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Stochastic ferrimagnetic Landau-Lifshitz-Bloch equation for finite magnetic structures
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Precise modeling of the magnetization dynamics of nanoparticles with finite-size effects at fast varying
temperatures is a computationally challenging task. Based on the Landau-Lifshitz-Bloch (LLB) equation we
derive a coarse-grained model for disordered ferrimagnets, which is both fast and accurate. First, we incorporate
stochastic fluctuations to the existing ferrimagnetic LLB equation. Further, we derive a thermodynamic
expression for the temperature-dependent susceptibilities, which is essential to model finite-size effects. Together
with the zero-field equilibrium magnetization the susceptibilities are used in the stochastic ferrimagnetic LLB
to simulate a ferrimagnetic Gd30(FeCo)70 particle with a diameter of 5 nm and a height of 10 nm under various
external applied fields and heat pulses. The obtained trajectories agree well with those of an atomistic model,
which solves the stochastic Landau-Lifshitz-Gilbert equation for each atom. Finally, we apply a 50-fs heat pulse
with a maximum temperature of 1193 K to a Gd24(FeCo)76 particle of the same size to test the proposed model for
all-optical switching (AOS). We observe switching with a ferromagneticlike state, which was identified to be the
key for AOS in GdFeCo. Although the coarse-grained model in general shows remarkably good agreement with
atomistic simulations, the computed switching probability is lower than expected. The magnetization trajectories
seem to be too far away from equilibrium for ultrashort and very high heat pulses, which are typical for AOS.
This leads to the conclusion that either the model needs higher-order corrections to accurately describe AOS, or
that the two-spin model is not capable of describing deterministic AOS at all.
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I. INTRODUCTION

The calculation of the magnetization dynamics of large
systems under the influence of fast varying temperatures is
of great interest from both the scientific and the technologi-
cal perspectives. Heat-assisted magnetic recording (HAMR)
[1–5] should be mentioned first and foremost here. Despite
the computing power of modern supercomputers, coarse-
grained models are needed to manage the computational effort
created by such complex systems. The development of the
Landau-Lifshitz-Bloch (LLB) equation for pure ferromagnets
by Garanin [6] and the subsequent improvements [7–9] paved
the way to make concrete design proposals for real HAMR
devices [10–14].

Recently it was discovered that the magnetization of disor-
dered ferrimagnetic materials can be reversed by the mere ex-
posure of circularly polarized femtosecond laser pulses [15].
This effect, which was observed in GdFeCo, was called all-
optical helicity-dependent switching (AO-HDS). The under-
lying origin was the basis of many discussions and has still
not been fully clarified [16–22]. In addition, it was discov-
ered that the applied laser pulses do not necessarily have
to be circularly polarized to reverse the magnetization in
GdFeCo and that there exists also a purely thermally induced
magnetization switching (TIMS) [23]. All-optical switching
has also been detected in other ferrimagnets like TbFe [21,24],
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TbCo [25–28], TbFeCo [29], artificial zero-moment mag-
nets [30], and even in multilayer structures without any rare-
earth atoms [27,31]. All these observations give hope that AO-
HDS or TIMS could be used in magnetic recording devices.

In recent years, ferrimagnetic materials have also found
their way into spintronics. Due to the fast magnetization
dynamics in antiferromagnetically coupled systems and their
insensitivity to external fields near the compensation point,
ferrimagnetic materials are an ideal candidate for spin-
orbit torque magnetoresistive random access memory (SOT-
MRAM) [32–38]. But also concepts like thermally assisted
spin-transfer torque MRAM (STT-MRAM), in which Joule
heating of the current through the cell is used to switch the
GdFeCo/TbFe free layer [39], show the great technological
relevance of ferrimagnetic materials.

As a consequence an efficient coarse-grained model of dis-
ordered ferrimagnets with finite size is essential to investigate
the feasibility of magneto-optical recording of ferrimagnetic
materials or spintronic devices with ferrimagnetic layers in
detail and to develop design guidelines.

Similar to the derivation of the Landau-Lifshitz-Bloch
(LLB) equation for pure ferromagnets by Garanin [6], Atxi-
tia et al. [40] have recently shown how the LLB equation
can be adapted for disordered ferrimagnets with two sublat-
tices. Before going into detail and presenting extensions to
ferrimagnetic LLB equation, we would like to briefly re-
view the results of Ref. [40]. The temporal evolution of
the reduced magnetization mA = MA/MA,0 (with MA,0 being
the zero temperature sublattice saturation magnetization) of
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sublattice A can be calculated per

∂mA

∂t
= −μ0γ

′
A(mA × Heff,A)

+ μ0γ
′
Aα

‖
A

m2
A

(mA · Heff,A)mA

− μ0γ
′
Aα⊥

A

m2
A

[mA × (mA × Heff,A)], (1)

where γ ′
A is the reduced electron gyromagnetic ratio γ ′

A =
γe/(1 + λ2

A), which is defined via the coupling parameter λA

of sublattice A to the heat bath and α⊥
A and α

‖
A are the per-

pendicular and the parallel dimensionless damping constant,
respectively. Below TC they are defined per

α
‖
A = 2λAkBT

me,A

J0,AAme,A + |J0,AB|me,B
, (2)

α⊥
A = λA

(
1 − kBT

me,A

J0,AAme,A + |J0,AB|me,B

)
, (3)

with me,A and me,B being the equilibrium magnetization in
sublattices A and B, respectively. In the case of two sublattices
with atoms A and B there exist three exchange energies, JA-A,
JB-B, and JA-B. The exchange energies in the LLB model
depend on the number of nearest neighbors z and on the
concentrations xA of the atoms. Hence, the exchange energies
become J0,AA = zxAJA-A and J0,BA = zxAJA-B. Above TC we
use the definition of the damping constants according to
Ref. [41] per

α
‖
A = α⊥

A = 2λAT

3TC
(4)

It is not surprising that Eq. (1) is of the same form as the
ferromagnetic LLB equation, because within each sublattice
the magnetizations and the field terms are treated with the
mean-field approximation usually used for ferromagnets. The
effective field Heff,A of each sublattice is defined per [40]

Heff,A = Hext + Hani,A + Hex,A + H‖
eff,A (5)

with

μ0Hani,A = 2dA

μA
mz,Aez, (6)

μ0Hex,A = − J0,AB

μAm2
A

[mA × (mA × mB)], (7)

μ0H‖
eff,A = −

(
1

χ̃
‖
A

+ |J0,AB|
μA

χ̃
‖
B

χ̃
‖
A

)
δmA

me,A
mA

+ |J0,AB|
μA

δτB

me,A
mA, (8)

and

τB = |mA · mB|
mA

. (9)

Here, μA is the magnetic moment of each spin in sublattice
A, dA is the uniaxial anisotropy energy per spin, and χ̃

‖
A is

the longitudinal susceptibility of the sublattice. In sublattice
B the same quantities are defined. In contrast to Ref. [40]

but similar to Ref. [41] we use a linear approximation of
δmA = mA − me,A and δτB = τB − τe,B in Eq. (8). At the
Curie temperature me,A and τe,B vanish. Under the assumption
that the magnetization relaxes fast towards its equilibrium
value, me,A can be approximated with mA to avoid numerical
singularities. Hence, Eq. (8) can be extended to temperatures
above TC as follows:

μ0H‖
eff,A = −

(
1

χ̃
‖
A

+ |J0,AB|
μA

χ̃
‖
B

χ̃
‖
A

)
mA

+ |J0,AB|
μA

τB

mA
mA if T � TC. (10)

This field is equivalent to the corresponding expression at high
temperatures of Ref. [41]. Note that all equations are identical
for sublattice B if subscript A is replaced by subscript B.

The described formalism was successfully applied in the
past [22,42–45]. Most of these works investigate fast re-
laxation processes in ferrimagnets and use a simplified or
a linearized version of the ferrimagnetic LLB. Due to the
deterministic nature of Eq. (1) all results can be interpreted
as ensemble averages. We are interested in the full dynamical
response of ferrimagnets with finite size under arbitrary exter-
nal conditions. In the presence of temperature, this response
has a stochastic nature.

II. EXTENSIONS TO THE FERRIMAGNETIC
LLB EQUATION

A. Stochastic form

To account for stochastic fluctuations due to temperature
we follow the derivations of Evans et al. [8] for the LLB equa-
tion for ferromagnets, which lead to a Boltzmann distribution
of the magnetization in equilibrium. The basic assumption is
that thermal fluctuations can be introduced to the LLB via
thermal fields. These fields are uncorrelated in time and space,
which means that their components consist of white-noise
random numbers with zero mean and a variance of〈

ξ
η
κ,i(t, r)ξη

κ, j (t
′, r′)

〉 = 2Dη
κδi jδ(r − r′)δ(t − t ′), (11)

where i, j are the Cartesian components of the thermal field,
κ is a placeholder for the sublattice type (A or B), and η is a
placeholder for parallel and perpendicular field components.
The four diffusion constants Dη

κ are to be determined for the
specific problem. To achieve this there exist two strategies,
one by means of the fluctuation dissipation theorem and one
via the Fokker-Planck equation. We use the latter approach,
which is presented in detail in Appendix, to make the main
part of the article more readable. As shown in Appendix we
get the following diffusion constants for sublattice A:

D⊥
A = (α⊥

A − α
‖
A)l3

atkBT

(α⊥
A )2γ ′

Aμ2
0natxAμAV

, (12)

D‖
A = α

‖
Aγ ′

Al3
atkBT

natxAμAV
. (13)

In these equations V is the discretization volume, lat is the
lattice constant, nat is the number of atoms per unit cell, T is
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the temperature, and kB is the Boltzmann constant. With the
diffusion constants, the corresponding stochastic LLB equa-

tion for ferrimagnets can be finally obtained (see Appendix)
per

∂mA

∂t
= −μ0γ

′
A(mA × Heff,A) + μ0γ

′
Aα

‖
A

m2
A

(mA · Heff,A)mA + ξ
‖
A − μ0γ

′
Aα⊥

A

m2
A

{mA × [mA × (Heff,A + ξ⊥
A )]}. (14)

B. Finite system susceptibilities

To integrate the LLB equation detailed knowledge of the longitudinal susceptibilities χ̃
‖
A and χ̃

‖
B are required. In the original

work of Atxitia et al. [40] a mean-field approach was derived:

χ̃
‖
A,mean = μBL′

A(ζA)|J0,AB|L′
B(ζB) + μAL′

A(ζA)[kBT − J0,BBL′
B(ζB)]

[kBT − J0,AAL′
A(ζA)][kBT − J0,BBL′

B(ζB)] − |J0,BA|L′
A(ζA)|J0,AB|L′

B(ζB)
. (15)

In this equation LA is the Langevin function with argu-
ment ζA = (J0,AAmA + |J0,AB|mB)/(kBT ) and L′

A is the cor-
responding derivative with respect to ζA. Equation (15) is,
strictly speaking, correct only for infinite systems. This dis-
crepancy was already extensively discussed in the case of
pure ferromagnets [7,9,46]. Additionally, the importance of
modeling the temperature dependence of the anisotropy field
was shown. By means of the perpendicular susceptibility the
anisotropy field in each sublattice can be defined as

Hani,A = 1

χ̃⊥
A

(mx,Aex + my,Aey). (16)

Here, the temperature dependence is included in χ̃A.
Spin fluctuations at zero field parallel and perpendicular

to the anisotropy axis can be used to derive an expression
for the response functions. How this is done for a ferro-
magnet is briefly reviewed in the following. The result will
help to derive the susceptibilities of sublattices in a ferri-
magnet. The canonical partition function Z of magnetization
M i in microstate i, which is subject to a field B, can be
expressed per

Z =
∑

i

e−β(Ei−V Mi·B). (17)

The expectation value of the magnetization can be written as

〈M〉 = 1

Z

∑
i

Mie
−β(Ei−V Mi·B)

= 1

Z

1

βV

∂Z

∂B
. (18)

A similar expression for the expectation value of the squared
magnetization can be easily found per

〈M2〉 = 1

Z

1

β2V 2

∂2Z

∂B2 . (19)

Based on the definition of the susceptibility

χ =
(

∂〈M〉
∂H

)
T

= μ0

(
∂〈M〉
∂B

)
T

, (20)

Eqs. (18) and (19) can be used to calculate χ per

χ = μ0βV [〈M2〉 − 〈M〉2]. (21)

Obviously, the same expressions hold for the components of
the susceptibility

χη = μ0βV
[〈

M2
η

〉 − 〈Mη〉2
]
. (22)

We now assume that the ferromagnet is split into two sublat-
tices with concentrations xA and xB, with xA + xB = 1. Hence,
the partition function can be written as

Z =
∑

i

e−β[Ei−(xA+xB )V Mi·B]. (23)

The same procedure as shown above can now be applied to
obtain the susceptibility

χη = μ0β(xA + xB)V [
〈
M2

η

〉 − 〈Mη〉2
]
. (24)

Obviously, χη can be divided into two expressions for the cor-
responding sublattices. Without loss of generality we further
analyze just the susceptibility of sublattice A in the y direction
resulting in

χ
y
A = χ⊥

A = μ0βxAV
[〈

M2
y

〉 − 〈My〉2
]

= μ0β

xAV
[〈(xAV My)2〉 − 〈xAV My〉2]. (25)

The expression xAV My = ∑NA
i ey · μi can be identified with

the total magnetic moment of sublattice A in the y direction
resulting in

χ⊥
A = μ0β(NAμA)2

xAV

[〈(
my

A

)2〉 − 〈
my

A

〉2]
, (26)

with the normalized magnetization of the sublattice

my
A =

∑NA
i ey · μi

NAμA
. (27)

The sum is over all NA atoms in sublattice A. In Eq. (16) we
are interested in the quantity χ̃⊥

A = χ⊥
A /(μ0MA,0). Hence, the

final expression takes the following form:

χ̃⊥
A = β(NAμA)2

xAV

l3
at

natxAμA

[〈(
my

A

)2〉 − 〈
my

A

〉2]
= NAμA

kBT

1

xA

[〈(
my

A

)2〉 − 〈
my

A

〉2]
. (28)

Here, lat is the lattice constant and nat is the number of atoms
per unit cell. In contrast to χ̃⊥ of a single-lattice ferromagnet
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TABLE I. Geometry and material parameters of both sublattices
A and B in Gd30(FeCo)70 (taken from Ref. [40]). d is the anisotropy
energy per atom, μ is the magnetic moment in units of Bohr mag-
netons, x is the concentration, Jκ-κ denotes the exchange energy per
atom link between equal atoms, Jκ-ν denotes the exchange energy per
atom link between different atoms, λ is the damping constant, nat is
the number of atoms per unit cell, lat is the lattice parameter, and r
and h are the radius and the height of the cylindrical particle. Curie
temperature and compensation point are denoted with TC and Tcomp,
respectively.

A (FeCo) B (Gd)

d (J) 8.072 51 × 10−24 8.072 51 × 10−24

μ (μBohr ) 2.217 7.63
x (%) 70 30
Jκ−κ (J) 4.5 × 10−21 1.26 × 10−21

Jκ−ν (J) −1.09 × 10−21

λ 0.1 0.1
nat 4
r (nm) 5.0
h (nm) 10.0
TC (K) 697
Tcomp (K) 313

a factor x−1
A appears in the susceptibility of the ferromagnetic

sublattice χ̃⊥
A . Since for total number of atoms N = NA/xA

holds, the prefactor in Eq. (28) depends on the total number
of atoms rather than the number of atoms of the sublattice.
This is an important but nonobvious result.

To better understand the result the magnetization of a
cylindrical Gd30(FeCo)70 particle is computed with the atom-
istic code VAMPIRE [47], which solves the stochastic Landau-
Lifshitz-Gilbert equation for each spin. Material and geometry
parameters of the simulated particle are given in Table I. In
detail, at a temperature of 1 K system trajectories with 107

time steps (after 2 × 104 equilibration steps) with an integra-
tion time step of 10−15 s are calculated for various values
of the exchange JA-B between atoms A and B. From each
trajectory the variance of the y component of the normalized
sublattice magnetizations is extracted and shown in Fig. 1.
We see that at full exchange the fluctuations are suppressed.
At low exchange the fluctuations increase towards the ex-
pected value corresponding to the anisotropy field (dashed
lines in Fig. 1). This result is clear because the anisotropy
field is independent from the distance between the atoms
and for two separated not interacting ferromagnets we must
obtain the correct anisotropy field. Note that the normalized
magnetization fluctuations are plotted, so it is reasonable that
the fluctuations of both sublattices are identical for strong
exchange coupling. Hence, the fluctuations must be multiplied
by the total number of atoms to obtain the correct sublattice
susceptibilities. One could also argue that at full exchange the
number of nearest neighbors of the same atom type is smaller
by a factor of xν which obviously also reduces the fluctuations
by the same amount. Hence, for full exchange a correction
factor of 1/xν according to Eq. (28) is needed in the sublattice
susceptibilities compared to the ferromagnetic case in order
to recover the correct anisotropy field of the sublattices from
spin fluctuations.

10−2 10−1 100 101 102 103

2

4

6
·10−5

JFeCo−Gd [% JFeCo−Gd,full]

(m
y ν
)2

m
y ν

2

FeCo
Gd

FIG. 1. Variance of the y component of the normalized sublattice
magnetizations of Gd30(FeCo)70 (parameters are given in Table I) for
various values of the exchange JFeCo-Gd between FeCo atoms and Gd
atoms. The horizontal dashed lines represent the expected variances
based on the anisotropy fields of the materials.

C. Preparation of material functions

To compute the required temperature-dependent mate-
rial functions (equilibrium magnetizations and susceptibili-
ties) for the ferrimagnetic LLB equation the atomistic code
VAMPIRE [47] is used. Again, system trajectories with 107 time
steps (after 2 × 104 equilibration steps) with an integration
time step of 10−15 s are simulated for various temperatures.
From these trajectories the zero-field equilibrium magneti-
zations of the sublattices of the ferrimagnet as well as the
susceptibilities via Eq. (28) can be extracted. Note that the
magnetization dynamics of such an atomistic reference model
are assumed to be correct in a sense that we aim to reproduce
them with the presented coarse-grained ferrimagnetic LLB
model. Nevertheless, the atomistic data cannot be directly
used as input for the LLB equation, because the latter requires
temperature-dependent functions of an infinite system. Hence,
functions from a mean-field model are typically fitted to
the atomistic data. To show how this procedure works for
ferrimagnets we would like to rely on an example. For better
comparability with Ref. [40] we use a cylindrical nanoparticle
consisting of Gd30(FeCo)70 as the sample system. The ge-
ometry and the material parameters of the particle are shown
in Table I. System trajectories at temperatures in the range
of 0–950 K are simulated. Figure 2 displays the resulting
equilibrium magnetization at zero field for both sublattices.
To use these data in Eq. (8) we first fit the FeCo curve me,A

with the mean-field expression

me(T ) = c1

(
1 − T

c2

)c3

, (29)

with fit parameters c1, c2, and c3. Here, the Curie temperature
TC = c2 = 697 K of the ferrimagnet is determined. In the
fit procedure of the second sublattice this Curie temperature
is fixed and the remaining two parameters are fitted. The
resulting fit functions are plotted in Fig. 2 with black solid
lines.

The same trajectories from which the equilibrium mag-
netizations were determined can also be used to calculate
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1.0
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m
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FeCo
Gd
fit

FIG. 2. Zero-field equilibrium magnetization me vs temperature,
computed with an atomistic model of Gd30(FeCo)70 (parameters are
given in Table I). The black solid lines show fits, representing an
infinite system.

the fluctuations of the magnetization perpendicular to the
anisotropy axis by means of Eq. (28). χ̃⊥ for both sublattices
is shown in Fig. 3. The fit of the atomistic data consists of
three piecewise continuously differentiable functions per

χ̃⊥(T ) =
{

c4mc5
e T � TC

c6
T −TC

T > TC
, (30)

with c4–c6 being fit parameters. In the intermediate temper-
ature range a fourth-order polynomial is used. Since χ̃⊥(T )
must be continuously differentiable at the connections only
one free parameter remains to fit this polynomial and to close
the gap. For further details please refer to Ref. [9]. With the
expression [Eq. (28)] derived in Sec. II B the susceptibilities
agree well with the inverse anisotropy field at zero temper-
ature, which is also displayed as dashed line in Fig. 3 for
both sublattices. At first sight the temperature dependence of
the Gd susceptibility seems to be counterintuitive, since it
is inversely proportional to the anisotropy field, and thus an
increasing anisotropy field could be expected. But, according
to Eq. (16) we also must consider the deceasing magnitude of
the magnetization. Overall, the anistropy field decreases with

0 200 400 600 800
0.0

2.0

4.0

μA
2dA

μB
2dB

TC

T [K]

χ̃
⊥

[1
/T

]

FeCo
Gd
fit

FIG. 3. Perpendicular susceptibility χ̃⊥, computed with an atom-
istic model of Gd30(FeCo)70 (parameters are given in Table I) from
magnetization fluctuations. The black solid lines show fits, represent-
ing an infinite system.

0 200 400 600 80010−4

10−3

10−2

TC

T [K]

Λ
[1

/T
]

FeCo atomistic Gd atomistic
FeCo mean field Gd mean field

FIG. 4. Temperature evolution of � for Gd30(FeCo)70 (param-
eters are given in Table I), based on Eq. (31) with the mean-field
expression of Eq. (15) and with the longitudinal susceptibilities ob-
tained by atomistic simulations from fluctuations of the z component
of the magnetization.

temperature for both sublattices as expected. Note that the
susceptibilities change considerably with temperature. This
fact suggests that it is very important to correctly model the
temperature dependence of χ̃⊥ and not only to use the zero-
temperature value for the whole temperature range. A detailed
comparison will be presented in Sec. III.

Instead of extracting the individual longitudinal suscepti-
bilities from the atomistic data, which is normally done for
ferromagnets, we compute the mean-field expression

�−1
AA =

(
1

χ̃
‖
A

+ |J0,AB|
μA

χ̃
‖
B

χ̃
‖
A

)
(31)

of Eqs. (8) and (10). For the longitudinal susceptibilities
Eq. (15) is used. Since the mean-field approach yields a higher
Curie point TC,mean > TC the obtained curves are scaled to fit
the finite-size Curie temperature per

�AA(T ′) = �AA

(
T

TC

TC,mean

)
. (32)

For temperatures above TC the derivative of the Langevin
function simplifies to L′

A(ζA) = 1/3. Hence, �AA(T ) is a well
defined and continuous function for all temperatures. Figure 4
illustrates �AA(T ) for the used Gd30(FeCo)70.

There are two reasons for not using the data of the atomistic
simulations for the longitudinal susceptibilities in the com-
putation of �. The first reason originates from the fact that
the LLB equation requires temperature-dependent functions
of an infinite system as input. To get the appropriate �(T )
one could fit the longitudinal susceptibilities analogous to
the ferromagnetic LLB equation (see Ref. [9]) and use it
in Eq. (31). Since the longitudinal susceptibilities diverge
near the Curie point small inaccuracies of the fit functions
then lead to fluctuations of χ̃

‖
B/χ̃

‖
A, resulting in a wrong

system behavior near TC. Alternatively, atomistic data for
χ̃

‖
A and χ̃

‖
B can be directly used to calculate �, as shown

in Fig. 3. In this case the behavior near TC is also not
correctly reproduced, but we get at least continuous functions
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(a)
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0.5

1.0(b)

time [ns]

m
z

FIG. 5. Temporal evolution of the z component of the normal-
ized magnetization of both sublattices of Gd30(FeCo)70 computed
with the proposed coarse-grained ferrimagnetic LLB model and the
atomistic code VAMPIRE. (a) A constant magnetic field with μ0Hext =
−0.8 T and an angle of 6◦ with the z direction is applied. (b) A
Gaussian shaped heat pulse is applied (blue solid line, right y axis).

�(T ). Figure 4 reveals the second problem of the atomistic
data. At low temperatures, far away from the Curie point,
mean field values and atomistic data significantly differ. For
example, at 300 K the discrepancy is about one order of
magnitude. Ultimately, the high values of � lead to a consider-
ably slower relaxation of the magnetization of the sublattices
compared to atomistic simulations, especially at intermediate
temperatures.

The reason why this approach of extracting � from atom-
istic data does not work for ferrimagnets goes beyond the
scope of this work and should be the subject of further
research. In fact, at temperatures near TC the leading term of
� is the quotient of the longitudinal susceptibilities. Since,
both χ̃

‖
B and χ̃

‖
A have the same finite-size effects, it makes

sense that these effects cancel out if the quotient of the
susceptibilities is evaluated. At low temperatures the mean-
field expression should be correct anyway. Therefore, it is
justified that �AA(T ) and �BB(T ) are calculated with the
corresponding mean-field expression.

III. RESULTS

In order to confirm the validity of the proposed
coarse-grained model, numerical tests for the presented
Gd30(FeCo)70 system (see Table I) are performed in the
following. First, the dynamics of single magnetization tra-
jectories under the influence of heat and magnetic field are
compared with corresponding trajectories computed with the
atomistic code VAMPIRE. In Fig. 5(a) a constant temperature
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FIG. 6. Hysteresis loops of Gd30(FeCo)70 with a field rate of
1 T/ns calculated with the proposed coarse-grained ferrimagnetic
LLB model and the atomistic code VAMPIRE. (a) Easy axis loop at
a constant temperature of (a) 100 K and (b) 500 K. Hysteresis loop
with the applied field tilted 45◦ against the z direction at a constant
temperature of (c) 100 K and (d) 500 K.

of 500 K and a constant magnetic field of −0.8 T are ap-
plied to the ferrimagnet. Field and easy axis of the grain
(along the z direction) enclose an angle of 6◦. 500 K
is well above the compensation point and the ferrimagnet
is FeCo dominated. The simulations are started with an
initial magnetization of the FeCo sublattice in the posi-
tive z direction and the Gd sublattice magnetization point-
ing in the negative z direction. Unless otherwise stated,
this initial configuration is used for all subsequent simu-
lations. Figure 5(a) illustrates that the temporal evolution
of mz of both sublattices obtained by the proposed coarse-
grained model agrees very well with the resulting VAMPIRE

trajectories.
In a second test we investigate the magnetization dynamics

under a heat pulse, without an external field. A Gaussian
shaped heat pulse is used,

T (t ) = Tmin + (Tmax − Tmin)e(t−t0 )2/τ 2
, (33)

with Tmin = 300 K, Tmax = 600 K, t0 = 0.3 ns, and τ =
0.1 ns. The temperature pulse starts slightly below the com-
pensation point and heats the ferrimagnet near TC, before
the system cools down again. Temperature pulse and mz of
both sublattices are shown in Fig. 5(b). The results of our
coarse-grained model and VAMPIRE again agree perfectly.

In a next step hysteresis loops at constant temperatures
are compared. We analyze easy axis loops and loops with
a field angle of 45◦ with respect to the easy axis of the
ferrimagnet. The loops start with a saturating field with a
magnitude of 3 T, which is decreased with a rate of 1 T per
nanosecond until −3 T is reached. After that the field is again
increased to 3 T. The choice of the fast field rate results from
the high computational effort of atomistic simulations. All
loops are calculated at two different temperatures, 100 and
500 K. Figure 6 displays the calculated hysteresis loops of the
total normalized magnetization of the ferrimagnet for the four
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cases. Again, the coarse-grained ferrimagnetic LLB model is
in good agreement with atomistic VAMPIRE simulations.

In a last validation step switching probabilities of
Gd30(FeCo)70 under the influence of various Gaussian heat
pulses and a constant external field are analyzed. Again, a
field with constant magnitude and a field angle of 6◦ with
the z direction tries to align the total magnetization of the
ferrimagnet along the negative z direction. Additionally, a
heat pulse, according to Eq. (33), with Tmin = 300 K and
various Tmax is applied to the ferrimagnetic particle. For each
Tmax, from 300 to 900 K with �Tmax = 20 K, 128 trajectories
are computed. The switching probability then corresponds
to the proportion of successfully aligned particles compared
to the total number of all started simulations. Two different
field magnitudes and pulse durations are compared in Fig. 7.
In the case of a long pulse duration of τ = 100 ps, which
is for example typical in heat-assisted magnetic recording,
the comparison of the switching probabilities obtained by
the coarse-grained ferrimagnetic LLB model and VAMPIRE

simulations in Figs. 7(a) and 7(b) confirms the desired perfect
agreement of the ferrimagnetic LLB model. To check the
influence of the temperature dependence of the perpendic-
ular susceptibility in the ferrimagnetic LLB model, which
was introduced in Sec. II C, the probabilities are recom-
puted with the same setup, with the only difference that
a constant anisotropy field, Hani,A = 2dA/μA, is used. The
resulting probabilities, as illustrated in Fig. 7(a), show a com-
pletely different behavior. This fact strengthens the conclusion
that it is important to consider the temperature dependence
of the anisotropy field in the coarse-grained ferrimagnetic
LLB model.

For shorter heat pulses of τ = 10 ps the agreement of
ferrimagnetic LLB model and atomistic simulations is still
good, but at temperatures well above the Curie point the prob-
abilities slightly differ. The ferrimagnetic LLB model tends
to underestimate the switching probabilities compared to the
VAMPIRE simulations. However, the difference is still within
the statistical variation range of the switching probabilities, as
can be seen in Fig. 7(c) at Tmax = 840 K.

At this point, we would like to return briefly to the dis-
cussion of Sec. II C about how to model �(T ). We addi-
tionally computed the switching probabilities of Fig. 7 with
�(T ) extracted directly from atomistic data (see Fig. 4).
The agreement with switching probabilities obtained from
VAMPIRE simulations for heat pulses with a pulse duration
of τ = 100 ps is again remarkably good. For shorter pulses
with τ = 10 ps the deviation from atomistic results becomes
significant, in contrast to the ferrimagnetic LLB model with
�(T ) calculated with the mean-field model [see Fig. 7(c)].
The shorter longitudinal relaxation times, originating form the
smaller values of the mean field �(T ), only seem to play
an important role for very fast processes. Nevertheless, the
reason for the discrepancy between atomistic and mean field
�(T ) is not obvious and should be the subject of further
research.

All-optical switching

The ultimate goal is to describe all-optical switching
(AOS) of finite magnetic particles with the ferrimagnetic LLB
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FIG. 7. Switching probabilities of a Gd30(FeCo)70 particle com-
puted from 128 switching trajectories at each Tmax. In each simu-
lation a constant field and a Gaussian shaped heat pulse according
to Eq. (33) with Tmin = 300 K are applied. Two different field
magnitudes μ0Hext = −0.5 T and μ0Hext = −0.8 T as well as two
different pulse durations τ = 100 ps and τ = 10 ps are compared.
Atomistic simulations with VAMPIRE are compared with the proposed
coarse-grained LLB model. Additionally in (a) the LLB model with
a constant anisotropy field [Eq. (6)] is illustrated.

equation, which allows us to compute switching probabilities
with little computational effort. As a consequence AOS could
ultimately be investigated as a potential recording technique.
Although the magnetization trajectories are short, the effort
to investigate whole phase spaces of recording parameters for
atomistic simulations is tremendous. A simple two-spin model
would furthermore show the underlying physical effects of
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TABLE II. Material parameters of Gd25(FeCo)75 (taken from
Ref. [16]). d is the anisotropy energy per atom, μ is the magnetic
moment in units of Bohr magnetons, x is the FeCo concentration, Jκ-κ

denotes the exchange energy per atom link between equal atoms, Jκ-ν

denotes the exchange energy per atom link between different atoms,
and λ is the damping constant.

FeCo Gd

d (J) 8.07251×10−24 8.07251 × 10−24

μ (μBohr ) 1.92 7.63
x (%) 75 25
Jκ−κ (J) 2.835 × 10−21 1.26×10−21

Jκ−ν (J) −1.09 × 10−21

λ 0.05 0.05

AOS more clearly. For better comparability with Ref. [16],
we use Gd25(FeCo)75 particles according to Table II in the
following. The geometry is the same as in Table I and the
material functions are illustrated in Fig. 8. Note that due to
the smaller damping of Gd25(FeCo)75 a smaller time step of
10−16 s is used in the atomistic simulations.

We apply a short heat pulse with a duration of 50 fs, a
starting temperature of 300 K, and a maximum temperature of
1193 K to the particle. The electronic temperature pulse is cal-
culated with the two-temperature model [48]. For reasons of
efficiency, we do not repeat the two-temperature model here,
but rather directly illustrate the applied temperature pulse in
Fig. 9. The initial direction of the FeCo magnetization is set to
the positive z direction and that of the Co magnetization in the
negative z direction. At first glance the magnetization dynam-
ics are in good agreement as shown in Fig. 9(a). During the
equilibration phase (t < 10 ps) the dynamics of the atomistic
simulations and the LLB simulations match perfectly. In both
cases the heat pulse switches the sublattices and after the heat
pulse the reestablishment of the magnetization also agrees
well. Figure 9(b), illustrating the angle φ between the FeCo
and Gd magnetizations (average magnetizations in the case of
atomistic simulations), points out that the simulation with the
stochastic ferrimagnetic LLB equation shows a ferromagneti-
clike state of the sublattices, which was found to be the key for
AOS in GdFeCo [16,23]. This is an important result because
studies with the deterministic ferrimagnetic LLB equation
had to artificially introduce an angle between the sublattices
to show AOS [41,42]. And even then, no ferromagneticlike
state during AOS was observed. With the derived stochastic
version of the ferrimagnetic LLB equation switching with a
ferromagneticlike state comes out in a natural way.

Despite these promising results, no perfect agreement of
atomistic and LLB model could be obtained, because the
switching probability of 128 AOS trial trajectories, equivalent
to that shown in Fig. 9, is just 11% for LLB simulations. In
contrast, the probability is 86% in the case of VAMPIRE simu-
lations. That the atomistic simulations do not reach p = 1 may
be attributed to the fact that we only simulated a small particle
with less than 60 000 spins. In other works [16,23], which
show deterministic AOS, about ten times larger particles were
considered. Nevertheless, the switching probability is clearly
above 50% and thus a purely thermal effect of a vanishing net
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FIG. 8. Temperature-dependent material functions for
Gd25(FeCo)75 (parameters are given in Table II). (a) Zero-field
equilibrium magnetization me, (b) perpendicular susceptibility χ̃⊥,
(c) � computed with the mean field expression of Eq. (15) vs
temperature. The black solid lines show fits of the given atomistic
data, representing an infinite system.

magnetization of the sublattices and the subsequent remagne-
tization in a random direction can be discarded as the cause.
A possible reason for the different switching probabilities of
the coarse-grained LLB model and the atomistic model can
be found in Fig. 9(c). The figure displays the actual switching
process of Fig. 9(a) in more detail. It can be seen that the
reversal of both sublattices is significantly faster in case of
the LLB model. The FeCo sublattice still reverses faster than
the Gd sublattice, but the difference in demagnetization rates
decreases. The effect of a faster longitudinal relaxation of
the Gd sublattice was already observed for the deterministic
ferrimagnetic LLB equation in Ref. [41]. The authors argued
with large deviations from equilibrium for sudden and high
temperature steps. Possibly, higher-order corrections are in-
deed needed in the ferrimagnetic LLB, as already suggested in
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FIG. 9. Temporal evolution (a) of the z component of the nor-
malized sublattice magnetizations and (b) of the angle between the
sublattices of Gd25(FeCo)75 (see Table II). The illustrated heat pulse
with a duration of 50 fs is applied to the particle. The trajectories
are computed with the derived coarse-grained LLB model and the
atomistic code VAMPIRE. (c) Zoom of the switching process in (a).

Ref. [41]. For synthetic ferrimagnets it was shown in Ref. [49]
that the demagnetization time is mainly determined by the
atomic spin moment and the damping of the material. Thus,
a correction of the damping term could be a good starting
point. In any case, the solution of this problem requires further
research.

IV. CONCLUSION

In this work we developed a coarse-grained model
of disordered ferrimagnets based on the ferrimagnetic
Landau-Lifshitz-Bloch equation [40]. In a first step, stochastic
fields were incorporated into the ferrimagnetic LLB equation
in order to account for thermal fluctuations of individual
system trajectories. In a second step, an expression for the

perpendicular susceptibilities of finite-sized ferrimagnets was
derived from thermodynamics. As with the LLB equation
of ferromagnets, modeling the temperature-dependent sus-
ceptibilities and the zero-field equilibrium magnetization is
the key to accurately describing the magnetization dynamics
of ferrimagnets with high computational efficiency. We have
shown that the presented coarse-grained model agrees well
with atomistic simulations, in which the stochastic Landau-
Lifshitz-Gilbert equation is solved for each atom of a particle.
The agreement was proven for simulations of a small GdFeCo
ferrimagnetic particle with 70% FeCo and 30% Gd with a
diameter of 5 nm and a length of 10 nm subject to various
external applied fields and heat pulses with a duration of 10 ps
and longer.

In a last step we investigated all-optical switching (AOS)
of a Gd25(FeCo)75 particle with the same size by applying
a 50-fs heat pulse with a maximum temperature of 1193 K
to the particle. We could observe switching without having
to make any further assumptions, such as a tilting of the
magnetizations of the sublattices. Additionally, a ferromag-
neticlike state appeared. This state was indicated as the key
for AOS in GdFeCo and so far could not be reproduced with
a ferrimagnetic LLB model.

However, the switching probability under the influence of
the ultrashort heat pulse was significantly lower for the LLB
model than for an atomistic model. Although the comparison
of the magnetization dynamics of the two models shows good
agreement at first glance, a closer look reveals a significantly
faster longitudinal relaxation of the LLB model when apply-
ing the ultrafast heat pulse. Especially this faster relaxation
affects the Gd sublattice, which reduces the difference of the
relaxation constants of the two sublattices, which is unfavor-
able for AOS. This observation supports the suspicion that
the model fails too far away from equilibrium and therefore
higher-order corrections may be necessary. Since the switch-
ing probability was even lower than 50% we do not have any
insights into deterministic AOS. The fact that the agreement
with atomistic simulations for longer heat pulses is very
good raises the question whether the two-spin LLB model
is capable of describing AOS at all. Here, further research is
required.

Nonetheless, we are convinced that this work provides an
important step towards a better understanding of AOS. In the
case of longer heat pulses of several picoseconds and more,
the proposed model of finite-sized disordered ferrimagnets
shows already good agreement with a much more time con-
suming atomistic model. The fact that ferrimagnetic materials
are becoming increasingly interesting for applications, espe-
cially for any kind of magneto-optical recording or MRAM,
further shows the importance of this work.
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APPENDIX: DIFFUSION CONSTANTS OF THE
STOCHASTIC FERRIMAGNETIC LLB EQUATION

As discussed in Sec. II A thermal fluctuations can be
introduced to the LLB equation via thermal fields, with
components consisting of white-noise random numbers with
zero mean and a variance of〈

ξ
η
κ,i(t, r)ξη

κ, j (t
′, r′)

〉 = 2Dη
κδi jδ(r − r′)δ(t − t ′). (A1)

The main objective is now to determine the coefficients Dη
ν ,

which are a measure for the magnitude of thermal fluctuations.
The starting point for the derivation is the most general form
of the LLB equation, which can be written as a multivariate
Langevin equation:

dmi

dt
= ai(m, t ) +

∑
kη

bη

ik (m, t )ξη

k (t ). (A2)

If the vector ai(m, t ) and the tensor bik (m, t ) are known the
corresponding Fokker-Planck (FP) equation can be directly
constructed per

∂ρ

∂t
= −

∑
i

∂

∂mi

⎡⎢⎣
⎛⎜⎝ai −

∑
η

Dη
∑

k

bη

ik

∑
j

∂bη

jk

∂mj

−
∑

η

Dη
∑

jk

bη

ikbη

jk

∂

∂mj

⎞⎟⎠ρ

⎤⎥⎦. (A3)

This equation describes the temporal evolution of the proba-
bility density ρ(m, t ) of finding a magnetic configuration with
magnetization m at time t . In accordance with the ferromag-
netic case we define aA,i(m, t ) and bA,ik (m, t ) for sublattice A
as follows:

aA,i(mA, t ) = −γ ′
Aμ0(mA × Heff )

− α⊥
A γ ′

Aμ0

m2
A

[mA × (mA × Heff )]

+ α
‖
Aγ ′

Aμ0

m2
A

mA(mA · Heff ), (A4)

and

b‖
A,ik (mA, t ) = δik,

(A5)

b⊥
A,ik (mA, t ) = α⊥

A γ ′
Aμ0

(
δik − mA,imA,k

m2
A

)
.

Inserting Eqs. (A4) and (A5) into Eq. (A3) yields the FP
equation for the sublattice,

∂ρA

∂t
= − ∂

∂mA
·
{[

− γ ′
Aμ0(mA × Heff )

− α⊥
A γ ′

Aμ0

m2
A

mA × (mA × Heff )

+ α
‖
Aγ ′

Aμ0

m2
A

mA(mA · Heff ) + D⊥
A (α⊥

A γ ′
Aμ0)2

m2
A

mA

×
(

mA × ∂

∂mA

)
− D‖

A

∂

∂mA

]
ρA

}
. (A6)

To compute the diffusion constants we assume that in equilib-
rium the probability density of each sublattice magnetization
follows a Boltzmann distribution per

ρA = ρA,0 exp[−E (mA)/kBT ], (A7)

∂ρA

∂mA
= ρA

μ0MA,0V

kBT
Heff = ρA

μ0natxAμAV

l3
atkBT

Heff . (A8)

This equation holds for a discrete system with discretization
volume V . In the last term of Eq. (A8) we identified the total
magnetic moment of sublattice A with atomistic quantities.
Here, xA is the concentration of atoms A, lat is the lattice con-
stant, and nat is the number of atoms per unit cell. Using the
expression of Eq. (A8) in the FP equation and demanding that
∂ρA/∂t = 0 is valid in equilibrium, the diffusion constants of
sublattice A can be computed as

D⊥
A = (α⊥

A − α
‖
A)l3

atkBT

(α⊥
A )2γ ′

Aμ2
0natxAμAV

, (A9)

D‖
A = α

‖
Aγ ′

Al3
atkBT

natxAμAV
. (A10)

Finally, the corresponding stochastic LLB equation for ferri-

magnets can be obtained by using Eqs. (A4) and (A5) together
with Eqs. (A9), (A10), and (A1) in the Langevin equation
[Eq. (A2)] per

∂mA

∂t
= −μ0γ

′
A(mA × Heff,A)

+ μ0γ
′
Aα

‖
A

m2
A

(mA · Heff,A)mA + ξ
‖
A

− μ0γ
′
Aα⊥

A

m2
A

{mA × [mA × (Heff,A + ξ⊥
A )]}.

(A11)
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