
PHYSICAL REVIEW B 100, 054301 (2019)

Interplay of non-Hermitian skin effects and Anderson localization
in nonreciprocal quasiperiodic lattices

Hui Jiang,1,2 Li-Jun Lang ,3,* Chao Yang,1,2 Shi-Liang Zhu,4,3 and Shu Chen1,2,5,†

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE,

South China Normal University, Guangzhou 510006, China
4National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China

5The Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China

(Received 27 January 2019; revised manuscript received 15 July 2019; published 2 August 2019)

Non-Hermiticity from nonreciprocal hoppings has been shown recently to demonstrate the non-Hermitian
skin effect (NHSE) under open boundary conditions (OBCs). Here we study the interplay of this effect and the
Anderson localization (AL) in a nonreciprocal quasiperiodic lattice, dubbed nonreciprocal Aubry-André model,
and a rescaled transition point is exactly proved. The nonreciprocity can induce not only NHSEs but also the
asymmetry in localized states, characterized by two Lyapunov exponents. Meanwhile, this transition is also
topological, in the sense of a winding number associated with complex eigenenergies under periodic boundary
conditions (PBCs), establishing a bulk-bulk correspondence. This interplay can be realized straightforwardly by
an electrical circuit with only linear passive RLC components instead of elusive nonreciprocal ones, showing
the transport of a continuous wave undergoes a transition between insulating and amplifying. This paradigmatic
scheme can be immediately accessed in experiments even for more nonreciprocal models and will definitely
inspire the study of interplay of NHSEs and ALs as well as more other quantum/topological phenomena in
various systems.
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I. INTRODUCTION

Anderson localization (AL) [1] is an old but everlasting
topic in condensed matter physics, which reveals a mechanism
of insulation due to the destructive interference of multiple
scattered waves induced by randomness [2,3]. This funda-
mental phenomenon has been experimentally observed for
electronic spins [4,5], light [6–9], microwave [10–12], sound
[13], and cold atoms [14–16]. In one dimension, AL occurs
for any infinitesimal disorder [1–3], but at a finite point in
quasiperiodic systems, such as the Aubry-André (AA) model
[17]. This quasiperiodicity also has a profound connection
to topology [18–22]: The AA model can be mapped to the
well-known Hofstadter model [23] with an external periodic
parameter as a synthetic dimension and thus relates to the
Thouless pumping [24–27].

On the other hand, non-Hermiticity [28] has been studied
intensively for years with the aid of the fast development
of topological photonics [29–31]; it exhibits rich phenomena
without Hermitian counterparts, e.g., PT symmetry break-
ing [32–34], exceptional points [35–39], etc. Especially, the
non-Hermitian topology is attracting special attention for
the violation of conventional bulk-boundary correspondence
of Hermitian systems, and new ways of defining topology

*ljlang@scnu.edu.cn
†schen@iphy.ac.cn

are needed [40–63]. Besides the on-site gain/loss, nonrecip-
rocal hoppings can also bring in non-Hermiticity [49–59]
with exotic features, such as non-Hermitian skin effects
(NHSEs) under open boundary conditions (OBCs), which
is helpful to understand the breakdown of bulk-boundary
correspondence.

Among references, effects of non-Hermiticity on ALs have
been studied in different contexts [64–74], but the discussion
on the interplay of NHSEs and ALs with accompanying
topological transitions is still lacking. Thus, natural questions
arise: What is the fate of topological NHSEs in the presence
of quasiperiodic potentials? Any transition inherited from the
AL in Hermitian AA models? Answering these questions and
further experimentally observing related exotic phenomena
would be of importance and attractive to both communities
of non-Hermitian quantum mechanics and condensed matter
physics.

In this paper, we address the above questions in the AA
model with nonreciprocal hoppings, dubbed nonreciprocal
AA model, and indeed find a transition of NHSEs and ALs
under OBCs with an analytically proved rescaled transition
point inherited from the Hermitian counterpart. Affected by
the nonreciprocity, besides NHSEs under OBCs, the Ander-
son localized states become asymmetric with respect to the
localization center, characterized by two Lyapunov exponents.
Meanwhile, this transition is topological, in the sense of
a winding number associated with complex eigenenergies
under periodic boundary conditions (PBCs) [54], which can
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FIG. 1. (a) Sketch of the nonreciprocal AA model. (b) Phase
diagram. The phase boundaries are determined by �/J = e|α| and
α = 0. Under OBCs, {L, R, A} represent the left-skin, right-skin, and
Anderson localized phases, respectively. The winding number ν is
defined in the text. Under PBCs, only regions L and R have imaginary
eigenenergies.

well distinguish the different skin phases and the localized
phase under OBCs, establishing a bulk-bulk correspondence.
In the end, to demonstrate the interplay, an electrical circuit
is designed with only linear passive RLC components, which
undoubtedly shows the transition through the transport of con-
tinuous waves between insulating and amplifying. Due to the
lacking of experimental realizations of NHSEs in electrical
circuits [75–83] as well as other platforms, this paradigmatic
scheme provides a practical way to access it and can be
directly used for more nonreciprocal models. Our work can
also be generalized to other tunable artificial systems, such as
photonics [29,30], ultracold atoms [84], and superconducting
circuits [85], and thus will definitely inspire the study of inter-
plays of NHSEs and other quantum/topological phenomena
in these various systems.

II. NON-RECIPROCAL AA MODEL

The Hamiltonian of the nonreciprocal AA model
[Fig. 1(a)] reads

Ĥ =
∑

n

(JR|n + 1〉〈n| + JL|n〉〈n + 1| + �n|n〉〈n|), (1)

where JR(L) is the right(left)-hopping amplitude, and �n =
2� cos(2πβn) is an on-site quasiperiodic potential with �,
without loss of generality, set positive and β usually taken to
be an irrational number, say, the inverse of the golden ratio
(
√

5 − 1)/2 for infinite systems. For finite systems with site
number N = Fn+1, where Fn is the nth Fibonacci number,
because limn→∞ Fn/Fn+1 = (

√
5 − 1)/2, we usually take the

rational number β = Fn/Fn+1, preserving the quasiperiodicity.
For simplicity, we restrict the hoppings to be positive, which
can be parameterized as JR = Je−α, JL = Jeα with J > 0 and
α both real, unless mentioned otherwise. The nonreciproc-
ity of hoppings (α �= 0) leads to the non-Hermiticity of the
model, different from the non-Hermitian models based on the
on-site gain/loss.

It is well known that, in the Hermitian case (α = 0),
AL occurs at �/J = 1 for infinite systems due to the self-
duality [17]: The extended states for �/J < 1 become ex-
ponentially localized when �/J > 1 with the form |ψ〉 ∝∑

n e−η|n−n0||n〉, where n0 is the index of the localization
center, and η = ln(�/J ) > 0 is the Lyapunov exponent, i.e.,
the inverse of the decaying length.

Deviated from the Hermitian limit, the transition should
be extended to the nonreciprocal case (α �= 0). To catch a
glimpse of the nonreciprocity effect on the transition, we can
quickly look into the two limits of the Hermitian case: (1) For
the state fully localized at one site, i.e., �/J → ∞, because
the sites are decoupled, the nonreciprocal hoppings have no
effect on the state. (2) For the state extended through all sites,
i.e., �/J → 0, under OBCs the nonreciprocal hoppings will
accumulate the state to one boundary, i.e., the NHSE, de-
pending on sgn(α) [50]. Apparently, at least under OBCs, the
nonreciprocal AA model should undergo a transition between
the skin phase and the localized phase.

III. INTERPLAY OF NON-HERMITIAN SKIN EFFECT AND
ANDERSON LOCALIZATION UNDER OBCS

To understand ALs in the nonreciprocal AA model, Hamil-
tonian (1) under OBCs can be rewritten in a biorthogonal basis
as Ĥ = ∑

mn hmn|m〉〈n| = ∑
mn h′

mn|m̃R〉〈ñL|, where |m̃R〉 ≡
e−αm|m〉 and 〈ñL| ≡ 〈n|eαn are the scaled basis in the right and
left spaces, respectively, satisfying the biorthogonal condition
〈ñL|m̃R〉 = δmn. Via this transformation, the non-Hermitian
matrix h becomes a Hermitian one,

h′ =

⎛
⎜⎜⎝

�1 J
J �2 J

. . .
. . .

. . .
J �N

⎞
⎟⎟⎠, (2)

which is just the matrix representation of the Hermitian
AA model with J = √

JLJR being the amplitude of the re-
ciprocal hoppings. This transformation also reveals the fact
that all eigenenergies of Hamiltonian (1) are real, because h
and h′ are similar with the relation h′ = ShS−1, where S =
diag(eα, e2α, ..., eNα ) is a similarity matrix with exponentially
decaying diagonal entries.

As mentioned before, the Hermitian AA model represented
by h′ undergoes AL at �/J = 1. Take ψ ′ to be the eigenvector
of h′. Mathematically, the right eigenvector of h satisfies ψ =
S−1ψ ′, which clearly shows how the nonreciprocity affects the
state in the two phases of h′: For extended states, S−1 exponen-
tially accumulates the wave functions to one boundary, i.e., the
NHSE; for localized states, the wave functions,

ψn ∝
{

e−(η+α)(n−n0 ), n > n0

e−(η−α)(n0−n), n < n0
, (3)

manifest different decaying behaviors on both sides of the lo-
calization center with two Lyapunov exponents η ± α. These
results are consistent with our previous limit analysis, reflect-
ing the interplay of NHSEs and ALs. According to Eq. (3),
when η � |α| delocalization occurs on one side and then skin
modes emerge to the boundary on the same side, from which
the boundary of skin/localized phases is given by

�/J = e|α| or �/ max(JL, JR) = 1. (4)

This transition is similar to the Hermitian case but determined
by the larger hopping, which also determines to which skin
the wave functions will accumulate after delocalization, and
thus, the Hermitian case (α = 0) separates the left-skin (α >

0) and right-skin (α < 0) phases. Figure 1(b) shows the whole
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FIG. 2. (a) IPR vs �/J for α = 0.5 under OBCs. The deep dive
at ∼1.56 divides the skin and localized phases. The calculation
is carried on with N = 89 and β = 55/89. (b),(c) The profiles of
eigenstates of 10th lowest |E | in (a), showing the left-skin state
and the asymmetric localized state at �/J = 0.5 and 3, respectively.
(d) Finite-size scaling analysis for the minimum IPR, �c/J (circles),
of different lengths with the linear fitting (line), showing the asymp-
totic value 1.647 ± 0.001 when N → ∞.

phase diagram. As a demonstration, we calculate the averaged
inverse participation ratios (IPRs) over all right eigenstates of
Ĥ under OBCs,

IPR = 1

N

N∑
s=1

IPRs = 1

N

N∑
s=1

∑
n |〈n|ψs〉|4

(〈ψs|ψs〉)2
, (5)

where |ψs〉 is the sth right eigenstate of Ĥ . A state with
IPR = 1 is completely localized at a single site, while it is
homogeneously distributed through all sites with IPR = 1/N .
Different from the extended phase with small IPRs of the
Hermitian case, the skin phase should have larger values due
to its boundary-localization nature. Therefore, the transition
point should correspond to the most extended case, i.e., the
smallest IPR. As expected, a deep dive at ∼1.56 is found in
Fig. 2(a), close to the theoretically predicted eα=0.5 ≈ 1.65
under consideration of the finite size effect, which is verified
by the finite-size scaling analysis in Fig. 2(d). Figures 2(b)
and 2(c) typically show the skin mode, which is exponen-
tially decaying from one boundary, and the asymmetrically
localized mode with different decaying lengths on both sides,
respectively.

IV. PHASE TRANSITION AND WINDING NUMBERS
UNDER PBCS

Because of the breakdown of the conventional bulk-
boundary correspondence, the behaviors under PBCs and
OBCs should be much different. However, the insensitivity
of the localized states to the boundaries hints that the onset of
AL under both boundary conditions should be identical. This
judgment is numerically verified in Fig. 3(a): A steep rise of
IPR around eα . Different from OBCs, the IPR keeps low prior
to the transition due to the lacking of the localized skin modes
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FIG. 3. (a)–(c) The same setting as in Figs. 2(a)–2(c) but under
PBCs, showing the transition between extended and localized phases.
(d) The imaginary parts of all eigenenergies in (a), indicating only
extended states have complex energies. (e) θ (�) for (α,�/J ) =
(0.5, 0.5) (solid red), (−0.5, 0.5) (dashed blue), and (0,3) (dash-
dotted black), which, respectively, correspond to ν = +1, −1, and
0 in Fig. 1(b).

[Fig. 3(b)], while the localized states possess the same feature
as OBCs [Fig. 3(c)].

Another big difference is the presence of imaginary
eigenenergies [Fig. 3(d)]; the emergence of corner entries in
h invalidates the similarity to a Hermitian matrix. This feature
is intimately related to the phase transition if we are reminded
that the localized states are insensitive to boundaries, pre-
serving real eigenenergies: The complexity-reality transition
of eigenenergies coincides with ALs. Using this tie, we may
establish a bulk-bulk correspondence between systems under
OBCs and PBCs through a winding number with respect to
complex eigenenergies.

The conventional winding number cannot be used here be-
cause the chiral symmetry is broken by the on-site quasiperi-
odic potential [51,61]. Thus, we consider the ring chain with
a magnetic flux −� penetrating through the center, yielding

Ĥ (�) = Ĥ + JRe−i�|1〉〈N | + JLei�|N〉〈1|, (6)

and the winding number is defined as [54]

ν =
∫ 2π

0

∂� ln det Ĥ (�)

2π i
d� =

∫ 2π

0

∂�θ (�)

2π
d�, (7)

where θ (�) is the argument of detĤ (�). Apparently, ν =
0 for the localized phase on account of the reality of the
spectrum.

Figure 3(e) show numerically how θ (�) changes with
� from 0 to 2π in the three phases of Fig. 1(b), and the
corresponding winding numbers are obtained. The phase
boundaries can alternatively be determined by analyzing the
asymptotic behavior of detH (�) (see details in Appendix B).
As a result, the chirality of the winding number can exactly
tell the left/right-skin phases (ν = ±1) and the localized
phase (ν = 0) under OBCs. Different from the conventional
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FIG. 4. (a) Schematic of the driven RLC electrical circuit with
parameters defined in the text. (b) Intrinsic eigenfrequencies ω/ω0

vs �/J for α = 0.5. (c) IPR of V vs �/J with driving frequencies
indicated by the red curve in (b). The dive as in Fig. 2(a) indicates the
transition point. (d),(e) Typical plots of V n/Ve in (c) for (�/J, �̃) =
(0.5, 1.38) and (3,1.88), showing the amplifying and insulation in
transport induced by NHSEs and ALs, respectively. N = 89 and β =
55/89 are used.

bulk-boundary correspondence, where edge states under
OBCs can be predicted by a topological invariant defined
under PBCs, here we establish a bulk-bulk correspondence,
where the behavior of bulk states under OBCs can be pre-
dicted by a topological invariant defined under PBCs.

V. ELECTRICAL CIRCUIT’S REALIZATION

We propose a driven RLC electrical circuit for the
nonreciprocal AA model under OBCs, as shown in
Fig. 4(a), where inductors with inductances Ln = Lg−n and
ln = Lg−n[2�(cos 2πβn + 1)]−1, capacitors with capacitance
Cn = Cgn, and resistors with resistance Rn = Rg−n are all
linear passive elements with positive free parameters, L,C, R,
and g. The leftmost node is grounded for an open boundary
while the other is connected to a voltage source of a continu-
ous wave, Ve(t ) = Ve sin(�t ), with driving frequency �.

Without resistors, the intrinsic eigenfrequency ω can be
obtained by grounding the rightmost node instead of the
source. Based on Kirchhoff’s current law, the equation reads

Vn−1 + gVn+1 − �nVn = (
f − ω2/ω2

0

)
Vn, (8)

where Vn is the amplitude of the voltage Vn(t ) on node
n, f = 1 + g + 2�, and ω0 = 1/

√
LC. Rewritten in matrix

form, HV = EV , where V = ({Vn})T is a column vector and
E = f − ω2/ω2

0 is the eigenvalue. H is just the matrix rep-
resentation of the nonreciprocal AA model (1) under OBCs
with JL = g and JR = 1. Notably, this classical circuit can

only have real E , which is consistent with the previous proof.
Figure 4(b) shows the intrinsic eigenfrequencies ω/ω0 versus
�/J with J = √

g and α = (ln g)/2.
When driving the system, the transport of continuous

waves in different phases can be detected; the introduction of
resistors in the following is for the system to quickly stabilize.
The dynamical equation reads

d2

dτ 2
V (τ ) + γ

d

dτ
V (τ ) − (H − f )V (τ ) = Ve sin �̃τ, (9)

where γ = 1
R

√
L
C > 0 and τ = ω0t are dimensionless, Ve =

(0, ..., 0,Ve)T . ‘∼’ over frequencies hereafter means the fre-
quency is dimensionless in unit of ω0. The solution is

V (τ ) =
∑

s

Vs
[
e−γ τ/2(cs cos λsτ + ds sin λsτ )

+WT
s Ve(as cos �̃τ + bs sin �̃τ )

]
, (10)

where as = γ �̃

γ 2�̃2+(�̃2−ω̃2
s )2 , bs = �̃2−ω̃2

s

γ 2�̃2+(�̃2−ω̃2
s )2 , λs =√

ω̃2
s − γ 2/2, and (cs, ds) are coefficients determined

by initial conditions. Vs and WT
s are sth right and left

eigenvectors of H, respectively, satisfying WT
s Vs′ = δss′ .

Note that if Vs is accumulated to one boundary, Ws is to the
other because Ws is the right eigenvector of HT . Thus, to
detect left skin modes, the source should be connected to the
right end for the possible large overlap WT

s Ve. It is much
different from Hermitian cases, where the source must be on
the same side. In Eq. (10), the first part in the square brackets
is the general solution, which, due to resistors, will decay in
a long time limit and thus, the effect of initial conditions can
be ignored; the second part is one specific solution, which
is stable, oscillating with the driving frequency. Moreover,
if γ  1, the system is resonant when � ≈ ωs with a large
value of as and vanishing bs, unless the overlap WT

s Ve is zero,
and the corresponding right eigenvector Vs can be picked out.

The IPR of the time-averaged voltage vector, V =
1
T

∫ τ+T
τ

|V (τ )|dτ with T = 2π/�̃ in τ → ∞ limit, is shown
in Fig. 4(c), where a deep dive at ∼1.59 is close to the
transition point. Figures 4(d) and 4(e) plot the typical trans-
ports in both phases at α = 0.5: In the skin phase, due to
the existence of left-skin modes, the continuous wave is
resonantly transferred and accumulated to the left boundary;
while in the localized phase, because of the small overlap
WT

s Ve, the wave is confined to the right boundary without
resonance. If the input is on the left, also because of the small
overlap WT

s Ve, the signal cannot resonate and still localize
on the left. This indicates that NHSEs can enhance the wave
transport and may be useful in applications. This paradigmatic
scheme of nonreciprocity can be immediately applied to other
nonreciprocal models, e.g., the nonreciprocal Su-Schrieffer-
Heeger model [49–52].

VI. DISCUSSION AND CONCLUSION

The phase diagram in Fig. 1(b) is obtained for positive
hoppings. For general complex hoppings with arbitrary phases
φR(L), an identical phase diagram is found numerically. Al-
though there is no proper way to relate it to the positive-
hopping case due to the effective net flux between each two
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nearest-neighbor sites, the special case satisfying φR + φL =
nπ (n ∈ integer) can be proved exactly by the duality. We note
that this transformation can map the nonreciprocal model to
the AA model with complex on-site potentials, which, in a
new basis, shares a similar AL but has no NHSEs. See details
in Appendix A.

For the circuit’s realization, the element values can be
typically taken as L ∼ mH, C ∼ pF, and R ∼ k�, i.e., ω0 =
1/

√
LC ∼ kHz, which is accessible in usual experiments

[75–83]. For typical nonreciprocal hoppings, say α = 0.2 and
thus g = e0.4 ≈ 1.49, the element values can still drop in
almost the same orders for N = 10 sites with Ln ∼ μH to mH,
Cn ∼ pF, and Rn ∼ k�.

In summary, we have studied the topological transition
of NHSEs and ALs in nonreciprocal AA models and ob-
tained the exact phase diagram. Moreover, an electrical circuit
has been proposed to demonstrate the transition properties.
This paradigmatic scheme can be straightforwardly applied
to more nonreciprocal models and may be generalized to
other artificial platforms, opening the window of studying
the interplay of NHSEs and ALs as well as other exotic
quantum/topological phenomena.
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APPENDIX A: DUALITY

That the nonreciprocal AA model can be transformed to an
AA model with a complex on-site potential, i.e., the duality,
can work in two cases: (1) Under PBCs with β = p/N , where
p ∈ integer; (2) under OBCs with N → ∞, because these two
cases can ensure that the transformed k space is closed by the
following Fourier transform.

First, let’s deal with Hamiltonian (6) in the main text.
By a gauge transformation |n〉 → e−i�n/N |n〉, Hamiltonian (6)
becomes

H (�) =
∑

n

[JRe−i�/N |n + 1〉〈n| + JLei�/N |n〉〈n + 1|

+�n|n〉〈n|]. (A1)

Then, a Fourier transform, |n〉 = 1√
N

∑
k e−i2πβkn|k〉, can fur-

ther change it to the k space,

H (�) =
∑

k

[�(|k + 1〉〈k| + |k〉〈k + 1|)

+ Jk (�)|k〉〈k|], (A2)

where Jk (�) = 2J[cosh α cos(2πβk + �/N ) − i sinh α sin
(2πβk + �/N )]. Note that the quasimomentum is 2πβk,
not the index k; the hopping terms actually couple the
two quasimomenta with difference 2πβ. Due to the PBCs,

the quasimomentum should satisfy 2πβk = 2πm/N , i.e.,
k = m/βN , where m ∈ integer. To make the Hilbert space
closed, we can just set β = p/N , and thus, k + 1 = (m + p)/p
corresponds to another quasimomentum index in the same
Hilbert space, if considering the periodicity of the Brillouin
zone. In this sense, the two dual models, Eqs. (A1) and (A2),
are equivalent with identical energy spectra.

Secondly, consider the Hamiltonian (1) in the main text
under OBCs with infinite length, i.e., N → ∞. The dual
Hamiltonian in k space has the same form as Eq. (A2)
with only the difference that � = 0 and the boundaries are
open. When JR = JL = J , i.e., α = 0, the dual Hamiltoni-
ans have the same form and thus det h′(�, J ) = det h′(J,�),
i.e., JN det h′(�/J ) = �N det h′(J/�). Note that det h =
det h′ because of their similarity, we have the relation
that det h(�/J ) = (�/J )N det h(J/�). We have noted that
Ref. [69] numerically gives the condition for the AL of
the on-site complex AA model (A2), |J/� · cosh α| + |J/� ·
sinh α| = 1, i.e., �/J = e|α|, which is consistent with our
result in the main text.

APPENDIX B: CALCULATION OF THE
WINDING NUMBER

We calculate the winding number (7) of Hamiltonian (6) in
the main text. In matrix form, it can be rewritten as

Ĥ� =
∑
mn

hmn(�)|m〉〈n|, (B1)

where hmn(�) is the entry of the following matrix,

h(�) =

⎛
⎜⎜⎜⎜⎝

�1 JL JRe−i�

JR �2 JL

. . .
. . .

. . .
JR �N−1 JL

JLei� JR �N

⎞
⎟⎟⎟⎟⎠. (B2)

The key to calculate the winding number is the determinant of
h(�). Mathematically, we have

det h(�) = −(−JL )N ei� − (−JR)N e−i� + P

= −2(−J )N (cosh αN cos �

+ i sinh αN sin �) + P, (B3)

where P = det h′ − J2 det u′ with h′ being defined in Eq. (2) in
the main text and u′ is a submatrix with (N − 2) dimension of
h′ by removing the first and last row and column. Apparently,
P is real.

Because the winding number (7) defined in the main text
reveals how detĤ (�) evolves with respect to � from 0 to 2π

in the complex plane, we can rewrite the winding number with
the aid of the sign operators [61],

ν = 1

2

∑
i

sgn[x(�i )] · sgn
[dy(�i )

d�

]
, (B4)

where x = Re[det h(�)] = P − 2(−J )N cosh αN cos � and
y = Im[det h(�)] = −2(−J )N sinh αN sin �. �i is the ith so-
lution of y(�) = 0, which are �1 = 0 and �2 = π . Therefore,
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we have

ν = (−1)N sgn(α)

2
[sgn(P + 2(−J )N cosh αN )

− sgn(P − 2(−J )N cosh αN )]

= sgn(α)θ (2JN cosh αN − |P|). (B5)

The transition point is determined by

|P| = 2JN cosh αN ≈ JN e|α|N , (B6)

i.e.,

P ≡ N
√

|P| ≈ Je|α|, (B7)

where the squiggly equal sign is for the large N limit. To
calculate P, we can expand it [20] as

P =
[N/2]∑
n=0

cN−2n(−1)nJ2n(2�)N−2n, (B8)

where [N/2] means the nearest integer less than N/2, and

cN−2n =
∑

{ js, js + 1}
(s = 1, · · · , n)

N∏
i = 1

i �= js, js + 1,

(s = 1, · · · , n)

cos(2πβi), (B9)

where the first summation is over all possible configu-
rations { j1, j1 + 1, · · · , jn, jn + 1} with nonrepetitive index
js ∈ [1, N ). For the coefficient cN = ∏N

i=1 cos(2πβi), we
have

lim
N→∞

ln cN = lim
N→∞

N∑
i=1

ln cos(2πβi)

= N
∫ 1

0
ln cos(2πβNx)dx

= − 1

2πβ
L(2πβN ) ≈ −N ln2 (B10)

where L(x) is the Lobachevskiy’s function defined as [86]

L(x) = −
∫ x

0
ln cos(x′)dx′

= xln2 − 1

2

∞∑
k=1

(−1)k−1 sin(2kx)

k2
. (B11)

This means in the limit N → ∞, cN ∼ 2−N . In the same way,
cN−2 ∼ 2−(N−2). Thus, using Eq. (B8), we have

P = J

[∣∣∣∣∣cN

(
2�

J

)N

− cN−2

(
2�

J

)N−2

+ ...

∣∣∣∣∣
] 1

N

. (B12)

For �/J � 1, limN→∞ P = J , and thus ν = sgn(α), while
for �/J > 1, limN→∞ P = � and thus ν = sgn(α)θ (Je|α| −
�), that is, when e|α| < �/J, ν = 0 and when e|α| >

�/J, ν = sgn(α). The boundary of the topologically trivial
and nontrivial phases is determined by �/J = e|α|, which
is consistent with the result from the point of view of the
localization-delocalization transition in the main text.
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FIG. 5. Phase transition for (φR, φL ) = (0, π/2). (a) IPR vs �/J
for α = 0.5 under PBCs. Insets: The profiles of the eigenstates of
10th lowest |E |, showing the NHSE and the AL at �/J = 0.5 and 3,
respectively. (b) θ (�) for α = �/J = 0.5 (solid red), α = −�/J =
−0.5 (dashed blue), and α = 0, �/J = 3 (dash-dotted black), which
correspond to ν = +1, −1, and 0, respectively. The calculation is
carried on with N = 89 and β = 55/89.

APPENDIX C: GENERAL CASE WITH
COMPLEX HOPPINGS

We paid attention to the typical case of positive JL and JR

in Hamiltonian (1) of the main text. Here we show that the
general case is related to this special case, and thus share the
same transition point on AL.

The Hamiltonian with arbitrary complex hoppings reads

Ĥgel =
∑

n

(JReiφR |n + 1〉〈n| + JLeiφL |n〉〈n + 1|

+�n|n〉〈n|), (C1)

where JR(L) > 0 and �n keep the same definitions as in
Hamiltonian (1) of the main text, and φR(L) is the arbitrary
argument of the corresponding hopping. To reveal the relation
between the general case of hoppings and the positive case, we
do the following gauge transformation, which does not change
the energy spectrum,

Û ĤgelÛ
−1 = ei φR+φL

2

∑
n

(
�ne−i φR+φL

2 |n〉〈n|

+ JR|n + 1〉〈n| + JL|n〉〈n + 1|), (C2)

where Û is a unitary operator defined by Û |n〉 = ei φL−φR
2 n|n〉.

Except for the overall phase and the phase of on-site terms,
the above transformed Hamiltonian is similar to Hamiltonian
(1) of the main text.

Specifically, when φR + φL = 2nπ (n ∈ integer), we have

Ĥgel = (−1)nÛ −1ĤÛ (C3)

where Ĥ is just the Hamiltonian (1) in the main text. Ap-
parently, the phase boundaries of this case is identical to
the real-hopping case with only the eigenenergy E becoming
(−1)nE . Note that for odd n, the minus sign of on-site terms
in Eq. (C2) can be absorbed to the cosine terms in �n by
shifting a phase, which makes no difference for the infinite
chain.

For the general case, we cannot find a relation to the
positive real-hopping case, which can be understood by noting
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that the right and left hoppings generally generate a net flux,
φL + φR, for each two nearest-neighbor sites, as there seems a
coil in between with a magnetic field through it, and thus, the

phase cannot be gauged away. However, the phase diagrams
seem the same by our numerical calculation, which can also
be characterized by the winding number, as shown in Fig. 5.
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