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Magnetization plateau of the S = 2 antiferromagnetic Heisenberg chain with anisotropies
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We investigate the S = 2 antiferromagnetic quantum spin chain with the exchange and single-ion anisotropies
in a magnetic field, using the numerical exact diagonalization of finite-size clusters and the level spectroscopy
analysis. It is found that a magnetization plateau possibly appears at half of the saturation magnetization for some
suitable anisotropy parameters. The level spectroscopy analysis indicates that the 1/2 magnetization plateau is
formed by two different mechanisms, depending on the anisotropy parameters. The phase diagram of the 1/2
plateau states and some typical magnetization curves are also presented. In addition, the biquadratic interaction
is revealed to enhance the plateau induced by the Haldane mechanism.
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I. INTRODUCTION

Since Haldane predicted the spin excitation gap of the
integer-spin antiferromagnetic Heisenberg chain [1,2], the
spin gap based on some topological nature has attracted a lot
of interest. The existence of the Haldane gap was justified
by many numerical studies [3–10]. Affleck, Kennedy, Lieb,
and Tasaki proposed a well-understandable picture of the spin
gap formation, so-called the valence bond solid [11,12]. The
single-ion anisotropy D tends to suppress the valence bond
solid picture. When the anisotropy D increases, a quantum
phase transition occurs from the Haldane phase to the large-
D phase where the topological nature disappears [13,14].
Recently Gu and Wen [15] and Pollmann et al. [16,17] intro-
duced the concept of symmetry protected topological (SPT)
phase to the quantum spin chain. Based on their argument, the
Haldane phase of S = 1 chain is this SPT phase, while not in
the case of S = 2. On the other hand, the intermediate-D phase
even of the S = 2 chain predicted by Oshikawa [18] should
correspond to the SPT phase. Unfortunately, early density
matrix renormalization group calculation on the S = 2 antifer-
romagnetic Heisenberg chain with the exchange anisotropy λ

and the single-ion one D could not discover the intermediate-
D phase [19–21]. However, our recent study on the same
S = 2 model using the numerical exact diagonalization of
finite-size clusters and the level spectroscopy analysis suc-
cessfully detected the intermediate-D phase [22–26]. Since
this phase appears only at a quite tiny region [26,27] of the
anisotropy parameter space, it would be difficult to discover it
for some realistic materials. As another possibility to discover
the SPT phase of the S = 2 chain, we consider the magne-
tization process of the system. Since Oshikawa, Yamanaka,
and Affleck [28] discussed the magnetization plateau as the
field induced Haldane gap, this problem has been investigated
very extensively. Particularly the 1/3 magnetization plateau
of the S = 3/2 chain was revealed to appear for sufficiently
large D, by the numerical exact diagonalization study [29].

In addition, the level spectroscopy analysis [30] indicated
that the intermediate-D plateau phase corresponds to the SPT
phase based on the VBS mechanism, as well as the large-
D plateau phase. Similar phenomena are expected to occur
at half the saturation magnetization of the S = 2 chain. In
this paper, we consider the 1/2 magnetization state of the
S = 2 antiferromagnetic Heisenberg chain with the exchange
and single-ion anisotropies using the numerical exact diag-
onalization of finite-size clusters and the level spectroscopy
analysis, to discover the SPT phase, which corresponds to the
intermediate-D phase.

II. MODEL

Now we examine the magnetization process of the S = 2
antiferromagnetic Heisenberg chain with the exchange and
single-ion anisotropies, denoted by λ and D, respectively. The
Hamiltonian is given by

H = H0 + HZ , (1)

H0 =
L∑

j=1

[
Sx

j S
x
j+1 + Sy

j S
y
j+1 + λSz

jS
z
j+1

] + D
L∑

j=1

(
Sz

j

)2
, (2)

HZ = −H
L∑

j=1

Sz
j . (3)

The exchange interaction constant is set to be unity as the
unit of energy. For L-site systems, the lowest energy of H0 in
the subspace where

∑
j Sz

j = M, is denoted as E (L, M ). The
reduced magnetization m is defined as m = M/Ms, where Ms

denotes the saturation of the magnetization, namely Ms = LS
for the spin-S system. E (L, M ) is calculated by the Lanczos
algorithm under the periodic boundary condition (SL+1 = S1)
and the twisted boundary condition (Sx,y

L+1 = −Sx.y
1 , Sz

L+1 =
Sz

1), up to L = 12. Both boundary conditions are necessary
for the level spectroscopy analysis.
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(a)

(b)

FIG. 1. Two different mechanisms of the 1/2 magnetization
plateau: (a) Haldane mechanism and (b) large-D mechanism.

III. MAGNETIZATION PLATEAU

Here we consider the state at m = 1/2 in the magnetization
process of the system (1) at T = 0. In this state the magneti-
zation per unit cell is M/L = 1. Thus Oshikawa, Yamanaka,
and Affleck’s theorem [28] suggests that the magnetization
plateau possibly occurs without the spontaneous breaking of
the translational symmetry, because S − M/L = integer. If we
consider the S = 2 object as a composite spin consisting of
four S = 1/2’s, the 1/2 magnetization plateau is expected to
appear due to two different mechanisms, as shown in Fig. 1.
Namely one is (a) Haldane mechanism (a singlet dimer lies
on each bond), and the other is (b) large-D mechanism (the
energy gap is open between the states |Sz = 1〉 and |Sz = 2〉 at
each site due to the large D). The 1/2 magnetization plateaux
based on the two mechanisms are called the Haldane plateau
and the large-D plateau, respectively, in this paper. Following
Pollmann et al., [16,17] the SPT phase exists if any one
of the following three global symmetries is satisfied: (i) the
dihedral group of π rotations about the x, y, and z axes, (ii)
the time-reversal symmetry Sμ

j → −Sμ
j , and (iii) the space

inversion symmetry with respect to a bond. It is easy to see
that our Hamiltonian satisfies (iii), but neither of (i) and (ii).
Since the Tomonaga-Luttinger liquid phase is also possible,
the m = 1/2 state is expected to include the three phases;
the Haldane plateau, the large-D plateau, and the gapless
(plateauless) TLL phases.

IV. LEVEL SPECTROSCOPY ANALYSIS

In order to distinguish these three phases, the level spec-
troscopy analysis [30] is one of the best methods. According
to this analysis, we should compare the following three energy
gaps;

�2 = E (L, M − 2) + E (L, M + 2) − 2E (L, M )

2
, (4)

�TBC+ = ETBC+(L, M ) − E (L, M ), (5)

�TBC− = ETBC−(L, M ) − E (L, M ), (6)

where ETBC+(L, M ) [ETBC−(L, M )] is the energy of the lowest
state with the even parity (odd parity) with respect to the
space inversion at the twisted bond under the twisted boundary
condition, and other energies are under the periodic boundary
condition. The level spectroscopy method indicates that the
smallest gap among these three gaps for M = L = Ms/2
determines the phase at m = 1/2. �2, �TBC+, and �TBC−
correspond to the TLL, large-D-plateau, and Haldane-plateau
phases, respectively. The use of �TBC± directly reflects the
above-mentioned (iii) of the condition for the existence of the
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FIG. 2. Level spectroscopy analysis for λ = 1.0. Solid, dashed,
and dotted lines are for �2, �TBC+, and �TBC−, respectively. Black,
red, and blue lines are for L = 8, 10, and 12, respectively.

SPT phase [24]. The D dependence of the three gaps calcu-
lated for L = 8, 10, and 12 is plotted for λ = 1.0 in Fig. 2.
It suggests that at the isotropic point (λ, D) = (1.0, 0.0) the
system is in the TLL phase and increasing D gives rise to
a quantum phase transition to the large-D plateau phase.
The phase boundary is given by the cross point between �2

and �TBC+. The system size dependence of the boundary is
predicted to proportional to 1/L2, which is justified in Fig. 3.
It indicates that the size correction of Dc is almost proportional
to 1/L2, at least for L = 8, 10, 12. Thus we estimate the phase
boundary in the thermodynamic limit as Dc = 1.635 ± 0.001,
fitting 1/L2 to the data for L = 8, 10, 12. Unfortunately, the
Haldane plateau phase does not appear for λ = 1.0, different
from S = 3/2 chain [30].

Next, the D dependence of the three gaps is plotted for
λ = 2.0 in Fig. 4. In this case the Haldane-plateau phase
appears between the TLL and large-D-plateau phases. The

0 0.01 0.02 0.03 0.04

1/L
2

1.5

1.55

1.6

1.65

1.7

D
c

FIG. 3. Extrapolation of the critical value of D between the TLL
and large-D plateau phases to the thermodynamic limit for λ = 1.0.
As the L dependence of Dc for the largest three system sizes is well
fitted to 1/L2, Dc in the thermodynamic limit is estimated by the least
square method.
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FIG. 4. Level spectroscopy analysis for λ = 2.0. Solid, dashed,
and dotted lines are for �2, �TBC+, and �TBC−, respectively. Black,
red, and blue lines are for L = 8, 10, and 12, respectively.

phase boundaries Dc1 between TLL and Haldane phases and
Dc2 between Haldane and large-D phases in the thermody-
namic limit are estimated as Dc1 = 0.702 ± 0.001 and Dc2 =
1.633 ± 0.001, using the same fitting of 1/L2.

The phase diagram on the λ-D plane is shown in Fig. 5.
It suggests that a tricritical point appears about (λ, D) =
(1.55, 1.30). The Haldane-plateau phase would correspond
to the SPT phase. Thus it should be called the symmetry
protected topological plateau. This SPT phase appears in a
much wider region than that in the ground state phase diagram
at m = 0. Then the possibility of experimental discovery of
the SPT phase for some real materials of the S = 2 antiferro-
magnetic chain would be extended.

V. MAGNETIZATION CURVES

Toward the experimental discovery of the 1/2 magneti-
zation plateau, it would be useful to obtain the theoretical
magnetization curve for some typical anisotropy parameters.
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FIG. 5. Phase diagram of the 1/2 magnetization state resulting
from the level spectroscopy analysis. It includes the two plateau
phases due to the Haldane and large-D mechanisms.
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FIG. 6. E (L, M + 1) − E (L, M ) and E (L, M ) − E (L, M − 1)
plotted versus 1/L with fixed m for λ = 1.0 and D = 2.0. Each of
the two quantities seem to coincide with the magnetic field H for m
in the thermodynamic limit. The extrapolated points for m = 1/2+
and m = 1/2− correspond to the result of the Shanks transformation
H+(1/2) = 7.75 and H−(1/2) = 7.51, respectively. Dashed curves
are guides for the eye.

In order to give the magnetization curve in the thermodynamic
limit L → ∞ using the numerical diagonalization results, we
perform different extrapolation methods in the gapless and
gapped cases. The magnetic fields H−(m) and H+(m) are
defined as follows:

E (L, M ) − E (L, M − 1) → H−(m) (L → ∞), (7)

E (L, M + 1) − E (L, M ) → H+(m) (L → ∞), (8)

where the size L is varied with fixed m = M/Ms. If the system
is gapless at m, the conformal field theory predicts that the
size correction is proportional to 1/L and H−(m) coincides
with H+(m) [31,32]. It is justified by Fig. 6, where E (L, M ) −
E (L, M − 1) and E (L, M + 1) − E (L, M ) are plotted versus
1/L for λ = 1.0 and D = 2.0. It suggests that the system is
gapless at m �= 1/2. The gapless feature at m = 0 is consistent
with the phase diagram of the previous work [22]. For these
magnetization, we can estimate H (m) in the thermodynamic
limit, using the following extrapolation form:

1
2 [E (L, M + 1) − E (L, M − 1)] → H (m) + O(1/L2). (9)

On the other hand, if the system has a gap at m, namely the
magnetization plateau is open, H−(m) does not coincide with
H+(m) and H+(m) − H−(m) corresponds to the plateau width.
In such a case we assume the system is gapped at m and
use the Shanks transformation [33,34] to estimate H−(m) and
+(m). The Shanks transformation applied for a sequence {PL}
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TABLE I. Result of the Shanks transformation applied for the
sequence E (L, M ) − E (L, M − 1) twice.

L PL P′
L P′′

L

4 6.7250103
6 7.0129442 7.3184395
8 7.1611715 7.3918033 7.5105753
10 7.2514054 7.4371543
12 7.3121369

is defined as the form

P′
L = PL−2PL+2 − P2

L

PL−2 + PL+2 − 2PL
. (10)

As the above level spectroscopy analysis predicts that the
1/2 magnetization plateau appears for λ = 1.0 and D = 2.0,
we use the method to estimate H−(m) and H+(m) at m =
1/2. The Shanks transformation is applied for the sequence
E (L, M ) − E (L, M − 1) twice as shown in Table I.

Within this analysis the best estimation of H−(1/2) in
the thermodynamic limit is given by P′′

8 and the error is
determined by the difference from P′

10. Thus we conclude
H−(1/2) = 7.51 ± 0.08. The Shanks transformation applied
for H+(1/2) is shown in Table II.

It gives the result H+(1/2) = 7.75 ± 0.07. The estimated
H−(1/2) and H+(1/2) for λ = 1.0 and D = 2.0 are shown as
a diamond and a triangle, respectively, in Fig. 6 where dashed
curves are guides for the eye.

Using these methods, the magnetization curves in the
thermodynamic limit are presented for λ = 1.0 (D = 0.0, 1.0,
and 2.0) in Fig. 7 and for λ = 2.0 (D = 0.0, 1.0, and 2.0) in
Fig. 8.

In Fig. 7 one of the precise estimations of the Haldane gap
(0.0890) [9] is used as H + (0) for λ = 1.0 and D = 0. As the
ground state under H = 0 for λ = 1.0, D = 1.0 and 2.0 is in
the XY phase [22], the magnetic excitation should be gapless.
In Fig. 8 the magnetization jump due to the spin flop transition
occurs from m = 0 for D = 0.0 and 1.0, because the ground
state under H = 0 is in the Néel ordered phase [22]. As
the precise magnetization curve around the jump is difficult
to obtain by the numerical diagonalization, we assume that
the magnetization jump occurs up to the smallest magnetiza-
tion that is not skipped within the numerical diagonalization
analysis. In any case the 1/2 magnetization plateau is quite
small. Probably some precise magnetization measurement
would be necessary to detect the 1/2 magnetization plateau
of the S = 2 antiferromagnetic chain. If the Haldane plateau

TABLE II. Result of the Shanks transformation applied for the
sequence E (L, M + 1) − E (L, M ) twice.

L PL P′
L P′′

L

4 8.6342191
6 8.2828303 7.9586157
8 8.1142027 7.8716085 7.7518180
10 8.0147234 7.8212083
12 7.9490199
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FIG. 7. Magnetization curves for λ = 1.0 obtained by the nu-
merical diagonalization and the extrapolation methods; Eq. (9) for
gapless points and the Shanks transformation for plateau points. The
large-D plateau appears at m = 1/2 for D = 2.0, while no plateau
for D = 0.0 and 1.0. Curves are guides for the eye.

is too small to detect by the magnetization measurement, the
ESR experiment to observe the edge spin effect at the doped
impurity site [35] would be useful.

VI. BIQUADRATIC INTERACTION

It would be important to consider the biquadratic inter-
action JBQ

∑
j (S j · S j+1)2, because it possibly stabilizes the

magnetization plateau [36]. The same level spectroscopy anal-
ysis as Figs. 2 and 4 is applied for the present model (1)
including the biquadratic interaction. The result for λ = 1.0
and JBQ = 0.05 is shown in Fig. 9. It is found that the Haldane
plateau phase appears even for λ = 1.0, different from Fig. 2.
The positive small biquadratic interaction is revealed to sta-
bilize the Haldane plateau more than the large-D one. Using
the same method as Figs. 7 and 8, the magnetization curves
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FIG. 8. Magnetization curves for λ = 2.0 obtained by the same
method as Fig. 7. The Haldane and large-D plateaus appear for D =
1.0 and 2.0, respectively. The magnetization jump from m = 0 due
to the spin flop transition also occurs for D = 0.0 and 1.0.
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FIG. 9. Level spectroscopy analysis for λ = 1.0 and JBQ = 0.05.
Solid, dashed, and dotted lines are for �2, �TBC+, and �TBC−,
respectively. Black, red, and blue lines are for L = 8, 10, and 12,
respectively. It is found that the Haldane plateau phase appears even
for λ = 1.0.

are given for λ = 1.0 in Fig. 10(a) for D = 1.5 (Haldane
plateau phase) and Fig. 10(b) for D = 3.0 (large-D plateau
phase), respectively. The magnetization curves for JBQ = 0.05
and JBQ = 0.20 are shown in Figs. 10(a) and 10(b), respec-
tively. It indicates that the biquadratic interaction enhances
the Haldane plateau, while not the large-D one. Thus some
materials including the biquadratic interaction would be better
candidates to exhibit the Haldane plateau. Actually the level
spectroscopy analysis indicates that the Haldane plateau ap-
pears for JBQ > JBQc = 0.0723 even in the isotropic case (λ =
1 and D = 0). We hope the Haldane plateau will be discovered
as the field induced SPT phase. One of the candidate materials
of the S = 2 antiferromagnetic chain is MnCl3(bpy) [37].
However, the single-ion anisotropy D was reported to be much
smaller than the plateau phase of the present result and the
biquadratic interaction is not expected to exist unfortunately.

VII. SUMMARY

In summary, the magnetization process of the S = 2 anti-
ferromagnetic Heisenberg chain with the exchange and single-
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FIG. 10. Magnetization curves for λ = 1.0 obtained by the same
method as Figs. 7 and 8: (a) For D = 1.5 (Haldane plateau phase)
and (b) for D = 3.0 (large-D plateau phase). Black and red curves
are for JBQ = 0.05 and JBQ = 0.20, respectively. Curves are guides
for the eye. When JBQ increases, the Haldane plateau becomes much
wider, while the large-D plateau does not.

ion anisotropies is investigated using the numerical exact
diagonalization and the level spectroscopy analysis. As a
result, the system possibly exhibits the 1/2 magnetization
plateau due to Haldane mechanism, as well as the large-D
mechanism. The phase diagram of the m = 1/2 state in the
λ-D plane is presented. The magnetization curves for several
typical anisotropy parameters are also given. In addition, the
biquadratic interaction is revealed to enhance the Haldane
plateau. We hope the present work would lead to the discovery
of the field induced symmetry protected topological phase.
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