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Considering a BDI symmetric one-dimensional Su-Schrieffer-Heeger model, we explore the fate of the
bulk topological invariant, namely, the winding number under a generic time-dependent perturbation; the
effective Hamiltonian, which generates the temporal evolution of the initial (ground) state of the completely
symmetric initial Hamiltonian, may have the same or different symmetries. To exemplify, we consider the
following protocols, namely (i) a perfectly periodic protocol, (ii) sudden changes in the parameters of the
initial Hamiltonian. We establish that the topological invariant may change in some cases when the effective
Hamiltonian (or the Floquet Hamiltonian in the periodic situation when observed stroboscopically) does not
respect all BDI symmetries; this is manifested in the associated particle (polarization) or heat current in the
bulk. Our results establish a strong connection between the time evolution of the winding number (thus, the
associated transport of currents) and the symmetry of the Hamiltonian generating the time evolution, which has
been illustrated considering an exhaustive set of possibilities. We also briefly dwell on the situation where the
driving is not perfectly periodic.
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I. INTRODUCTION

Recently, there has been an upsurge in the studies of topo-
logical condensed matter systems both from the theoretical
[1–15] and experimental point of view [16–25] (for review
see Refs. [26–30]). Symmetry protected topological phases
of matter are characterized by gapped bulk states but with
robust gapless excitations at the boundaries. Their novelty
lies in the fact that they simply cannot be understood un-
der the well-established Landau-Ginzburg paradigm, which
classifies phases of matter distinguished by a local order
parameter in terms of spontaneous symmetry breaking. Such
phases of matter can only be characterized by global order
parameters. For such noninteracting topological systems, the
bulk-boundary correspondence serves as a guiding princi-
ple in decoding the phenomenology of topological insula-
tors: Bulk topological invariants characterizing a given phase
are uniquely reflected in gapless (metallic) boundary states.
Therefore the bulk-boundary correspondence links a physi-
cally measurable quantity to a topological bulk invariant. In
these systems, the topological invariant fundamentally distin-
guishes between the equivalence classes of all Hamiltonians
respecting the same symmetry constraints. Two such Hamil-
tonians belonging to different equivalence classes but having
the same symmetries cannot be adiabatically deformed into
each other without closing the gap in the bulk spectrum (i.e.,
without crossing a gapless quantum critical point). Moreover
in equilibrium, the boundary states are described by their
own topological invariants, whose value must be equal to the
invariant of the bulk insulator.

However, even in such systems symmetry considerations
play a tremendous role. It has been possible to classify
different topological phases of noninteracting systems [31]
based on the constraints imposed on their Hamiltonians by

the symmetries they obey; attempts are being made to achieve
a similar classification for interacting systems [32] and open
quantum systems [33]. The lack of classification in terms
of a local order parameter and the presence of a global
(topological) order implies that the topological phases can be
classified by determining certain bulk topological invariants
such as the winding or the Chern number [27], which depend
on the global character of the eigenvectors representing the
system.

Experimental realizations of topological systems espe-
cially in cold atomic setups [34–38] have also opened up
the possibility of subjecting them to time-dependent drives.
These experimental studies have initiated a plethora of theo-
retical works on quenched and periodically driven topological
systems [39–64]. This enables us to probe the robustness of
the topological features of the ground states of such sys-
tems against time-dependent perturbations. Moreover, time-
dependent drives that are periodic in time also leads to the
realization of new topological phases of matter, which have
no equilibrium counterpart [65–70].

Inspired by the above experimental studies, recently, the
fate of topology in generic out of equilibrium systems are
being extensively investigated in order to understand the
nonequilibrium classification of topological systems [71–80].
Interestingly, it has been shown that for two-dimensional
(2D) Chern insulating systems without boundaries, it is not
possible to reach a nontrivial topological state via unitary
evolution from a trivial initial state as the bulk Chern number
remains invariant [71]. However, for the same systems with
boundaries the edge states of such 2D systems can exhibit
nontrivial dynamics as the bulk-boundary correspondence for
such systems in its usual form does not hold out of equilib-
rium [72–74]. We note that the influence of nonequilibrium
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dynamics on the equilibrium topology was also extensively
studied in interacting topological Bardeen-Cooper-Schrieffer
(BCS) superfluids with regard to two topological invariants
defined with respect to the pseudospin configuration and
the retarded nonequilibrium single-particle Green’s function,
respectively [81,82]. In these works it was shown that though
the former invariant remains temporally invariant following a
quench across a quantum critical point while the latter may
change with time.

This brings us to the question that whether the out of
equilibrium dynamics of one-dimensional (1D) topological
systems also exhibit a behavior similar to the 2D situation. To
address this question, we subject the paradigmatic topologi-
cal 1D Su-Schrieffer-Heeger (SSH) model to time-dependent
drives and investigate the following questions: (i) Is it possible
to change the winding invariants of such a system under
the application of a time-periodic drive? (ii) Do the sym-
metry constraints of the time-dependent perturbations affect
the topological properties of the postquench states? Finally,
(iii) What happens to the energy transport dynamics of such
systems under the application of nonequilibrium perturbations
such as sudden quenches?

In this work, we initially focus on a generically driven
(with no a priori assumption of adiabaticity) SSH model in
which we show that the bulk winding number characteriz-
ing the 1D system do vary in time only when the applied
time-dependent perturbations break certain symmetries of the
undriven Hamiltonian. This change of the winding number is
also accompanied by the generation of an observable particle
current; this attains a steady value, asymptotically in time, in
the case of perfectly periodic driving. However, we further
show that the presence of a biased random noise in the peri-
odic drive results in the generation of an infinite temperature
state, which is topologically featureless. In the noisy case, the
accompanying particle current although settles to a prethermal
region after exhibiting initial transient oscillations, but even-
tually decays to zero asymptotically with time in accordance
with the infinite temperature behavior of the bulk invariant.
Finally, we also focus on the possibility of local energy
transport or heat current generation when the SSH system is
subjected to sudden quenches. We show that the generation of
heat currents in the system are related to different symmetry
considerations of the applied time-dependent perturbations in
comparison to the production of particle currents in the same
system.

The paper is organized in the following fashion: In
Sec. II A, we introduce the SSH model discussing the un-
derlying topology and symmetry properties. The fate of the
winding number in a generic driven system is discussed
in Sec. III. The special situation of the periodic driving is
discussed in Sec. IV where we show how the change in the
winding number is manifested in the corresponding particle
current generation in the bulk. Finally, in Sec. V, we identify
the symmetries of the effective Hamiltonian that result in
the heat current generation considering a sudden quenching
protocol. In Appendix A, we address the situation when the
driving is not perfectly periodic in time but is affected by
biased random noisy perturbations and explore the fate of the
polarization current.

II. SU-SCHRIEFFER-HEEGER (SSH) MODEL

A. Topological transition

The SSH model [27], which belongs to the BDI class of
topological insulators is the simplest 1D model exhibiting an
underlying topological structure and end states. Physically, it
describes a 1D lattice with a two-atom sublattice structure in
which the intralattice hopping amplitude is in general different
from the interlattice hopping amplitude. The Hamiltonian for
the SSH model can be written in terms of the (spin polarized)
fermion creation and annihilation operators as,

H =
N∑

n=1

(vc†
n,1cn,2 + wc†

n,2cn+1,1 + H.c.), (1)

where H.c. denotes the Hermitian conjugate, v and w are the
intracell and intercell hopping amplitudes, respectively, and
N is the total number of unit cells in the chain. The complex
fermionic operator c†

n,i (cn,i) creates (destroys) a fermion in the
sublattice position i (i = 1, 2) of the nth unit cell and satisfies
the fermionic anticommutation rules,

{c†
p, cq} = δpq and {cp, cq} = {c†

p, c†
q} = 0. (2)

After performing a tight-binding analysis one can write the
Hamiltonian in Eq. (1) as,

H (k) =
⊕

k

�h(k).�σ , (3)

where,

hx(k) = Re(v) + |w| cos (k + arg(w))

hy(k) = −Im(v) + |w| sin (k + arg(w)) (4)

hz(k) = 0,

where the lattice parameter is set equal to identity. This
Hamiltonian has the following eigenvalue spectrum:

E (k) = ±| �h(k)|, (5)

and the respective eigenvectors are,

|±〉 = 1√
2

(±e−iφ(k)

1

)
, (6)

where φ = tan−1 ( hy

hx
). It is clear from the Eq. (4), that �h(k) is

periodic in k with a period of 2π . Hence in the space of hx

and hy, �h(k) traces out a closed curve as k varies over the first
Brillouin zone (in this case, a circle). Furthermore, the SSH
model is classified through the following bulk topological
winding number ν, which is given as,

ν = i

2π

∫ π

−π

dk
d

dk
ln(hx + ihy) = i

2π

∫
BZ

〈
ψk

0

∣∣∂k

∣∣ψk
0

〉
dk,

(7)

which is quantized and can only assume integral values and
is proportional to the change in the argument of �h(k) as k
varies over the first Brillouin zone. Hence, if the circle in the
parameter space does not enclose the origin, ν is zero (i.e., if
|v| > |w|). On the other hand, ν is one if the circle encloses
the origin (i.e., if |v| < |w|) and the chain hosts topologically
protected robust end states. It is also evident from Eq. (5) that
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the energy gap between the two bands vanishes at |v| = |w|
and the winding number becomes undefined. Thus if the gap is
not closed, ν is well defined and is robust to external changes
in the Hamiltonian and hence is a topological invariant clearly
demarcating the topologically trivial and nontrivial phases.

B. Symmetries

The topological classification of noninteracting many-body
quantum systems are performed by considering three different
discrete symmetries viz., the time-reversal symmetry (T ),
the particle-hole symmetry (P), and the sublattice (chiral)
symmetry (S). The constraints imposed upon the Hamiltonian
of a system possessing the above symmetries in the quasimo-
mentum basis are expressed as,

T −1H (k)T = H (−k),

P−1H (k)P = −H (−k), (8)

S−1H (k)S = −H (k),

where T and P are antiunitary operators such that T 2 = ±I
and P2 = ±I whereas S is an unitary operator satisfying
where S2 = I and I is the 2 × 2 identity operator. We also
note that the sublattice symmetry is a combined effect of the
time-reversal symmetry and the particle-hole symmetry as,

S = T P . (9)

It is now evident from the Hamiltonian of the SSH model in
Eq. (3) and the symmetry transformations in Eq. (8) that the
SSH model is symmetric under the sublattice transformation
S = ⊗

k σz, which results in the vanishing of hz(k). Also, if
the hopping coefficients v and w are real, the Hamiltonian
possesses time-reversal symmetry T = ⊗

k K, K being sim-
ply the complex conjugation operator. Hence, it is clear from
Eq. (9) that the system is also symmetric under the particle-
hole/charge conjugation operation with P = ⊗

k Kσz There-
fore, as such the SSH model belongs to the BDI class of
Hamiltonians within the topological classification scheme.

III. THE FATE OF WINDING NUMBER FOLLOWING
A GENERIC DRIVE

We consider the SSH model and study the temporal evolu-
tion of the equilibrium topological invariant, i.e., the winding
number under a generic unitary drive. We begin with an initial
state |ψk (0)〉, the system is allowed to evolve under the driven
Hamiltonian Hk (t ). The state |ψk (0)〉 therefore evolves with
time as

|ψk (t )〉 = Te−i
∫ t

0 Hk (t ′ )dt ′ |ψk (0)〉 ≡ e−iH eff
k (t )t |ψk (0)〉

= Uk (t )|ψk (0)〉, (10)

where H eff
k (t ) is the time-dependent effective Hamiltonian

acting as a generator of the unitary evolution acting on the
driven system and T denotes the time ordering operator. We
now investigate the fate of the winding number under such
a time-dependent dynamics. To analyze this, let us recall the
time-dependent or dynamical Berry connection as

Ak (t ) ≡ [〈ψk (0)|U †
k ]∂k[Uk|ψk (0)〉], (11)

which evolves in time as,

Ak (t ) = 〈ψk (0)|∂k|ψk (0)〉 + 〈ψk (0)|U †
k (∂kUk )|ψk (0)〉

= Ak (0) + 〈ψk (0)|U †
k (∂kUk )|ψk (0)〉. (12)

Hence, the change in the Berry connection at a later time is
given by,

	Ak = Ak (t ) − Ak (0) = 〈ψk (0)|U †
k (∂kUk )|ψk (0)〉. (13)

Recasting the effective Hamiltonian to the following form,
H eff

k (t ) = |m(k, t )|(m̂(k, t ).�σ ) and also denoting |m(k, t )|
simply as m we obtain,

U †
k (∂kUk ) = ∂km{−it sin2 mt (m̂ ·σ ) + i sin2 mt (m̂×∂km̂) · σ }

− i(sin mt cos mt )∂km̂ · σ. (14)

The initial state |ψk (0)〉 that we consider happens to be the
ground state of the SSH Hamiltonian (belonging BDI class),
which can be chosen to be of the form of Eq. (6) where φ(k) is
an odd function of k. Interestingly, the terms on the right-hand
side of the Eq. (14) can be shown to vanish individually when
integrated over the entire Brillouin zone, pertaining to certain
conditions imposed upon the effective Hamiltonian H eff

k as
discussed below.

Let us now analyze the implications of Eqs. (13) and
(14). Taking the expectation value of the first term of the
above equation with respect to the state |ψk (0)〉, one observes
that the integral of this quantity over the full Brillouin zone
vanishes identically if mx(k) is an even function of k and my(k)
is an odd function of k. Similarly, analyzing the integral of the
next two terms over the full Brillouin zone, we see that both
of them vanishes identically if mz(k) is an odd function of k
or zero in addition to the above constraints imposed on mx(k)
and my(k). If the above conditions are satisfied by the effective
Hamiltonian then the winding number must remain invariant
in time.

It is evident from Eq. (8) that the above constraints on the
single-particle Hamiltonian in k space, demand the presence
of certain symmetries of the effective Hamiltonian. Namely,
one concludes that the equilibrium winding number remains
invariant under temporal evolution if the effective dynamical
Hamiltonian (H eff

k ) respects either of the symmetry combina-
tions, T and P [mx(k) → even, my(k) → odd, mz(k) → 0] or
just P [mx(k) → even, my(k) → odd, mz(k) → odd].

IV. PERIODIC DRIVING AND NONEQUILIBRIUM
CURRENT GENERATION

A. Generic periodic driving

In this section, our focus is to look at an observable, which
is the bulk polarization current density for various periodic
driving protocols. It is straightforward to show [75] that in
an arbitrary time-dependent situation the bulk polarization
current density j(t ) of the SSH chain is directly proportional
to the rate of change of the topological winding number (ν):

j(t ) = 1

2π

∫
BZ

dk 〈ψk (t )| ∂kHk (t ) |ψk (t )〉 = dν

dt
, (15)

where |ψk (t )〉 is the time-evolved state for each quasimomenta
mode k and Hk (t ) is the instantaneous time-dependent Hamil-
tonian. However, in the case of a time-periodic drive with a
period T , the stroboscopic (measured after a complete period),
the variation of the winding number denoted as 	νm for the

054305-3



BANDYOPADHYAY, BHATTACHARYA, AND DUTTA PHYSICAL REVIEW B 100, 054305 (2019)

mth stroboscopic interval, is related to the average change in
the bulk polarization density of the chain within the (m − 1)th
and the mth period of evolution, i.e.,

	νm = ν(mT ) − ν((m − 1)T )

T
= 1

T

∫ mT

(m−1)T
j(t )dt . (16)

The average polarization over one time period if expanded
shows a dependency on the symmetries of both the effective
Hamiltonian [H eff

k (t )] and the instantaneous time-dependent
Hamiltonian (Hk (t )),

	νm =
∫ mT

(m−1)T

∫
BZ

dtdk 〈ψk (0)| eiH eff
k (t )t

× ∂kHk (t )e−iH eff
k (t )t |ψk (0)〉 . (17)

Thus, if both H eff
k (t ) defined at every instant t but lying

within the stroboscopic interval and the instantaneous Hk (t )
preserve the above symmetries enlisted in Sec. III, 	νm is
zero at every instant of time t . Consequently the stroboscopic
winding number ν(mT ) remains trivially invariant under the
dynamics. Later we will see that the stroboscopic variation of
the winding number completely depends on the symmetries
respected by the Floquet Hamiltonian.

B. Explicit symmetry breaking in a multistep periodic drive

In this section, we will be considering different kinds of
periodic drives on a zero current carrying initial state of the
SSH model, to probe whether after an asymptotically long
time, the bulk polarization current density generated due to the
change in the winding invariant attains a steady value when
observed stroboscopically.

We consider a periodic drive with a two-step driving pro-
tocol applied within one stroboscopic time interval (0, T );
on explicitly breaking certain symmetries in the Floquet
Hamiltonian, the steady-state current attains a constant value
starting from a zero current initial state. The bulk polarization
current being an expectation value over the time-evolved
state as defined in Eq. (15) reaches a periodic steady value
asymptotically for large times [83]. Hence, when viewed stro-
boscopically, a constant steady current can be generated for
large times in 1D topological systems by periodically driving
provided that one dynamically breaks certain symmetries to
be discussed in this section.

To achieve the symmetry breaking, we employ the two-step
periodic drive, which involves the evolution of the initial
state of the system under two piecewise continuous time-
independent Hamiltonians viz. H0(k) and H1(k) in alternate
time steps of width T/2, where the Hamiltonian H0(k) is that
of a BDI symmetric SSH model as in Eq. (3). Considering the
Hamiltonians H0(k) = �h0.�σ and H1(k) = �h1.�σ , the effective
propagator after the two time steps or after one complete
period of driving therefore assumes the following form:

Uk (T ) = e−iH1(k) T
2 e−iH0(k) T

2 . (18)

The above propagator Uk (T ) may be expanded using Euler’s
identity as,

Uk (T ) = α(k, T )I − i�n(k, T ).�σ , (19)

where,

α(k, T ) = cos
h1T

2
cos

h0T

2
− sin

h1T

2
sin

h0T

2
(ĥ1.ĥ0)

and

�n(k, T ) = cos
h1T

2
sin

h0T

2
ĥ0 + sin

h1T

2
cos

h0T

2
ĥ1

+ sin
h1T

2
sin

h0T

2
(ĥ1 × ĥ0). (20)

The stroboscopic (over a complete period) evolution operator
can be written in the form,

Uk (T ) = Te−i
∫ T

0 Hk (t ′ )dt ′ = e−iHF (k)T

= cos (mF T )I − i sin (mF T )(m̂F .�σ ), (21)

where HF = �mF · �σ is the Floquet Hamiltonian and T is the
time-ordering operator.

Comparing Eq. (19) and Eq. (21), one obtains,

cos (mF T ) = α(k, T )

sin (mF T )mF,i = ni(k, T ), (22)

where, mF = | �mF | and i = 1, 2, 3 represents the components
of the three Pauli matrices in Eq. (19). It is thus sufficient
to identify the symmetries respected by the term β(k, T ) =
�n(k, T ).�σ in Eq. (19) to uncover the symmetries of Floquet
Hamiltonian HF (k). One therefore identifies the symmetries
respected by β(k, T ) and its dependance on the symmetries
respected by the individual step Hamiltonians H0(k) and
H1(k) in accordance with Eq. (8) to understand stroboscopic
dynamics.

Starting from the eigenstate of a completely T , P , and S
symmetric SSH model and using Eq. (13), the stroboscopic
change in the winding number is observed to depend only on
the symmetries of the Floquet Hamiltonian, i.e.,

ν(mT ) = ν(0) + i

2π

∮
〈ψk (mT )|(∂ke−iHF (k)mT ) |ψk (0)〉 dk.

(23)

We therefore conclude that it is the symmetry of HF that com-
pletely determines the stroboscopic variation of the winding
number and the stroboscopic polarization current defined by

J (NT ) = 1

2π

∫
BZ

〈ψk (NT )| ∂kH0(k) |ψk (NT )〉 . (24)

Arguing in similar lines to Sec. III, it is straightforward to
show that the stroboscopic winding number remains dynam-
ically invariant if the Floquet Hamiltonian HF (k) respects
either P symmetry or both P and T symmetries and the
stroboscopic polarization current vanishes.

First, we focus on an interesting situation in which the
stroboscopic winding number remains invariant despite the
explicit breaking of P symmetry in the instantaneous Hamil-
tonian Hk (t ) and the effective Hamiltonian H eff

k (t ). If the
Floquet Hamiltonian defined in Eq. (21), preserves the iden-
tified symmetries while the effective Hamiltonian and the
time-dependent Hamiltonian breaks the symmetries explicitly
within the time interval, the winding number is seen to remain
invariant stroboscopically but not within the time period of the
drive.
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(a) (b)

FIG. 1. (a) Stroboscopic change in winding number under a periodic drive that breaks the P symmetry in the time varying Hamiltonian
Hk (t ) [as defined in Eq. (25)] and the effective Hamiltonian H eff

k while preserving all BDI symmetries in the Floquet Hamiltonian, which
is a BDI SSH chain [as discussed after Eq. (26)], with the hopping parameters v = 0.6 and w = 0.8 for a system size of L = 1000 and
ω = 2π/T = 100. (b) Particle current generation in micromotion within a time interval (0, T ) under a periodic drive breaking P symmetry in
the time varying Hamiltonian Hk (t ) and the effective Hamiltonian H eff

k [as in Eq. (25)] the corresponding Floquet Hamiltonian is again a BDI
SSH chain with the hopping parameters v = 0.6 and w = 0.8 for a system size of L = 1000 and ω = 100. We observe that although there is
an instantaneous polarization current, the same when averaged over a complete period vanishes. These cases are discussed in Sec. IV B.

The polarization current generated in such situations is
nonzero only in the dynamics of the system within a com-
plete period of the drive. The bulk polarization current jm(t )
generated within the mth periodic interval is given by (15)
with t ∈ [(m − 1)T, mT ]. However, this current generated
in the micromotion of the system when averaged over the
complete period of the drive vanishes to keep the stroboscopic
winding number dynamically invariant. Therefore, although
an instantaneous polarization current gets generated but when
averaged over a complete period, the total change in the bulk
polarization over a complete period is zero. We illustrate the
particular situation by considering a specific drive that breaks
the P symmetry in the instantaneous Hamiltonian Hk (t ) while
preserving the T symmetry,

Hk (t ) = H1(k), for 0 � t � T

4
,

Hk (t ) = Mσz, for
T

4
� t � T

2
,

(25)
Hk (t ) = H2(k), for

T

2
� t � 3T

4

Hk (t ) = H0(k), for
3T

4
� t � T,

where H0(k) is a BDI symmetric SSH Hamiltonian as stated
in Eq. (3). The Hamiltonians H1(k) and H2(k) do not respect
P symmetry while preserving T symmetry,

H1,2(k) = ±H0(k) ± Mσz. (26)

Using the identities in Eq. (22) repetitively to the Hamiltonian
defined in Eq. (25), it is straightforward to show that the
effective Hamiltonian H eff

k (t ) [see Eq. (10)] breaks all the
BDI symmetries explicitly. However, when M = 2ω with
ω = 2π/T , the Floquet Hamiltonian over the complete period
reduces to simply the BDI symmetric SSH model described
by H0(k). This completely BDI symmetric form of HF (k)
guarantees the invariance of the stroboscopic winding number
in such cases and thus the polarization current averaged over
a complete period vanishes [see Fig. 1(a) and Fig. 1(b)].

We hereafter proceed to discuss the different physical
situations in which the BDI symmetries may be broken in the
Floquet Hamiltonian [by tuning the symmetries of the step
Hamiltonian H1(k)] to generate a stroboscopic polarization
current.

C. Breaking P and S while preserving T in H1(k)

The breaking of the P symmetry in H1(k) of Eq. (18) can
be achieved in a variety of ways which we illustrate below: (i)
by introducing a real staggered next-nearest-neighbor hopping
(B1) and (ii) by adding a staggered on-site potential (B2).
Referring to (4), the Hamiltonian H1(k) occurring in Eq. (18)
for these situations are as follows.

(B1) Staggered NNN hopping:

H1(k) = (v + w cos k)σx + w sin kσy + f cos kσz. (27)

(B2) Staggered on-site potential:

H1(k) = (v + w cos k)σx + w sin kσy + Mσz. (28)

The bulk polarization current defined in Eq. (15) in the
situations B1 and B2 reaches a steady value starting from
zero; this is shown in Fig. 2(a) and Fig. 2(b), respectively. In
both the cases however, the time-reversal symmetry remains
preserved in H1(k).

D. Breaking P and T but preserving S in H1(k)

We now break the T and P symmetry together in H1(k),
by making the intercell hopping amplitude w to be completely
imaginary in H1(k) in Eq. (18). This, however, preserves the
chiral symmetry (S ) resulting in,

H1(k) = (v − w sin k)σx + w cos kσy. (29)

The bulk polarization current defined in Eq. (15) in this
scenario also reaches a steady value starting from zero as can
be observed from Fig. 3(a).
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(a) (b)

FIG. 2. (a) Stroboscopic particle current in a periodically driven SSH chain, breaking P symmetry by introducing a real NNN hopping
in H1(k) [as discussed in Eq. (27) of the Sec. IV C] while preserving T in H1(k). The initial and final hopping strengths are chosen to be
v = 2.5, w = 1.5, and a NNN hopping strength of f = 1.0 for a system size L = 500; the frequency of the periodic drive being ω = 100.
(b) Stroboscopic particle current in a periodically driven SSH chain, breaking P by introducing a staggered mass in H1(k) [Eq. (28) discussed
in Sec. IV C] while preserving T in H1(k). The initial and final hopping strengths are chosen to be v = 0.2, w = 1.5, and a staggered mass of
M = 1.0 for a system size L = 1000, and ω = 100.

E. Breaking P , T , and S in H1(k)

Furthermore, the breaking of all the three symmetries P ,
T , and S in H1(k) can simply be achieved by selecting,

H1(k) = (v − w sin k)σx + w cos kσy + Mσz, (30)

where M is a constant quasimomenta independent mass term.
The bulk polarization current once again attains a steady
nonzero value as can be seen in Fig. 3(b).

However, from Eq. (22) it must be noted that all the
BDI symmetries have been broken in the resulting Floquet
Hamiltonian HF (k) in the scenarios considered in Secs. IV C,
D, and E. The lack of the particle-hole symmetry in the
Floquet Hamiltonian leads to the generation of a steady bulk
polarization current.

V. HEAT CURRENT GENERATION THROUGH
DYNAMICAL SYMMETRY BREAKING THROUGH

A SUDDEN QUENCH

The dynamical breaking of symmetries in the SSH model
is also accompanied by a nonequilibrium energy flow in the
bulk, which we analyze in this section. To analytically study
the local energy current we resort to a local energy operator

defined in the bulk [84]. It changes in time according to the
continuity equation expressed in terms of the divergence of
the heat current operator. In all the cases discussed below,
the initial Hamiltonian is the BDI SSH model in Eq. (1). We
are suddenly changing the parameters of the Hamiltonian (or
including a staggered on-site potential) to a final Hamiltonian
H, which may or may not respect the symmetries of the initial
Hamiltonian.

The first situation we consider is that the final postquench
Hamiltonian H does not have a on-site potential and respects
the time-reversal symmetry (T ) and particle-hole symmetry
(P) as given in Eq. (1) can be written as,

H =
∑

i

Ei,i+1, (31)

where the term Ei,i+1 connects the ith site with the (i + 1)th
site and the summation extends over the chain length assum-
ing a periodic boundary conditions. The local energy current
in the Heisenberg picture can then be written in terms of a
continuity equation,

∂Eh
i,i+1(t )

∂t
= −i

[
H, Eh

i,i+1(t )
] = −[

jh
i+1(t ) − jh

i (t )
]
, (32)

(a) (b)

FIG. 3. (a) Stroboscopic particle current in a periodically driven SSH chain, breaking P and T by introducing an imaginary intercell
hopping in H1(k) but preserving S [see Eq. (29) in Sec. IV D]. The initial and final hopping strengths are chosen to be v = 0.2, w = 1.5i for a
system size L = 1000, with ω = 100. (b) Stroboscopic particle current in a periodically driven SSH chain, breaking P , T , and S in H1(k) by
introducing a staggered mass and an imaginary intercell hopping in H1(k) [Eq. (30) in Sec. IV E]. The initial and final hopping strengths are
chosen to be v = 0.2, w = 1.5 and a staggered mass of M = 1.0 for a system size L = 1000, ω = 100.
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where the superscripts h imply that the corresponding oper-
ators are written in the Heisenberg picture, which we shall
omit in the subsequent discussion. The last equality enforces
the conservation of energy thereby defining the local energy
current operator jE

i , where the superscript implies the heat
current. Given the form of the Hamiltonian Eq. (31), it is
straightforward to show that the heat current operator assumes
the form,

jE
i = −i[Ei−1,i, Ei,i+1]. (33)

Comparing with the SSH Hamiltonian Eq. (1) and recasting it
to a modified form,

H =
∑

i

(vc†
2i−1c2i + wc†

2ic2i+1 + H.c.)

=
∑

i

(E2i−1,2i + E2i,2i+1), (34)

where the odd sites reside on the A sublattice and the even
sites reside on the B sublattice. The total energy current
operator can then be formulated by summing over all the
even and odd sites of the chain and using the anticommutation
relations in Eq. (2),

JE = −i
∑

i

vw(c†
2i−2c2i + c†

2i−1c2i+1)

+ v∗w∗(c2i−2c†
2i + c2i−1c†

2i+1). (35)

Now, utilizing the translational invariance of the periodically
wrapped chain, one can rewrite the energy current operator in
Fourier space explicitly reintroducing the sublattice index (A
or B),

JE =
∑

k

(c†
kA c†

kB) jE
k

(
ckA

ckB

)
, (36)

where jE
k is a 2 × 2 matrix,

jE
k = −i(vwe−ik − v∗w∗eik )I, (37)

I being a 2 × 2 identity matrix. The total energy current in a
state |ψk〉 is then obtained by integrating the expectation value
of JE

k over the complete Brillouin zone,

JE
ψ =

∫
BZ

dk 〈ψk| jE
k |ψk〉 , (38)

which in the SSH model sums up to,

JE
ψ = 2

∫ π

−π

dk Im(vwe−ik ). (39)

It is important to note that the energy current operator jE
k is

a multiple of identity and hence, commutes with the Hamil-
tonian [as is clear from Eq. (37)]. This causes JE

ψ to remain
invariant in time. Utilising the above analytical framework, we
study the behavior of the heat current in the light of different
symmetries of the evolving Hamiltonian following a sudden
quench.

A. Preserving both P and T
We consider a sudden quench of the hopping strengths

from an initial value of v and w to v′ and w′, respectively,

such that it preserves both the symmetries (P and T ) in the
final Hamiltonian [refer to Eq. (1)]. For the total bulk energy
current, one obtains the expression,

JE
ψ = 2v′w′

∫ π

−π

dk sin k = 0. (40)

Also, since the energy current is a conserved quantity in this
case, it remains zero throughout the time evolution.

B. Breaking both P and T
When the intersublattice hopping parameter, i.e., w is

suddenly changed to a complex value in the final evolving
Hamiltonian both P and T are broken. From the expression
for the energy current in Eq. (39), it is straightforward to
show that the current operator still remains a multiple of I
resulting in

JE
ψ = 2v′w′

∫ π

−π

dk cos k = 0. (41)

Hence in this case as well, the bulk heat current vanishes for
all times. This is to be contrasted to the case of a surviving
time-dependent particle current as has been illustrated in
Fig. 3(a).

C. Breaking P while preserving T
In this protocol, a staggered on-site potential is suddenly

introduced in the free SSH chain; this breaks P while pre-
serving T as has been shown in Eq. (28). Due to the breaking
of the particle-hole symmetry, the final Hamiltonian assumes
the following form:

HT = HSSH +
∑

i

Mc†
2ic2i − Mc†

2i−1c2i−1, (42)

where HSSH is the bare and symmetric Hamiltonian of the
periodically wrapped SSH chain (34). In the presence of
the on-site potential, however, the expression of the local
energy current must be rewritten to incorporate the additional
diagonal terms in the Hamiltonian. Proceeding in similar lines
as to the derivation of the Eq. (33), one obtains,

jE
i = −i([Ei−1,i, Ei,i+1] + [Ei−1,i, Ei,i]), (43)

where Ei,i are the symmetry-breaking diagonal terms of the
Hamiltonian HT . Simplifying the above expression using the
postquench Hamiltonian HT , the fermion anticommutations
relations and the translational invariance of the chain, the local
current operator is expressed in the momentum space as,

JE
k = �jE

i (k).�σ , (44)

where,

jE
0 (k) = 2 Im(vwe−ik )

jE
x (k) = Mw sin k

jE
y (k) = M(v + w sin k)

jE
z (k) = 0. (45)

Interestingly, it is observed that apart from the contribution
proportional to the identity matrix [as in Eq. (37)], nontrivial
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(a) (b)

FIG. 4. (a) Heat current generation in the bulk in a quenched SSH chain by breaking P through the sudden introduction of a staggered
mass, which preserves T in the final quenched Hamiltonian HT [Eq. (42) in Sec. V C]. The initial and final hopping strengths are chosen to be
v = 0.5, w = 1.5, and a staggered mass in HT (k) of M = 1.0 with L = 500. (b) Heat current generation in the bulk in a quenched SSH chain
by breaking T through the sudden introduction of an imaginary staggered NNN hopping in HP (k) while preserving P in the final quenched
Hamiltonian [as discussed in Eq. (48) in Sec. V D]. The initial and final hopping strengths are chosen to be v = 0.5, w = 1.5, and a NNN
hopping strength of f = 5.0i in H(k) and L = 500.

nondiagonal terms have appeared in the local heat current
operator in the presence of the staggered on-site potential.

Using the above components to evaluate the total heat cur-
rent according to Eq. (38), one obtains the following analytic
expression for the heat current,

JE (t ) = M
∫ π

−π

dk
sin (2m f t )

m f

[
jE
y (k) cos φ − jE

x (k) sin φ
]
,

(46)

where HT (k) = �m f (k).�σ , m f = | �m f (k)| HSSH (k) = �mi(k).�σ ,

and φ = tan−1 [
mi

y (k)
mi

x (k) ]. Thus, the SSH model now shows
nonzero flow of heat [see Fig. 4(a)] in the bulk as a conse-
quence of the dynamical breaking of P symmetry while the
T symmetry remains intact.

D. Breaking T while preserving P
It is also possible to break the T symmetry of the SSH

model while keeping the P symmetry intact by suddenly
switching on a complex staggered next-nearest-neighbor hop-
ping term, which renders the single-particle final Hamilto-
nian HP (k) to be of the form, HP (k) = �m f (k).�σ such that
(m f

x , m f
y , m f

z ) are (even, odd, odd) functions of k, respectively.
Now,

HP = HSSH +
∑

i

( f c†
2ic2i+2 + f c†

2i−1c2i+1 + H.c.). (47)

Setting the next-nearest hopping strength to be complex, f =
λi where λ ∈ R yields the final Hamiltonian,

HP (k) = (v + w cos k)σx + w sin kσy + λ sin kσz. (48)

This clearly shows that the T symmetry has been broken in
the system while keeping P preserved throughout. As a result,
the energy current, however, will now have two contributions,
one from the nearest-neighbor hopping and the other from the
next-nearest-neighbor hopping originating from the same site,
i.e.,

jE (k) =
∑

j (1)(k)A + j (1)(k)B +
∑

j (2)(k)A + j (2)(k)B,

(49)

where the summation extends over all the lattice sites. j (1)(k)
are the nearest-neighbor current and j (2)(k) are the next-
nearest-neighbor current. Expressing the total heat current
operator in the 2 × 2 sublattice basis as Eq. (44), one obtains,

jE
0 (k) = 2 Im(vwe−ik − λ2e−2ik )

jE
x (k) = −λ(w − v cos k)

(50)
jE
y (k) = −λ(v sin k)

jE
z (k) = 0,

which is nonzero when integrated over the complete Brillouin
zone [Fig. 4(b)]. Thus, we see that the heat current in such
a situation is nonzero although the particle current vanishes
when P is preserved by the final Hamiltonian.

VI. CONCLUSIONS

In this work, we have studied the particle and heat trans-
port properties of a time-dependent 1D topological quantum
system. The goal is to test the robustness of the 1D topological
phase against the inclusion of dynamical perturbations and the
possible change in the associated winding number. Therefore,
we resort to the simple 1D SSH model, to investigate the
effect on the transport, namely the polarization current and
the heat current, in such systems when the symmetries of the
underlying system may be broken by the time-dependent per-
turbations. We focus on the issue whether the winding number
can be changed through out of equilibrium drives and whether
such a change can be captured in the transport properties of
the system. In our work, the time evolution of the initial state
of the 1D system is introduced through time-periodic drives,
quantum quenches, and noisy perturbations that break the
perfect time periodicity. We see that through the dynamical
breaking of certain discrete (noncrystal) symmetries namely
the particle-hole (P), time-reversal (T ), and the chiral sym-
metry (S), there can be a generation of either particle or heat
current in the bulk of the 1D chain accompanied by a change
in the winding invariant with time.

Specifically in the periodic situation, we observe the fol-
lowing behavior: (i) When only the particle-hole symmetry is
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broken in the instantaneous Hamiltonian or within the period
of a drive, particle current is generated. However, the breaking
of this P in the instantaneous Hamiltonian does not guarantee
that the bulk Floquet Hamiltonian, which governs the dynam-
ics of the system at stroboscopic intervals, will also have a
broken P symmetry. Nonetheless, if the P symmetry still
remains preserved in the Floquet Hamiltonian, the winding
number will still be conserved when observed stroboscopi-
cally. (ii) When the Floquet Hamiltonian also breaks the P
symmetry, we see the stroboscopic generation of a particle
current in the system even when the initial state carried zero
current. (iii) The generated current in case (ii) Following some
initial transients eventually settles down to a steady nonzero
value asymptotically in time.

One may wonder what happens when the system is sub-
jected to biased random noisy perturbations that break the
perfect periodicity of the drive. Interestingly, as we have illus-
trated in Appendix A, when the perfect time periodicity within
a period is broken due to the presence of such perturbations,
the particle current although shows a significant prethermal
value, eventually decays to zero asymptotically with time re-
flecting the fact that the system reaches an infinite temperature
ensemble. We note that this happens even when both the drive
and the noisy perturbations break the P symmetry explicitly.

Finally, we also probe the out of equilibrium behavior
of the energy transport in the bulk of the system due to
time-dependent driving in the form of sudden quenches. We
observe that even when there is no heat current flowing in the
system initially, dynamical breaking of either P or T , but not
both, results in the generation of a heat current in the bulk of
the system. This is notably different in comparison to the dy-
namical conditions that result in the flow of a particle current
in the system. The notably different behavior of the particle
and the energy current with respect to the symmetries of the
drive is an artefact of nonequilibrium dynamics. As in out of
equilibrium situations, the instantaneous state of the system
does not necessarily respect the same set of symmetries as
that of the instantaneous Hamiltonian, a complete physical
understanding of the dynamics is an interesting direction of
further research.

As mentioned previously in Sec. I, the Chern number stays
temporally invariant under unitary dynamics and hence the
unitary preparation of Floquet Chern insulators is difficult to
achieve. Unlike the Chern number, we have observed that
the winding number may change under unitary dynamics
and hence it may be possible to dynamically engineer 1D
topological phases with a nontrivial winding number through
unitary driving protocols.

Recently discrete-time quantum walks have been shown
to simulate all known topological phases in one and two
dimensions [85–87]. A discrete time quantum walk can be
viewed as a stroboscopic simulation of time evolution by an
effective Hamiltonian. In our work, we are, however, consid-
ering the application of a periodic drive to a one-dimensional
model and probing the possible temporal variation of the
winding number. Whether these two approaches are related
is an interesting question, which requires further studies.

The polarization current as well as the energy current
flowing through the bulk of the chain being observables can be
experimentally measured in a transport set up and hence the

predictions made in this work can be verified. We recall that
in the process of an adiabatic quantum pump characterized by
the topology of the pumping cycle, the dynamical state of the
system follows the adiabatically evolving Hamiltonian. There-
fore, the conclusions reached through our work regarding
the symmetries of the Floquet Hamiltonian, would naturally
manifest in the topological transport of charge across a SSH
chain under an adiabatic periodic perturbation.
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APPENDIX: BULK TOPOLOGICAL INVARIANT
IN AN APERIODICALLY DRIVEN SYSTEM

We consider two 1D SSH Hamiltonians, one in the BDI
class, i.e., respecting both time-reversal and particle-hole
symmetries whereas the other breaks either or both of the
symmetries P and T along with P . Thus, under the first
Hamiltonian H0(k) the winding number remains invariant
in time, whereas under the second Hamiltonian H1(k) the
winding number does not. The system is then subjected to an
imperfect drive with an inherent probabilistic evolution where
at each time step of width T/2 the dynamical Hamiltonian
is chosen randomly between H0(k) and H1(k). The choice
between H0(k) and H1(k) depends on the value of a random
variable following a binomial distribution with a bias p. In
the context of thermalization, such a random driving protocol
have been studied in Refs. [88–90].

Introducing aperiodicity in the driving protocol, renders
the system dynamically nonintegrable. Under an aperiodic
drive, observing the dynamics stroboscopically at intervals of
T modifies the relation established in Eq. (16) connecting the
nonequilibrium stroboscopic current density and the temporal
evolution of the bulk topological index. The current density
when averaged over all disorder configurations and over a
complete period T results in,

1

T

∫ mT

(m−1)T
dt j(t ) = 1

T
[ν(mT ) − ν((m − 1)T )], (A1)

where |ψk (mT )〉 = ∏m
n=1 Uk (gn)|ψk (0)〉 (the bar above an

observable quantity denotes averaging over all disorder con-
figurations) such that the random variable gn takes the values
1 and 0 with probabilities (or bias) p and (1 − p), respectively,
with the following effect:

Uk (0) = e−iH0(k)T ,

Uk (1) = e−iH1(k) T
2 e−iH0(k) T

2 . (A2)

In all the instances of explicit symmetry breaking (men-
tioned in the earlier section) realised in the Hamiltonian
H1(k), the configuration averaged stroboscopic particle cur-
rent and the stroboscopic change in the bulk topological
invariant is observed to decay to zero for large strobo-
scopic intervals of observation [see Figs. 5(a)–5(d) for further
details]. We conclude with the note that although we have
chosen, a special random protocol in the above discussion,
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FIG. 5. Disorder averaged stroboscopic particle current in a periodically driven SSH chain in the case of: (a) breaking P symmetry by
introducing a real NNN hopping in H1(k) (as discussed in Sec. IV C) while preserving T in H1(k). The initial and final hopping strengths
are chosen to be v = 2.5, w = 1.5, and a NNN hopping strength of f = 1.0 for a system size L = 500; the frequency of the periodic drive
being ω = 100. (b) breaking P by introducing a staggered mass in H1(k) (as discussed in Sec. IV C) while preserving T in H1(k). The initial
and final hopping strengths are chosen to be v = 0.2, w = 1.5, and a staggered mass of M = 1.0 for a system size L = 1000, and ω = 100.
(c) breaking P and T by introducing an imaginary intercell hopping in H1(k) but preserving S (as discussed in Sec. IV D). The initial and
final hopping strengths are chosen to be v = 0.2, w = 1.5i for a system size L = 1000, with ω = 100. (d) breaking P , T , and S in H1(k) by
introducing a staggered mass and an imaginary intercell hopping in H1(k) (as discussed in Sec. IV E). The initial and final hopping strengths
are chosen to be v = 0.2, w = 1.5, and a staggered mass of M = 1.0 for a system size L = 1000, ω = 100.

the result obtained is robust and can be shown to hold true for
any random perturbation. However, what will happen if one

incorporates dissipation is an interesting question that is not
completely settled and a topic of further research.
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