
bital magnetization mpers gives an energy shift

∫ T
0 dt (EtBz −

Et0)/T = −V mpers · B + O(B2) of the many-body ground
state. (Throughout this work we set h̄ = 1.) Accordingly, after
the period T , the ground state acquires an additional phase
proportional TV mpers · B. On the other hand, a nonzero value
of m shows up as Berry phase TV m · B + O(B2) acquired
by the many-body ground state. For this reason, we name
m geometric orbital magnetization. The bulk quantity T m
is independent of the period T and is defined “mod e.”
This ambiguity is reflecting the possibility of decorating the
boundary by one-dimensional Thouless pump.

For band insulators, we perform the perturbation the-
ory with respect to the applied magnetic field following
Refs. [11,12] and find that geometric orbital magnetization
consists of two contributions

m = mtop + mnontop, (8)

(a)

(c)

(b)

(d) (e)

FIG. 2. Different contributions to orbital magnetization of two-
dimensional periodic adiabatic process with period T . (a) Persistent
current jpers within each unit cell produces the instantaneous orbital
magnetization m. (b) An adiabatic process where an electron trapped
in a potential well whose center x = r(t ) is moving along dashed
curve. In the presence of an externally applied magnetic field, the
many-body Berry phase ϕBz is given by the Aharonov-Bohm flux
(the hatched area). (c) Periodic boundary conditions are necessary
when each of two potential wells comes back to its initial position
after time T by passing though the seam. Two possible areas to define
Aharonov-Bohm flux (the hatched one and the nonhatches one) differ
by an integer flux quanta. (d) Unit cell consists of a single anisotropic
potential well that is spinning during adiabatic process. (e) Two
identical potential wells that exchange their positions after single
adiabatic cycle. All adiabatic processes shown here have vanishing
integrated current (4).

the topological contribution mtop is expressed as integral of the
third Chern-Simons form P3 in (t, kx, ky) space [see Eq. (51)],
while the nontopological contribution mnontop is written in
terms of instantaneous Bloch states and energies [Eq. (52)].
The obtained expression for m of band insulators has a formal
similarity with the expression for the magnetoelectric polar-
izability of three-dimensional band insulators [12–14] upon
identification t/T ↔ kz/2π . It is worth mentioning that due to
relatively large gap (order of electronvolts) of band insulators,
the adiabaticity conditions is not particularly restrictive, the
period T can be as small as several femtoseconds.

To gain intuitive understanding of the two contributions
(8), one can think of the topological piece mtop to be originat-
ing from the Aharanov-Bohm contribution to the many-body
Berry phase in the magnetic field. Thus mtop describes the
magnetization from electrons, whose positions are moving
during the adiabatic process, as depicted with dashed lines and
arrows in Figs. 2(b), 2(c) and 2(e). Although Fig. 2(a) may
look similar, jpers in Fig. 2(a) represents a static persistent
current that is uniformly distributed on the ring. In contrast,
the current density in Fig. 2(b) at each time is localized to the
position of the potential well and it becomes divergence-free
only after averaging over the period T . Similarly, the nontopo-
logical piece mnontop can be understood to be originating from
“spinning” of anisotropic crystalline potentials, see Fig. 2(d).

Let us mention at this point several related works. Adi-
abatic dynamics can be induced by time-dependent lattice
deformations (phonons), which is the subject of studies on
dynamical deformations of crystals [15–19]. In Refs. [16,17],
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it was shown that a time-varying polarization gives rise to
a contribution to the orbital magnetization, and the semi-
classical description developed in Ref. [18] found the same
effect within their framework. The time-varying polariza-
tions in these works correspond to the situation depicted
in Fig. 2(b). In the case of band insulators, we find that
they are captured by the Abelian third Chern-Simons form.
Furthermore, Refs. [15,19] showed that rotation of molecules,
as in Fig. 2(d), gives rise to an orbital magnetization con-
tribution that can be captured by relation (7). The present
approach gives unified description of the above-mentioned
effects. More importantly, it properly describes the orbital
magnetization in adiabatic processes that have not been pre-
viously considered: the process in Fig. 2(e) has inversion
symmetry at all times, thus polarization is time-independent,
yet it gives rise to nonzero m, which for the case of band
insulators is captured by non-Abelian third Chern-Simons
form, see Sec. IV C.

Analogous to the bulk polarization, crystalline symme-
tries can quantize topological geometric orbital magnetization
mtop. We show that, under certain crystalline symmetries,
mtop is related to recently discussed higher-order topological
phases [20–35]. Among them, the topological insulators that
exhibit quantized corner charges in the presence of certain
crystalline symmetries attracted recently a lot of theoretical
[36,37] and experimental [38,39] attention. Although, due
to crystalline symmetries, the bulk quadrupole moment is
well defined in these systems [see Fig. 4(a)], it is still dis-
puted in the literature whether such definition is possible
in the absence of any quantizing crystalline symmetries
[40–42]. Recent work in Ref. [43] revealed a connection
between higher-order topological insulators [20–35] protected
by rotoinversion symmetries and adiabatic processes that in-
volve topological insulators with quantized corner charges.
In Sec. III E, we show that the adiabatic processes discussed
by van Miert and Ortix [43] are characterized by quantized
geometric orbital magnetization, and we relate the value of
T m

top
z to the quantized corner charge.

The remaining of this article is organized as follows. In
Sec. II, we review the modern theory of the polarization and
the orbital magnetization, Sec. III contains derivation of our
main results, Sec. III E discusses the role of symmetries in
the adiabatic process, and Sec. IV presents various noninter-
acting examples that illustrate difference between instanta-
neous orbital magnetization, topological and nontopological
geometric orbital magnetization. More precisely, we consider
toy models illustrating systems depicted in Fig. 2. As a more
realistic application of physics considered in this work, we
present in Sec. IV E calculation of magnetization induced by
rotation of an insulator. A long time ago, [44,45] Barnett
considered magnetization of an uncharged paramagnetic ma-
terial when spun on its axis. Modeling paramagnetic material
as collection of local magnetic moments that are randomly
oriented, Barnett [44] argued that rotation creates a torque
that acts to align local magnetic moments with rotation axis.
This torque gives rise to magnetization M = χ�/γ , where
χ is paramagnetic susceptibility, � is rotation frequency,
and γ is electron gyromagnetic ratio. Barnett’s measurement
of this effect [44] provided first accurate measurement of
electron gyromagnetic ratio. We calculate m for this model,

which, as seen from Eq. (7), is also proportional to rotational
frequency � = 2π/T and estimate quantum correction to
Barnett effect. Electron contribution to m has both topological
and nontopological piece, but since the system is uncharged,
we find that electron contribution to mtop is canceled by
corresponding ionic contribution. Thus resulting m is solely
due to anisotropy of crystalline potential, analogous to toy
model in Fig. 2(d). In Sec. V, we consider examples of general
interacting systems where periodic adiabatic process consists
of “spinning” [15,19] or “shaking” [16–18] of the whole
system [46]. Our conclusions and outlook can be found in
Sec. VI.

II. PRELIMINARIES

Here we review the formulation of the polarization and the
orbital magnetization for band insulators in 2 + 1 dimensions
developed in Refs. [3–6,8–11]. To simplify notations, we
assume primitive lattice vectors of the square lattice type, but
this general framework is not restricted to this special choice.

A. Modern theory

Let us denote by ψtkn(x) = (a/
√

V )eik·xutkn(x) the in-
stantaneous Bloch function of nth occupied band, satisfying
ht |ψtkn〉 = εtkn|ψtkn〉. Here, ht is the single-particle Hamilto-
nian with a periodic potential, V = LxLy is the system size and
a is the lattice constant. We choose the cell-periodic gauge so
that they obey the following conditions for any lattice vector
R and reciprocal lattice vector G [47]

utkn(x + R) = utkn(x), (9)

utk+Gn(x) = e−iG·xutkn(x). (10)

According to the modern theory, the bulk polarization
density p(t ) is given by

p(t ) = ei

V

∑
kn∈occ

〈utkn|∇kutkn〉 mod
e

a
, (11)

where e (< 0) is the electric charge. The sum over k can be
replaced with the integral V

∫
d2k

(2π )2 over the first Brillouin
zone. Similarly, the orbital magnetization density mpers(t ) is
given by

mpers(t ) = ei

2V

∑
kn∈occ

〈∇kutkn| × (htk + εtkn)|∇kutkn〉, (12)

where htk ≡ e−ik·xht eik·x. The ambiguity in Eq. (11) can
be seen by a smooth gauge transformation |utkn〉′ =∑

m |utkm〉(Uk)m,n that changes the integral in Eq. (11) by an
integer multiple of e/a, while the integral in (12) remains
unchanged.

In addition to the derivation via the Thouless pump as we
described in Introduction, the formula (11) was also verified
in terms of the Wannier state localized around the unit cell R:

|wtnR〉 ≡ a√
V

∑
k

e−ik·R|ψtnk〉. (13)

In terms of the Wannier function, p(t ) is the deviation
of the Wannier center from R, i.e., p(t ) = e

a2

∫
d2x(x −

R)|wtnR(x)|2.
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When the origin of unit cell is changed by δ, we find

|utkn〉′ = eik·δ|utkn〉, (14)

p′(t ) = p(t ) − eδ

a2
, (15)

m′
pers(t ) = mpers(t ). (16)

Namely, p(t ) depends on the specific choice of the origin,
while mpers(t ) does not. Therefore it is not p(t ) itself but rather
the change �p(t ) that is of physical interest. It also follows
that for an periodic adiabatic process, where the system is
translated by certain number of unit cells during the period
T , the orbital magnetization is periodic in time while the
polarization is not.

For interacting systems under the periodic boundary con-
dition, the combination in the parenthesis in Eq. (2) replaces
Eq. (11). The periodicity in φi in this formulation is encoded
in the relation

|�t2πφy〉 = e−2π iP̂x |�t0φy〉, (17)

|�tφx2π 〉 = e−2π iP̂y |�tφx0〉, (18)

where P̂i is the polarization operator (see Ref. [48], for exam-
ple).

B. Topological response

To discuss the physical consequence of �p(t ), let us recall
first the topological linear response in (1 + 1) dimensions [1]
that holds at a mesoscopic scale after coarse-graining

jμ(t, x) = −
∑

ν

εμν∂θP1(θ )∂νθ, (19)

P1(θ ) ≡ −e
∫

dk

2π
trAθk, (20)

(Aθk )n,m ≡ −i〈uθkn|∂kuθkm〉. (21)

Here, xμ (μ = 0, 1) represents (t, x), and jμ corresponds to
(n, j). Aθk is a (finite-dimensional) matrix constructed by oc-
cpied Bloch states and the trace in Eq. (20) is the matrix trace.
Comparing with above equations, we see that P1(θ (t )) is the
1D version of p(t ) in Eq. (11). This response is derived start-
ing from the Chern-Simons theory jμ = C1

2π

∑
νλ εμνλ∂νAex

λ

in (2 + 1) dimensions that describes the response toward
an external field Aex and reducing the dimension to (1 + 1)
dimensions.

The parameter θ in Eq. (19) is a slowly varying field inter-
polating between two different systems. For example, an adi-
abatic time evolution θ (t ) induces the bulk current j(t, x) =
∂t P1(θ (t )). The bulk charge transfer from t = 0 to t = T is
thus given by

∫ T
0 dt j(t, x) = P1(θ (T )) − P1(θ (0)). Similarly,

a transition of one 1D system to another can be described by
θ (x), giving rise to a charge density n(t, x) = −∂xP1(θ (x)).
Therefore the total charge Qedge accumulated to the boundary
is Qedge = ∫ x1

x0
dxn(t, x) = P1(θ (x0)) − P1(θ (x1)). For a given

θ that specifies P1(θ ) as a continuous function of t and x,
even the integer part of Qedge is well-defined. However, only
the fractional part of Qedge is independent of the detailed
choice of the interpolation—the fractional part depends only
on the initial and the final values of P1 that can be individ-
ually computed by Eq. (20). What we described here can

be straightforwardly translated to 2D systems. The pumped
charge through the bulk per unit length along n is given by
Q · n, where

Q ≡
∫ T

0
dt ∂t p(t ) = 1

T
[p(T ) − p(0)]. (22)

The analog of Eq. (19) in (3 + 1) dimensions reads [49]

jμ(t, x) = − 1

2π

∑
ν,λ,ρ

εμνλρ∂θP3(θ )∂νθ∂λAex
ρ , (23)

P3(θ ) ≡ −e
∫

d3k

8π2
trAθk · (∇k + 2i

3 Aθk
) × Aθk, (24)

(Aθk)n,m ≡ −i〈uθkn|∇kuθkm〉. (25)

Here, μ, ν, ρ, λ = 0, 1, 2, 3. Again, Aθk is defined by occu-
pied Bloch states. This response is derived from the Chern-
Simons theory jμ = C2

8π2 ε
μνλρσ ∂νAex

λ ∂ρAex
σ in (4 + 1) dimen-

sions by a dimensional reduction. This topological response
implies, for example, the magnetoelectric effect [12,49,50]
ρ(z) = − 1

2π
∂zP3(θ (z))Bex

z .

III. GEOMETRIC ORBITAL MAGNETIZATION

In this section, we present the derivations of our main
results. We start with verifying the most general expression (7)
for the geometric orbital magnetization. Then we derive the
formula for the topological and nontopological contributions
in Eq. (8).

A. Berry phases in adiabatic process

Suppose we are interested in the expectation value of the
quantity X̂ , given by

X̂ = ∂εĤε |ε=0 (26)

for some parameter ε in the Hamiltonian. For example, in the
case of the averaged current operator, ε can be identified with
the solenoidal flux φ [see Eq. (1)]. Likewise, for the orbital
magnetization we use the external magnetic field Bz.

Now suppose that the Hamiltonian Ĥt has a periodic adi-
abatic dependence on t , and let |�t 〉 be the instantaneous
ground state with the energy eigenvalue Et . We assume an
excitation gap �t and the time dependence of the Hamiltonian
must be slow enough so that �t T 
 1. Using the density ma-
trix ρ̂t = |�t 〉〈�t | obeying the time-dependent Schrödinger
equation ∂t ρ̂t = −i[Ĥt , ρ̂t ], we express the time-average of
the expectation value of X̂t as

X ≡
∫ T

0

dt

T
tr[ρ̂t X̂t ]. (27)

In the absence of the time evolution, the density matrix is
identical to |�t 〉〈�t |. It acquires contributions from excited
states Ĥt |�M

t 〉 = EM
t |�M

t 〉 due to the time evolution. To the
lowest-order perturbation theory with respect to (�t T )−1, the
relevant matrix elements are given by [1,48]

〈
�M

t

∣∣ρ̂t

∣∣�t
〉 = 〈

�t

∣∣ρ̂t

∣∣�M
t

〉∗ = i
〈
�M

t

∣∣∂t

∣∣�t
〉

EM
t − Et

. (28)
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Now we plug X̂t ≡ ∂εĤtε |ε=0 and make use of the Sternheimer
identity(

Et − EM
t

)〈
�M

t

∣∣∂ε

∣∣�tε
〉∣∣

ε=0 = 〈
�M

t

∣∣∂εĤtε

∣∣
ε=0

∣∣�t
〉
, (29)

which follows by differentiating Ĥtε |�tε〉 = Etε |�tε〉 with
respect to ε at ε = 0. In our notation, Ĥtε |ε=0 = Ĥt and
|�tε〉|ε=0 = |�t 〉. Combining these equations, we find

X =
∫ T

0

dt

T
(∂εEtε + Ftε )|ε=0, (30)

where

Ftε ≡ i∂t 〈�tε |∂ε |�tε〉 − i∂ε〈�tε |∂t |�tε〉, (31)

is the Berry curvature in (t, ε) space. Further assuming the
periodicity in time

|�T ε〉 = |�0ε〉, (32)

we arrive at our general expression

X = Xinst + Xgeom, (33)

Xinst ≡
∫ T

0

dt

T
〈�t |X̂t |�t 〉 =

∫ T

0

dt

T
∂εEtε |ε=0, (34)

Xgeom ≡ − 1

T
∂εϕε |ε=0, ϕε ≡

∫ T

0
dt〈�tε |i∂t |�tε〉, (35)

where Xinst is the time average of the expectation value using
the instantaneous ground state and Xgeom is the geometric
contribution originating from the adiabatic time dependence.
This is the generalization of Eq. (4) for the electric current to
physical observables written as the derivative of Hamiltonian
as in Eq. (26). The following basis-independent expressions
may also be useful:

Xgeom =
∫ T

0

dt

T
itrP̂tε[∂t P̂tε, ∂εP̂tε]|ε=0 (36)

= Re
∫ T

0

dt

T

∮
dz

π
tr
[
(∂t Ĥt )Ĝ

2
t ∂εĤtε |ε=0Ĝt

]
, (37)

where P̂tε = |�tε〉〈�tε | is the projector onto the many-body
ground state, Ĝt = (z − Ĥt )−1 is the many-body Green func-
tion, and the integration contour encloses only the ground
state at z = Et .

Let us now specialize to the case ε = Bz. Then Xgeom

in Eq. (35) gives the geometric orbital magnetization m in
Eq. (7), while Xinst is the persistent current contribution. Note
the additional minus sign because of M̂z = −∂Bz ĤBz . Previ-
ously, Refs. [15,19] considered the Berry curvature in (t, Bz )
space to describe orbital magnetization induced by rotation of
molecules. See also examples in Secs. IV D and V A below.

When applying these formulas, one has to be careful
about boundary conditions. If open boundary conditions in
at least one direction are imposed, the result (36) is directly
applicable. However, a process that is periodic in time under
periodic boundary condition may loose its periodicity in time
under open boundary conditions. For example, the system in
Fig. 2(c) is not periodic in time if the open boundary condition
in y direction is imposed. Similarly, the periodicity in time
requires periodic boundary conditions in both directions for
the C4-symmetric system in Fig. 5. Keeping (original) periodic

boundary conditions in both directions in the presence of mag-
netic field, implies that the net flux through the system has to
vanish. If the system is homogeneous, local contributions to m
cancel out and we cannot obtain a useful information about the
system. (For single-particle problems, there is a resolution as
we discuss below.) Finally, one can impose magnetic periodic
boundary conditions assuming that the total magnetic flux
applied to the system BzLxLy is an integer multiple of 2π

[51,52]. However, each eigenstate of ĤBz may not be analytic
as a function of Bz despite the fact that the magnetic field
Bz = 2π/LxLy itself can be made small for a large systems.
The expression (36) is still applicable if the projector onto the
instantaneous ground state is analytic function of Bz, which
is the case for band insulators with vanishing Chern number
[12–14,53]. However, to our knowledge there is no general
proof for gapped interacting systems.

B. Noninteracting systems

Let us apply this general expression to noninteracting
electrons described by the quadratic Hamiltonian

Ĥtε =
∑

n

εtεnγ̂
†

tεnγ̂tεn. (38)

We label single-particle states in such a way that εtεn+1 � εtεn

for all n = 1, 2, . . .. We also assume a finite gap � = εtεN+1 −
εtεN between N th and (N + 1)th levels. We write the single
particle state |γtεn〉 ≡ γ̂

†
tεn|0〉. Then the N-particle ground state

can be written as

|�̂tε〉 =
N∏

n=1

γ̂ †
tεn|0〉. (39)

For a later purpose, we allow for a unitary transformation
among the occupied levels

ψ̂
†
tε� =

N∑
n=1

γ̂ †
tεnUn�, � = 1, 2, . . . , N. (40)

Although such a basis change may sound unnecessary, in the
actual application of this framework it is sometimes important
to work in the proper basis by choosing Un� appropriately.
(See Sec. III C for an example). After all we find that the
many-body Berry phase ϕε is given by the sum of single-
particle Berry phases ϕε� of occupied levels

ϕε =
N∑

�=1

ϕε�, ϕε� ≡
∫ T

0
dt〈ψtε�|i∂tψtε�〉. (41)

Therefore we get the following expressions for single-particle
problems. The latter two expressions are basis-independent

Xgeom =
∫ T

0

dt

T
i

N∑
�=1

〈∂tψtε�|∂εψtε�〉|ε=0 (42)

=
∫ T

0

dt

T
itrPtε[∂t Ptε, ∂εPtε]|ε=0 (43)

= Re
∮

dz

π

∫ T

0

dt

T
tr
[
(∂t ht )g

2
t ∂εhtε |ε=0gt

]
, (44)
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where Ptε = ∑N
�=1 |ψtε�〉〈ψtε�| = ∑N

�=1 |γtεn〉〈γtεn| is
the projector onto occupied single-particle states,
htε = ∑

n εtnε |γtεn〉〈γtεn| is the single-particle Hamiltonian,
gt = (z − ht )−1 is single-particle Green function, and the
integration contour encloses all the occupied states at z = εtn

(n = 1, 2, . . . , N).
For the orbital magnetization, we again set ε = Bz. The

same remarks as in the previous section apply here. In the case
of band insulators, one may want to impose periodic boundary
conditions to preserve the translation symmetry. As discussed
in the previous section there are two possibilities to achieve
this. One can change the boundary condition to magnetic peri-
odic boundary conditions [51,52]. For single-particle systems,
assuming symmetric gauge Aex(x) = B × x/2, the magnetic
periodic boundary conditions can be taken into account ex-
plicitly by restricting the form of the projector P̂tBz to [12,53]
〈x1|P̂tBz |x2〉 = P̂′

tBz
(x2, x1)eieBzx1×x2·ẑ/2, where P′

tBz
(x1, x2) is

an arbitrary N × N matrix function (not necessarily projector)
that satisfies P′

tBz
(x1 + R, x2 + R) = P′

tBz
(x1, x2), where R is

an element of Bravais lattice. The expression for P̂′
tBz

(x) can
be found perturbatively in Bz, [12,53] which, after substituting
back to Eq. (41), yields an expression for the Berry phase
and m. The second option is to apply a spatially modulating
magnetic field as we discuss below.

C. Geometric orbital magnetization for band insulators

Below we consider band insulators and show that geomet-
ric orbital magnetization has two contributions as in Eq. (8).
Since we assume the periodic boundary condition both in x
and y, we apply a slowly modulating magnetic field [11,12]
in order to avoid changing of the boundary condition as dis-

cussed in the previous subsection. We use the vector potential

Aex(x) = ε

2q
(− sin qy, sin qx, 0)T, (45)

B(x) = ∇ × Aex(x) = ezε f (x) (46)

with ez ≡ (0, 0, 1)T, q ≡ 2π/L, and f (x) = (cos qx +
cos qy)/2. (To simplify the notation, we assume L = Lx = Ly

in this section). Such a magnetic field induces the change of
the Bloch function

|∂εψtεnk〉|ε=0 = −
∑
n′k′

|ψtn′k′ 〉 〈ψtn′k′ |∂εhtε |ε=0|ψtnk〉
εtn′k′ − εtnk

(47)

and |∂εwtεnR〉|ε=0 is given via Eq. (13).
We compute the Berry phase using the formula (41) de-

rived above. It is important to work in the Wannier basis for
which the magnetic field effectively becomes uniform in the
limit q → 0. The single-particle Berry phase in this basis,
summed over occupied bands, takes the following form:

∂εϕεR|ε=0 = −
∫ T

0
dt

∑
n∈occ

〈i∂twtnR|∂εwtεnR〉|ε=0 + c.c.

= Ta2mz f (R). (48)

If we further sum over R, or equivalently if we work in the
Bloch basis |ψtnk〉, we get 0 reflecting the fact that for bulk
systems Fourier component mz(q) vanishes for q �= 0. Thus
care must be taken to correctly read off local contribution to
mz—an unintentional integration over R of a term propor-
tional to f (R) makes it impossible to find the correct value
of mz. The rest calculation follows the Appendix in Ref. [12].
Upon taking the limit q → 0, we find

mz = lim
q→0

1

T

∫ T

0
dt

∫
d2k

(2π )2

∑
n∈occ

∑
n′k′

〈i∂tψtnk|ψtn′k〉 〈ψtn′k|∂εhtε |ε=0|ψnk′ 〉
εtn′k − εtnk′

+ c.c.

= − e

2T

∫ T

0
dt

∫
d2k

(2π )2

∑
n∈occ

∑
n′

〈∂t unk|un′k〉 〈utn′k|∇k(htk + εtnk) × |∇kutnk〉
εtn′k − εtnk

+ c.c. (49)

This last expression can precisely be expressed as the sum of two terms, mtop + mnontop. The topological piece mtop reads

mtop = ezP3/T, (50)

P3 ≡ − e

2

∫ T

0
dt

∫
d2k

(2π )2
tr

[
AK · ∇K × AK + 2i

3
AK · AK × AK

]
. (51)

The Berry connection (AK )n,m ≡ −i〈uKn|∇KuKm〉 is defined using occupied Bloch states as a function of K ≡ (t, k). The
smoothness and the periodicity of AK are assumed in the integral in Eq. (51). Such a choice is possible only when both the
pumped charge through the bulk Q in Eq. (22) and the 2D Chern number for (kx, ky) vanish.

The nontopological contribution depends also on instantaneous eigenenergies of the Bloch Hamiltonian

mnontop =
∑

n∈occ

∑
n′∈unocc

e

2T

∫ T

0
dt

∫
d2k

(2π )2

〈utnk|∂t Ptk|utn′k〉〈utn′k|{∇khtk × ∇kPtk}|utnk〉
εtnk − εtn′k

+ c.c.

= e

2T

∫ T

0
dt

∫
d2k

(2π )2

∮
dz

2π i
tr[∂t Ptkgtk{∇khtk × ∇kPtk}gtk] + c.c. (52)

Here, htk is Bloch Hamiltonian, Ptk = ∑
n∈occ |utnk〉〈utnk| is the projector onto occupied bands at k, gtk = (z − htk)−1

is Bloch’s Green function, the curly brackets denote symmetrization {A × B} = A × B + B × A, and the integration
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Thouless pump

corner

FIG. 3. The boundary current along the interface of two adiabatic
processes hφ(xi )θ (t )k with i = 0 and 1. A 1D decoration with Thouless
pump changes the edge charge transfer by an integer and leads
to integer corner charge accumulation. Hatched parts denote the
boundary area between the two systems.

contour encloses all the filled Bloch states at z = εtnk. See the
Appendix of Ref. [12] for the details. Note that both mtop and
mnontop are not affected by the shift of the origin in Eq. (14).

D. Topological contribution from response theory

Here we give an alternative, easier derivation of mtop in
Eq. (50) from the topological response theory. To this end, let
us further reduce one spatial dimension in Eq. (23) to achieve
the topological quadratic response in (2 + 1)d [49]:

jμ(t, x) = − 1

2π

∑
ν,λ,ρ

εμνλG2(θ, φ)∂νθ∂λφ, (53)

1

2π
G2(θ, φ) ≡ −e

∫
d2k

32π2
εμνρσ trFμνFρσ , (54)

where Fμν ≡ ∂μAν − ∂νAμ + i[Aμ, Aν] is the Berry curvature
in the (kx, ky, θ, φ) space and θ and φ are two slowly varying
fields: θ (t ) denotes an adiabatic and periodic time dependence
and φ(x) describes a smooth interface of domains (Fig. 3). In
this setting, we find

j(t, x) = 1

2π
G2(θ, φ)∂tθ (t )∇φ(x) × ez (55)

so that

j(x) ≡
∫ T

0

dt

T
j(t, x) = ∂φP3(φ)∇φ(x) × ez/T

= ∇ × [ezP3(φ(x))/T ] = ∇ × mtop(x). (56)

This reproduces Eq. (50). In the derivation, we used the
relation

∫ 2π

0
dθ
2π

G2(θ, φ) = ∂φP3(φ). It is important to note
that j(t, x) itself cannot be written as a curl of a vector field—
Eq. (56) holds only after the time convolution (or equivalently
the time average).

The above derivation relies on the connection (3) between
mtop and topological edge current in adiabatically driven
two-dimensional systems. To see this more concretely, let us
consider the boundary of two regions with φ0 ≡ φ(x0) and
φ1 ≡ φ(x1) (see Fig. 3). Just like in the case of polariza-
tion, only the fractional part of the edge current is the bulk

(a) (c)

(b)

FIG. 4. (a) The fourfold rotation symmetry C4 of h0k imposes
constraint on the time-independent boundary decorations and they
cannot alter the corner charge. (b) Decorating the boundary with
one-dimensional Thouless pumps while respecting C4 symmetry
(combined with the time flip) of the adiabatic process can change
�Qcorner by an even integer. (c) Comparison of action of C4 and
the inversion I on the corner charge distribution after one period of
adiabatic process.

contribution that depends only on φ0 and φ1. This can be
understood by noticing that decorating the boundary with a 1D
chain leads to an integer charge transfer through the Thouless
pump [1]. To capture the fractional bulk contribution to the
edge current, one can separately compute mz(x0) and mz(x1)
without paying attention to their continuity. The geometric
contribution to the charge transfer along i direction, i = x, y
between two bulk systems with mz(x0) and mz(x1) = mz(x′

1)
(Fig. 3) is given by

Iedge
i ≡

∫ x1

x0

dxji(x) = mz(x0) − mz(x′
1) mod e. (57)

Notice that Iedge of two adjacent edges may differ by an
integer. To see this formally, let us consider a charge flow
�Qcorner into a corner surrounded by a closed curve xα with
x1 = x0 (see Fig. 3). The net charge flow in the process is
given by the second Chern number

�Qcorner ≡ T
∮

dxα × j(xα ) · ez =
∫

dθdφ

2π
G2(θ, φ).

(58)
For example, when the corner is formed by two edges along x
and y directions, we have

�Qcorner = T
(
Iedge
x − Iedge

y

)
, (59)

meaning that the charge transfer along two intersecting edges
can only differ by an integer multiple of e. Clearly, �Qcorner

is not a bulk topological invariant in general, since its value
can be changed by closing the boundary gap, i.e., attaching
1D Thouless pump at certain boundaries [Figs. 3 and 4(b)].

E. Symmetry constraints and corner charge

Here we consider adiabatic process of two-dimensional
systems constrained by certain symmetries that quantize
T m

top
z . We show that, if the symmetry allows one to define

the bulk contribution to quadrupole moment, the quantized
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quadrupole moment is equal to T m
top
z . Such adiabatic pro-

cesses were recently discussed by van Miert and Ortix, who
found the connection between the quantized corner charge and
higher-order topological invariant [54].

For concreteness, let us consider the fourfold rotation C4

mapping x = (x, y, 0) to C4x = (−y, x, 0). It is easy to see that
boundary decorations by polarized one-dimensional chains do
not affect the fractional part of the corner charge �Qcorner, see
Fig. 4(a). We consider an arbitrary interpolation between the
system of interest h0k and the reference system hT/2 k that has
no corner charge. The second half of the cycle is performed in
a C4-symmetric manner

UC4 htkU †
C4

= hT −t C4k. (60)

The C4 symmetry defined above behaves as the rotoinversion
IC4 in (t, kx, ky) space, resulting in the following transforma-
tion law for m

top
z :

C4 : mtop
z → −mtop

z . (61)

This does not mean that T m
top
z vanishes since it is defined

only mod 1. Thus, in the presence of C4 symmetry, T mz is
quantized either 0 or e/2 mod e. When T mz = e/2 mod e,
the circulating edge current as in Fig. 3 violates C4 symmetry
constraint (60)—the only allowed edge current distribution is
shown by black arrows in Fig. 4(b). Note that the inversion
symmetry, for example, also quantizes T m

top
z but the total

corner charge accumulation during inversion-symmetric cy-
cles need to vanish since the charge distribution of quadrupole
moment is invariant under the inversion [see Fig. 4(c)].

Now we show that the parity of the corner charge accu-
mulation �Qcorner is actually a bulk topological invariant for
symmetric adiabatic processes satisfying constraint (60), see
also Fig. 4(b). To this end, consider two perpendicular edges
along x and y direction, related to each other by C4 symmetry.
The relations (59) and (61) suggest that Iedge

y = −Iedge
x and

that

�Qcorner = 2T Iedge
x = 2T mtop

z (x0) mod 2e. (62)

Furthermore, Fig. 4(c) tells us that the corner charge accu-
mulation during the symmetric process is �Qcorner = 2qcorner.
Therefore

qcorner = T mtop
z (x0) = P3(φ0) mod e. (63)

We will discuss an example of quadrupole insulators with
P3 = e/2 in Sec. IV C using this result. On the other hand,
a C4-symmetric phase that hosts a corner charge of q corner =
e/4 were recently reported [37]. The fact that �Q corner ∈ Z
forces us to conclude that C4-symmetric adiabatic process
cannot be constructed for such a phase.

Alternatively, as discussed in detail in Ref. [54], the C4-
symmetric adiabatic process htk considered above, can be
viewed as a 3D topological insulator protected by the ro-
toinversion symmetry IC4 upon identification kz = 2πt/T . In
fact, the 3D topological insulator with P3 = e/2 obtained this
way is a second-order topological insulator. If we consider a
geometry with the open boundary conditions in xy plane and
the periodic boundary conditions in z direction, such a second-
order phase can be translationally invariant in z direction both
in the bulk and on the boundary. The boundary hosts an odd

number of chiral modes running along each of four hinges
in IC4-symmetric manner. Going back to the picture of an
adiabatic process, it becomes clear that the corner charge
accumulation is an odd integer as t is varied from 0 to T ,
which is consistent with the above result (62).

IV. EXAMPLES: NONINTERACTING SYSTEMS

In this section, we discuss a simple model of noninteracting
spinless electrons in a periodic potential, which highlights
the distinction of two contributions to the bulk orbital mag-
netization, mpers and m. Additionally, we want to consider
examples where there is only topological geometric magne-
tization, Sec. IV C, only nontopological geometric magneti-
zation, Sec. IV D, and both topological and nontopological
contributions, Sec. IV E. To keep the discussions simple while
capturing the relevant physics, we focus on isolated orbitals
without any overlap between them.

A. Bloch functions in the localized limit

Let us consider a time-dependent deep potential v0
t (x)

centering at x = r(t ) that accommodates at least one bound
state. Let φ0

t (x) be the wave function of the instantaneous
lowest-energy bound state, satisfying h0

t φ
0
t (x) = ε0

t φ
0
t (x) with

h0
t = 1

2m

[
1
i ∇ − eAex

t (x)
]2 + v0

t (x). (64)

Here, Aex
t (x) describes an external field. In these expressions,

the superscript 0 implies the quantities for an isolated orbit.
When the potential v0

t (x) is deep enough, φ0
t (x) should be

well-localized around x = r(t ) with the localization length
ξ  a. Hence, we assume that∫

d2x
∣∣φ0

t (x)
∣∣2 = 1,

∫
d2xx

∣∣φ0
t (x)

∣∣2 = r(t ) (65)

and that both φ0
t (x) and v0

t (x) decays fast enough, i.e.,
|v0

t (x)|, |φ0
t (x)| → 0 as |x − r(t )| 
 ξ .

With these building blocks, we construct a periodic poten-
tial and the cell-periodic Bloch state.

vt (x) ≡
∑

R

v0
t (x − R), (66)

utk(x) ≡ a√
V

∑
R

eik·(R−x)φ0
t (x − R), (67)

We assume that Aex(x) respects the periodicity, i.e., Aex(x −
R) = Aex(x). Then, as far as φ0

t (x − R)∗φ0
t (x) and v0

t (x −
R)φ0

t (x) (R �= 0) are entirely neglected, utk(x) is an eigenstate
of the periodic Hamiltonian

htk = 1

2m

[
1
i ∇ − eAex

t (x) + k
]2 + vt (x) (68)

with a completely flat band dispersion εtk = ε0
t .

B. Polarization and instantaneous magnetization

Let us first demonstrate the modern theory formula for the
polarization and the orbital magnetization by deriving p and
m in two different ways.
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First, we present direct calculation of the polarization and
the orbital magnetization from the microscopic charge distri-
bution and the persistent current densities in this insulator.
The instantaneous contribution to the local charge and current
distribution from a single orbit φ0

t (x) can be written as

n0
t (x) ≡ e

∣∣φ0
t (x)

∣∣2
, (69)

j0
t (x) ≡ e

mi
φ0

t (x)∗(∇ − ieAex(x))φ0
t (x). (70)

We introduce vector fields p0
t (x) and m0

t (x) such that

n0
t (x) = n̄0 − ∇ · p0

t (x), j0
t (x) = ∇ × m0

t (x). (71)

The existence of such m0
t (x) is guaranteed by the divergence-

free nature of the instantaneous current density j0
t (x). The

current density induced by the adiabatic motion of r(t ) is
captured by j0

t (x) in Eq. (81) whose divergence may not
vanish. We assume both p0

t (x) and m0
t (x) decay rapidly for

|x − r(t )| > ξ , which specifies the boundary condition for
differential equations (71).

Physical quantities of the insulator composed of periodi-
cally arranged localized orbits can be written as the sum of
the contributions from each orbit. For example, microscopic
current is given by

jmicro(t, x) ≡
∑

R

j0
t (x − R) (72)

and analogously for n, p, and m. These microscopic ex-
pressions have a strong spatial dependence, periodically os-
cillating at the scale of a. To derive to a smooth meso-
scopic description, we need to perform a convolution in space
(Sec. 6.6 of Ref. [55]). Here we choose the Gaussian g(x) =
(πR2)−1e−|x|2/R2

(R 
 a)

j(t, x) ≡
∫

d2x′g(x − x′) jmicro(t, x′). (73)

We do the same for other quantities. Relations such as
j(t, x) = ∇ × m(t, x) are preserved by the convolution. Be-
cause the convolution is identical to the average for the
periodic distribution, we find n(t, x) = n̄ = e

a2 , j(t, x) = 0,

p(t, x) = 1

a2

∫
d2x′ p0

t (x′), (74)

mpers(t, x) = 1

a2

∫
d2x′m0

t (x′). (75)

This is the part of the orbital magnetization produced by the
persistent current as illustrated in Fig. 2(a).

Let us check that we get the same results using the general
formulas of the modern theory. Because of the nonoverlapping
assumption of φ0

t (x), it can be readily shown that the formula
in Eqs. (11) and (12) for the Bloch function (67) can be
simplified to

p(t ) = 1

a2

∫
d2xxn0

t (x)
(
= e

a2
r(t )

)
, (76)

mpers(t ) = 1

2a2

∫
d2xx × j0

t (x). (77)

where we used Eqs. (69) and (70). These are well-known
expressions in classical electrodynamics for the charge and

current distributions in a confined region (see Secs. 4.1 and
5.6 of Ref. [55]). The equivalence of Eqs. (74), (75) and (76),
(77) can be easily checked by using the definition of p0

t and
m0

t in Eq. (71) and integrating by parts. The second equality
of Eq. (76) follows from Eqs. (65), (69), and (76).

C. Topological geometric magnetization

Next, we discuss the topological geometric contribution
mtop for this model. To this end, suppose that the position
of the potential minimum r(t ) adiabatically moves as a func-
tion of t ∈ [0, T ] and forms a closed curve as illustrated in
Fig. 2(b). We assume the form of the potential, and thus the
localization length, remains unchanged during the adiabatic
process.

We first apply our general expression for mtop in Eq. (50)
to the Bloch function (67). Thanks to the nonoverlapping
assumption, the vector potential A(t,k) is k-independent:

AK = (At ,−r(t ))T (78)

with At ≡ −i
∫

d2xφ0
t (x)∗∂tφ

0
t (x). Plugging this into Eq. (51),

we find

P3 = e

2a2

∫ T

0
dt r(t ) × ∂t r(t ) · ez = eSr

a2
, (79)

where Sr represents the area enclosed by the orbit of r(t ) in
one cycle. Therefore

mtop = ez
eSr

Ta2
= e

2Ta2

∮
r(t ) × dr(t ). (80)

Observe the analogy to m in Eq. (77). This expression does
not have integer ambiguity because it is given by Abelian third
Chern-Simons form.

Let us verify this result from a direct calculation. The
adiabatic motion of the single orbit following the potential
minimum at x = r(t ) induces a local current distribution

j0
t (x) = ∂t r(t )n0

t (x). (81)

It becomes divergence-free if averaged over one period

j0(x) =
∫ T

0

dt

T
j0

t (x) = 1

T

∮
dr(t )n0

t (x), (82)

∇ · j0(x) = − e

T

∮
dr · ∇rn

0
t (x) = 0. (83)

As we have seen above, the sum of such microscopic currents
from each unit cell produces the bulk magnetization

mtop = 1

2a2

∫
d2x x × j0(x)

= e

2Ta2

∮ (∫
d2xx|φ0(x − r(t ))|2

)
× dr(t ). (84)

This agrees with Eq. (80) because the integral in the parenthe-
sis is precisely r(t ) due to Eq. (65).

The result in Eq. (80) can be readily generalized to the case
with multiorbitals, such as examples in Figs. 2(c) and 2(e).
Let us introduce potential minima x = rn(t ) (n = 1, 2, . . . ) in
each unit cell, which are adiabatically varied as a function of
t ∈ [0, T ]. This time, each orbit is allowed to form an open
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FIG. 5. An adiabatic process with fourfold rotational symmetry
C4. Each unit cell contains two occupied Wannier orbitals, whose
trajectories during adiabatic process are shown with dashed red and
blue lines. The hatched area is Arahonov-Bohm flux per unit cell
acquired by such adiabatic process under applied magnetic field.
Letters a and b denote Wyckoff positions.

curve, as far as the total polarization p(t ) = (e/a2)
∑

n rn(t )
satisfies p(T ) = p(0). Under such an assumption, we find that

mtop =
∑

n

e

Ta2

(
Srn + 1

2
rn(0) × rn(T )

)
, (85)

Srn ≡ 1

2

∫ rn(T )

rn(0)
rn(t ) × drn(t ). (86)

We present the proof in the Appendix. Although the above
expression appears to be the sum of single-band contributions,
the “would-be” contribution from each band depends on the
specific choice of the origin when it does not form a closed
loop. Only after performing the summation over all occupied
bands, or in other words, only after fully taking into account
the non-Abelian nature of the third Chern-Simons form, the
result restores the independence from the origin choice.

As the application of the formula (85), let us discuss
the corner charge of the C4-symmetric quadrupole insulator
introduced in Refs. [36,36]. For the wallpaper group p4, there
exist three spacial Wyckoff positions: the unit cell origin at
xa = (0, 0), the center of the plaquette at xb = (a/2, a/2),
and the center of bonds at xc = (a/2, 0), (0, a/2) [56]. In the
nontrivial phase, the two occupied Wannier orbitals locate at
xb, while in the trivial phase they are at xa. We consider a
periodic adiabatic process illustrated in Fig. 5 starting with
the nontrivial phase at t = 0 and passing the trivial phase at
t = T/2. The instantaneous Hamiltonian htk itself breaks the
C4-symmetry down to C2 symmetry except when t = 0 and
T/2, while the adiabatic process as a whole implements the
full C4 in the sense of Eq. (60). We can readily compute P3

of this process using Eq. (85) which turns out to be e/2. This
is the corner charge of the quadrupole insulator as predicted
by Eq. (63), which agrees with the original study [36,36].
A variant of this adiabatic process was also discussed in
Ref. [54].

D. Nontopological geometric magnetization

In this example, we first consider a single electron in
an anisotropic and rotating two-dimensional well [46], see
Fig. 2(d). We assume a harmonic confining potential, i.e.,
Hamiltonian (64) with

v0
t (x) = 1

2
m

(
ω2

x x2
t + ω2

y y2
t

)
, (87)

where xt ≡ (x cos �t + y sin �t,−x sin �t + y cos �t ) and
� = 2π/T . To obtain the geometric orbital magnetization
for this model, we consider external magnetic field B = Bzez

described by the vector potential Aex(x) = B × x/2. (Strictly
speaking, this form is valid only around the origin as it lacks
the required periodicity.) The wave function of the instanta-
neous ground state of this model can be obtained based on
Ref. [57]:

φ0
t (x) = ne

imωc (ωy−ωx )xt yt
2(ωx+ωy ) − m

√
(ωx+ωy )2+ω2

c (ωx x2
t +ωyy2

t )

2(ωx+ωy ) , (88)

where n is the normalization factor and ωc ≡ eBz/m is the
cyclotron frequency. The Berry phase ϕBz during the adiabatic
process t ∈ [0, T ] is

ϕ0
Bz

=
∫ T

0
dt

∫
d2xφ0

t (x)∗i∂tφ
0
t (x)

= πωc(ωy − ωx )2

2ωxωy

√
(ωx + ωy)2 + ω2

c

. (89)

From Eq. (7), it follows that the adiabatic process (87) has
nonzero geometric orbital magnetic moment m0

z

m0
z = e(ωy − ωx )2�

4ma2ωxωy(ωx + ωy)
. (90)

Now we construct the Bloch function (67) using φ0
t (x) as

the building block and compute the geometric orbital mag-
netization mz based on Eq. (52) for the corresponding band
insulator. To this end we need instantaneous eigenstates and
eigenenergies in absence of external magnetic field including
unoccupied bands. The Hamiltonian htk is given by Eq. (68)
with v0

t (x) given by Eq. (87) and Aex = 0. We assume that
there is no overlap between wave functions belonging to
different unit cells as before. (When ωx, ωy are large enough,
such an assumption is valid at least for relevant low-energy
states.) Bloch wave functions read

utnk(x) ≡ a√
V

∑
R

eik·(R−x)φ0
tn(x − R), (91)

where n ≡ (nx, ny) labels energy levels of two-dimensional
the anisotropic harmonic oscillator and n = (0, 0) corre-
sponds to the ground state in Eq. (88) with ωc = 0. Substi-
tuting above expressions to Eqs. (50) and (52), we find

mtop
z = 0, (92)

mnontop
z =

∑
n �=(0,0)

∣∣〈φ0
t

∣∣x × ∇∣∣φ0
tn

〉∣∣2
e�

4ma2(nxωx + nyωy)

=
∣∣〈φ0

t

∣∣x × ∇∣∣φ0
t (1,1)

〉∣∣2
e�

4ma2(ωx + ωy)
= m0

z . (93)
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E. Geometric magnetization by rotation

Here we calculate the contribution to the geometric orbital
magnetization of a rotating uncharged body and compare it to
the classical Barnett effect [44,45]. The Barnett effect predicts
magnetization χ/γ�, where χ is the paramagnetic suscep-
tibility, γ is the electron gyromagnetic ratio, and � is the
rotation frequency. Since the rotation axis does not necessarily
coincide with potential well minima we have v0

t (x − r(t ))
with v0

t from Eq. (87) and r(t ) = (R cos �t, R sin �t, 0)T,
where R is the distance of the potential well minima to the
rotation axis. The lowest-energy instantaneous wave function
φt (x) can be obtained from Eq. (88) by performing gauge
transformation

φ0
t (x) = ne

imωc (ωy−ωx )(xt −R)yt
2(ωx+ωy ) + i

2 mωcez ·r(t )×x

× e− m
√

(ωx+ωy )2+ω2
c (ωx (xt −R)2+ωyy2

t )

2(ωx+ωy ) . (94)

As compared to Eq. (89), the Berry phase ϕBz during the adi-
abatic process t ∈ [0, T ] acquires an additional contribution
eBzπR2 from the Aharonov-Bohm phase. Therefore electrons
contribute to the following geometric orbital magnetization:

mz = eR2�

2a2
+ m0

z . (95)

The first term can be identified with m
top
z in Eq. (80) and the

second term is the contribution in Eq. (90). Since the body is
uncharged, the contribution from ions cancels the topological
contribution, while m

nontop
z = m0

z remains since ions are much
more localized compared to electrons. Assuming anisotropy
ωx/ωy = 2, and confinement of electrons on the scale of
angstroms, we find that contribution (93) is on the same
order as Barnett effect for paramagnets with paramagnetic
susceptibility χ ∼ 10−5. For comparison, paramagnets have
typically magnetic susceptibility χ ∼ 10−3–10−5 [58].

V. EXAMPLES: FINITE INTERACTING SYSTEMS

In this section we demonstrate the validity of Eq. (7) for
finite interacting systems. We consider two canonical ways of
introducing the time dependence to the Hamiltonian: rotating
[15,19] and translating the whole system [16,18,46].

We consider many-body systems under the open boundary
condition in two spatial dimensions. We start with a time-
independent Hamiltonian Ĥ that can contain arbitrary inter-
actions. The total charge, current, polarization, and orbital
magnetization operator for this Hamiltonian can be written
as N̂ = ∫

V d2xn̂(x), Ĵ = ∫
d2x ĵ(x), X̂ = ∫

V d2xxn̂(x), M̂ =
(1/2)

∫
V d2xx × ĵ(x). We stress that these expressions are

valid only when the system is confined in a finite region; they
need to be modified in extended systems under the periodic
boundary conditions as done by the modern theory. We denote
the many-body ground state of Ĥ and its energy by |�〉 and
E , respectively.

To compute the many-body Berry phase, let ĤB be the
Hamiltonian with the vector potential in the symmetric gauge
Aex(x) = (1/2)B × x with B = Bzez. Expanding to the linear
order in Bz and using ĵ(x) = −∂A(x)Ĥ , we get

ĤBz = Ĥ − M̂zBz + O
(
B2

z

)
. (96)

Therefore, the ground state of ĤBz to the leading order in Bz

can be expressed as

|�Bz〉 = |�〉 + Q̂
1

Ĥ − E
Q̂M̂zBz|�〉 + O

(
B2

z

)
. (97)

Here, Q̂ ≡ 1 − |�〉〈�| is the projector onto excited states.

A. Rotation

Here we consider the time dependence of the problem
induced by the rotation of the whole system

Ĥt ≡ e−iL̂z�t ĤeiL̂z�t , (98)

where � = ez� is the rotation frequency and L̂ is the angular
momentum operator. For the time-dependent Hamiltonian
Ĥt , the orbital magnetization operator M̂t ≡ (1/2)

∫
V d2xx ×

ĵt (x)

M̂t = e−iL̂z�t M̂eiL̂z�t . (99)

We evaluate the instantaneous contribution mpers and the
geometric contribution m to the orbital magnetization via the
formulae in Eqs. (34) and (35). The instantaneous contribution
is given by the instantaneous ground state |�t 〉 = e−iL̂z�t |�〉

mpers ≡
∫ T

0

dt

T

〈�t |M̂t |�t 〉
V

= 〈�|M̂|�〉
V

. (100)

The geometric contribution is given by the many-body
Berry phase. Since the instantaneous ground state of the
Hamiltonian ĤtBz ≡ e−iL̂z�t ĤBz e

iL̂z�t is given by |�tBz〉 =
e−iL̂z�t |�Bz 〉, we have

ϕBz =
∫ T

0
dt〈�tBz |i∂t |�tBz 〉 = T 〈�Bz |L̂z�|�Bz 〉. (101)

This is the expectation value of L̂z� in the presence of the
perturbation −m̂zBz in Eq. (96). Using Eq. (97), we get

m = 〈�|L̂z�Q̂
1

Ĥ − E
Q̂

M̂
V

|�〉 + c.c. (102)

We verify these results by solving time-dependent prob-
lem. The solution to the time-dependent Schrödinger equation
i∂t |�t 〉 = Ĥt |�t 〉 can be readily constructed using the ground
state |��〉 of the time-independent Hamiltonian

Ĥ� ≡ Ĥ − L̂z�. (103)

The solution that is smoothly connected to the ground state in
the static limit � → 0 reads

|�t 〉 = e−iL̂z�t−iE�t |��〉. (104)

The time-average of the orbital magnetization is thus given by

m =
∫ T

0

dt

T

〈�t |M̂t |�t 〉
V

= 〈��|M̂|��〉
V

. (105)

This is the expectation value of M̂ in the presence of the per-
turbation −L̂z� as in Eq. (103). The first-order perturbation
theory with respect to � gives

m = mpers + 〈�|L̂z�Q̂
1

Ĥ − E
Q̂

M̂
V

|�〉 + c.c. (106)

This is precisely mpers + m predicted above in Eqs. (100) and
(102). As it is clear from the derivation, the agreement of the
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two independent approaches is guaranteed by the Maxwell
relation for the free energy F̂ ≡ Ĥ − L̂z� − M̂zBz

∂Bz 〈L̂z〉 = −∂Bz∂�〈F̂ 〉 = −∂�∂Bz 〈F̂ 〉 = ∂�〈M̂z〉. (107)

B. Translation

Next let us introduce the time dependence by the trans-
lation. All discussions proceed in essentially the same way,
while there are still a few differences. First we define the
time-dependent Hamiltonian by

Ĥ ′
t ≡ T̂t Ĥ T̂ †

t , (108)

where T̂t = e−iP̂·r(t ) is the translation by amount r(t ) and P̂
is the momentum operator. For Ĥt the orbital magnetization
operator becomes

M̂
′
t = T̂t

(
M̂ + 1

2
r(t ) × Ĵ

)
T̂ †

t (109)

where the second term in the parenthesis is due to the change
of the origin. The instantaneous ground state |�′

t 〉 = T̂t |�〉
gives mpers as in Eq. (100), where we used 〈�|Ĵ|�〉 = 0.

Next, we compute the geometric contribution via the many-
body Berry phase. In the presence of magnetic field, transla-
tion operator T̂tBz ≡ T̂Bz (r(t )) becomes translation followed by
gauge transformation [51,52]

∂t T̂tBz ≡ −i

(
P̂ + e

2
B × X̂

)
· ∂t r(t )T̂tBz . (110)

The instantaneous ground state of ĤtBz ≡ T̂tBz ĤBz T̂
†

tBz
is

|�tBz 〉 = T̂tBz |�Bz 〉, thus the many-body Berry phase reads

ϕBz =
∫ T

0
dt

〈
�Bz

∣∣T̂ †
tBz

i∂t T̂tBz

∣∣�Bz

〉 = eNSr · B, (111)

Here, Sr ≡ 1
2

∮
r̂ × dr represents the area swept by r(t ) in one

cycle. In the derivation, we used

T̂ †
tBz

i∂t T̂tBz =
(

P̂ + e

2
B × X̂

)
· ṙ(t ) + eN

2
r(t ) × ∂t r(t ) · B.

(112)

Therefore, when the whole system is translated, the geo-
metric contribution to the orbital magnetization captures the
Aharonov-Bohm phase

m = eN

TV
Sr. (113)

To verify the above results, we consider the time-dependent
Schrödinger equation i∂t |� ′

t 〉 = Ĥ ′
t |� ′

t 〉. An approximate so-
lution is given by |� ′

t 〉 = T̂t |�tr〉, where |�tr〉 is the instanta-
neous ground state of the Hamiltonian Ĥtr ≡ Ĥ − P̂ · ∂t r(t ).
Therefore the time average of the orbital magnetization is

m =
∫ T

0

dt

T

〈� ′
t |M̂

′
t |� ′

t 〉
V

=
∫ T

0

dt

T

〈�tr|M̂|�tr〉
V

+ eN

2TV

∫ T

0
dt r(t ) × ∂t r(t ). (114)

In the adiabatic limit, this reproduces mpers + m in Eqs. (100)
and (113). In the derivation, we used 〈�tr|Ĵ|�tr〉 = eN∂t r(t )
for the ground state of Ĥtr.

VI. CONCLUSION

In order to obtain current and charge distribution in a
medium, one needs to solve Maxwell’s equation together with
two constitutive relations [see Eq. (3)] that fully characterize
the medium at the mesoscopic scale. The modern theories,
developed in the last 30 years, provide handy formulae to
calculate electric polarization [3–6] and orbital magnetization
[8–11] for realistic materials.

The focus of this work is on spinless short-range entan-
gled systems under periodic adiabatic evolution. Our main
result is to identify an additional contribution to the orbital
magnetization that we name geometric orbital magnetization
m. This new contribution is defined only after performing
the time-average over the period of the adiabatic process,
which makes the current density divergence-free. We find
that the geometric orbital magnetization can be expressed
compactly as derivative of the many-body Berry phase with
respect to an externally applied magnetic field. For band
insulators, we obtain handy formulas for the bulk geometric
orbital magnetization m in terms of instantaneous Bloch states
and energies. Interestingly, we find that for band insulators
m = mtop + mnontop consists of two pieces, where topological
piece mtop depends only on the Bloch states of occupied
bands. For spinless systems, only electric polarization and
orbital magnetization enter constitutive relations, since the
contributions from higher moments are typically negligible
[55]. In this sense, our results together with “the modern
theories” provide a complete mesoscopic description of a
medium under periodic adiabatic time evolution. In this work,
we have not considered adiabatic processes with ground state
degeneracy [59], it would be interesting to see to which extent
our findings can be generalized to such systems.

In the present work, the adiabaticity assumption is crucial
for validity of the obtained results. In practice, for band
insulators with band gaps on the order of electronvolt, this
conditions requires that the period T is larger than couple
of femtoseconds. Nevertheless, shorter period T results in a
larger geometric orbital magnetization. It would be therefore
interesting to extend our results to the case of strong drive
that excites unoccupied bands. In the case of Thouless pumps,
such an extension was very fruitful and resulted in recent
discovery of shift currents [60,61].

Although higher (than dipole) electric and magnetic mul-
tiple moments typically do not enter constitutive relations,
the knowledge of these quantities may be useful for certain
systems [36,37]. In fact, it is a topic of current research
whether higher moments can be established as bulk quantities
in general [40–42,62,63]. In the presence of certain crystalline
symmetries, both electric polarization and topological geo-
metric orbital magnetization can be quantized, in which case
they can serve as a topological invariants. In this context,
we showed that the quantized quadrupole moment is related
to m

top
z in systems with proper symmetries that allow bulk

definition of the quadrupole moment [42].
In this work, we succeeded in separating m into the topo-

logical and the nontopological piece only for band insulators.
There, we found that the topological contribution is expressed
as the third Chern-Simons form (P3), in (t, kx, ky) space. For
interacting systems, based on examples considered in Sec. V,
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we conclude that it is possible to separate Aharonov-Bohm
contribution originating from the center of mass motion.
In fact, this contribution can be captured by calculating P3

formally defined for the many-body ground state as a function
of time and two solenoidal fluxes. Clearly, the many-body P3

defined in such manner is Abelian and does not capture all
possible topological contributions. For example, it vanishes
for the model in Fig. 4. As a future direction, it would be
interesting to see if separation achieved for band insulators
is possible for general single-particle or even many-body
systems. The affirmative answer to this question would pro-
vide a way to define P3 in two-dimensional systems with
adiabatic time dependence lacking the translational invariance
or the single-particle description. The formula for P3 in many-
body three-dimensional systems already exist in the literature
[64,65], where it was argued that P3 is related to the magne-
toelectric polarizability. The magnetoelectric polarizability of
three-dimensional materials contains, at least for the case of
band insulators, not only topological but also nontopological
contribution [12], thus the analogous “separation question”
arises also in that context. Additionally, defining quantized
quadrupole moment for interacting systems is one of the
open questions [40–42]. Since for band insulators we find
connection between m

top
z and quantized quadrupole moment,

separating m
top
z contribution in interacting systems might

provide useful many-body definition of quantized quadrupole
moment.

We hope that our work will also have practical implication
as it contributes to emerging field of “dynamical material
design” by providing a way to calculate additional orbital
magnetization contribution that appears in these systems
[15–19].
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APPENDIX: TOPOLOGICAL GEOMETRIC ORBITAL
MAGNETIZATION IN SIMPLE MODELS

Here we present the derivation of Eq. (85) in Sec. IV C
for multi potential minima at x = rn(t ) (n = 1, 2, . . . , Nocc).
To calculate the geometric orbital magnetization, we use the
cell-periodic Bloch state (67) for each orbital. Substitution of
(AK )nm = (Atn,−rn(t ))Tδnm with K ≡ (t, k) [cf. Eq. (78)] into
Eq. (51), we find

P′
3 = e

Nocc∑
n=1

Srn · ez. (A1)

However, this is not the complete expression of P3 because
Eq. (78) implies that the above Berry connection violates the
periodicity in time when rn(T ) differs from rn(0). To quantify
the violation, let us introduce the mismatch matrix

(�0k)nm ≡ 〈u0nk|uT mk〉 = δnme−ik·[rn(T )−rn(0)]. (A2)

To repair periodicity of AK , we need to find a family of unitary
matrices �K that interpolates �0k and �T k ≡ 1Nocc×Nocc . Such
an interpolation exists if and only if the polarization p(t ) =
(e/a2)

∑
n rn(t ) satisfy p(T ) = p(0). Accordingly, below we

focus on the case Q = 0. The gauge transformation with this
�K gives a periodic Berry connection

ÃK = �
†
KAK�K − i�†

K∇K�K (A3)

as far as

�
†
K∂t�K |t=T = �

†
K∂t�K |t=0. (A4)

The full expression of P3 is given by computing Eq. (51)
with ÃK . It is given by [66]

P3 = P′
3 + �boundary + �PI, (A5)

�boundary = e
∫

d2k

8π2
tr[iεi j∂ki�K�

†
K (AK ) j]

t=T
t=0 , (A6)

�PI = e
∫

d3K

24π2
tr�†

K∂Kμ
�K�

†
K∂Kν

�K�
†
K∂Kλ

�K, (A7)

where the sum over i, j = x, y and μ, ν, λ = t, x, y are as-
sumed. �PI is the Pontryagin index of the matrix �K , which
requires an explicit expression for �K , whereas the knowledge
of mismatch matrix �0k in Eq. (A2) suffices for the boundary
term �boundary. It reads

�boundary = e
Nocc∑
n=1

1

2
rn(0) × rn(T ) · ez. (A8)

Thus, in order to prove (85), it remains to show that �PI = 0.
Below we show this by explicitly constructing �K .

Consider a family of 2 × 2 unitary matrices �K (r)

�K (r) = e
i
2 k·rσ3 e

i
2 k·r[σ3 cos(π f (t ))+σ1 sin(π f (t ))] (A9)

with f (0) = 0 and f (T ) = T . The above matrix interpolates
between unitary matrix �0k(r) = eiσ3k·r and the identity ma-
trix �T k(r) = 12×2. We also require f ′(0) = f ′(T ) = 0 so
that the requirement (A4) is satisfied. One such function f (t )
is given by

f (t ) = 3(t/T )2 − 2(t/T )3. (A10)

Since �K (r) depends only on k · r, it is easy to check that its
Pontryagin index vanishes. We then define �K by a composi-
tion

�K = �
(0)
K ◦ �

(1)
K ◦ · · · ◦ �

(Nocc−1)
K , (A11)

where each interpolation matrix �
(n)
K is defined as

Pn�
(n)
K Pn = Pn�

(n−1)
T k Pn�K

(
n∑

m=1

δrm

)
,

Qn�
(n)
K Qn = Qn�

(n−1)
T k Qn (A12)

with

�
(0)
T k = �0k, (A13)

Pn = |ukn〉〈ukn| + |ukn+1〉〈ukn+1|, (A14)

(Qn)i j = δi j − (Pn)i j . (A15)

It is straightforward to check that �
(Nocc−1)
T k equals to the

identity matrix and that the Pontryagin index for each �
(n)
K

vanishes.
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