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Locally self-consistent embedding approach for disordered electronic systems
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We present an embedding scheme for the locally self-consistent method to study disordered electron systems.
We test this method in a tight-binding basis and apply it to the single band Anderson model. The local interaction
zone is used to efficiently compute the local Green’s function of a supercell embedded into a local typical
medium. We find a quick convergence as the size of the local interaction zone which reduces the computational
costs as expected. This method captures the Anderson localization transition and accurately predicts the critical
disorder strength. The present work opens the path towards the development of a typical medium embedding
scheme for the O(N ) multiple scattering methods.
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I. INTRODUCTION

Disorder which is a ubiquitous feature of real materials
(in the form of impurities or defects in perfect crystals, or
chemical substitutions in alloys and random arrangements of
electron spins or glassy systems) plays a key role in changing
and controlling their properties [1–5]. As shown long ago by
Anderson [6], disorder in atomic coordinates creates spatially
confined or “localized” electron eigenstates near the Fermi
level. Electron localization has been found to play a crucial
role in a number of materials, starting from the prototype
two-dimensional electron systems [7], displaying metal to in-
sulator transitions [1], to various well-known semiconducting
materials including Dirac [8–11] and Weyl [12–14] semimet-
als.

Among the well-known studied systems, are semiconduc-
tors such as Si doped with P, B, S, or Ti. For instance, in Si:P
the P donors sit substitutionally on the Si sites and for low
concentrations, according to Mott [15,16], there is a negligible
overlap between the wave functions of the donor electrons,
and the material is an insulator. At high concentrations when
the overlap is large compared with the on-site repulsion the
material is a metal. These observations led Mott [15,16] to for-
mulate a phenomenological theory for the transition from the
insulating to the metallic state (localized to itinerant electrons)
in terms of a critical concentration nc and the average distance
between the impurities fulfilling the relation n1/3

c aB ≈ 1/4,
where aB is the spatial extension (effective Bohr radius) of
the P donor electrons. The alternative view due to Anderson
[6] involves localization due to random one-electron poten-
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tials seen by the electrons. For low donor concentrations the
one-electron energy spread in the random potentials (energy
distance between consecutive energy eigenstates) is large
compared with the energy bandwidth and the electronic states
are localized. At high concentrations, the localized impurity
states form the impurity band and the extended states appear
separated from the localized states by a mobility edge. The
metal-insulator transition can also happen by doping which
shifts the Fermi level across the mobility edge.

Dilute magnetic semiconductors (with a subtle interplay
between magnetism and electron localization) and interme-
diate band photovoltaics (which hold the promise to signifi-
cantly improve solar cell efficiency) are among another im-
portant class of materials where disorder plays a fundamental
role on their properties. Dramatic improvement in crystal
growth in recent years has enabled preparation of samples
with a significant control over the degree of disorder. For
example, localization has been definitively seen in single
crystals of LixFe7Se8 despite of a finite density of states at
the Fermi energy confirmed via specific heat and reflectivity
measurements [17]. Besides these systems, thermoelectric
and topologic materials such as Cd3As2, Na3Bi [8–11], and
TaAs, NbAs [12–14] hint towards the presence of significant
disorder effects that still remain to be fully understood.

In recent decades, the ab initio methods based on den-
sity functional theory (DFT) [18–22] have become the most
important tool to calculate properties of ordered crystalline
solids. The band theory as such cannot be used to treat
disordered solids because of the lack of translation invariance.
For modeling disordered solids calculations were performed
using effective medium theories, among them the coherent
potential approximation (CPA) [23] proved to be a simple and
transparent theory that is able to capture important features
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FIG. 1. A schematic representation of the LIZ (red circles),
centered around the sites I, J .

of the electronic structure of alloys. The CPA has been used
to solve models which helped in providing physical inter-
pretation of experimental results on real alloys. To become
quantitative the CPA equations have been formulated for the
muffin-tin potentials within the multiple-scattering Korringa-
Kohn-Rostocker method [24,25]. The configurational average
could be performed over the scattering path operator, instead
of the Green’s function (used for models), simplifying the
implementation of the CPA for materials calculations [26].
Later the CPA was also implemented within the linearized
muffin-tin orbitals [27] basis set [28–31]. With the advent of
the third-generation exact muffin-tin orbitals [32–34] method,
and the full-charge density [35] technique, it was possible
to go beyond the atomic-sphere approximation with CPA
calculations [36], and investigate the energetics of anisotropic
lattice distortions.

An alternative to the effective medium theories is supercell
calculations which nowadays can be performed on systems
containing thousands of atoms. This has been made possi-
ble by the development of order-N [O(N )] methods based
on plane-wave expansions [37,38] or multiple-scattering the-
ory [39]. In the multiple-scattering formulation the linear
scaling ab initio method came to be known as the locally
self-consistent multiple scattering (LSMS) method. LSMS
achieves linear scaling for very large systems with up to tens
of thousands of atoms, via the introduction of a smaller local
interaction zone (LIZ) of size NLIZ of several hundreds of
sites. Within the LIZ the electronic structure problem is solved
explicitly with free space boundary conditions. In LSMS
analysis, as the LIZ moves through each site, the explicit DFT
solution introduces correlations due to the different disorder
configuration (Fig. 1).

In this paper, we present our concept of embedding that
combines the real space construction with the momentum
space self-consistency. In this scheme we follow the ideas
of LSMS implementation [39] and investigate electron local-
ization in a three-dimensional (3D) Anderson model. This
represents a natural extension of our previous study on
multiple-scattering formulation to the problem of Anderson

localization [5]. However, contrary to standard LSMS, our
scheme does not explicitly rely on the multiple-scattering
aspect of the cluster solver. In comparing the results obtained
using the local average coherent potential and typical effective
medium embedding schemes, we find that the typical medium
embedding plays a significant role in capturing electron local-
ization [40,41]. In particular, the extrapolated critical disorder
strength for the Anderson transition is in excellent agreement
with the known literature results [42–49].

The remainder of this paper is organized as follows. After
the introduction, we discuss some conceptual details of LSMS
in Sec. II, followed by the typical medium formulation of
the Anderson localization in Sec. III. In Sec. IV, we present
the computational details and the self-consistent loop used
in the present calculations. Then in Sec. V we illustrate the
effective medium embedding using the Hamiltonian formula-
tions and present results for the coherent potential effective
medium and the typical medium.

II. CALCULATING PROPERTIES WITH LSMS

LSMS has the unique capability to study extremely large
and disordered systems [50,51]. Yet, the standard construction
of the LIZ using an open boundary condition limits the
applicability of LSMS to the description of disordered metals
only, and in particular fails to properly describe band gaps
and electron localization. This is because free space boundary
conditions, for which the potential is set to be zero, couple
the LIZ to a free space density of states which increases as a
square root for positive energies, so that the gaps in a semicon-
ducting system are filled in and blurred, and semiconductors
appear to be metals. One possible way to overcome this issue
is to use self-consistently determined boundary conditions.
Inspired by the LSMS construction, Abrikosov et al. [40,41]
suggested a locally self-consistent method in which the LIZ
size is reduced by considering an effective scatterer outside
the LIZ. The choice made for this scattering matrix is the
CPA single-site t matrix. The excellent convergence achieved
through this method [30,40,41] allowed one to also address
the problems of total energy calculations in alloys [52–54].

Note that the open boundary conditions imposed upon
an LIZ also disable the ability of LSMS to study electron
localization. It has been shown recently [5,55] that the average
density of states (DOS) is not critical through the Anderson
transition, and instead the typical (geometrically averaged
density of states) needs to be used to identify the transition
[55]. Therefore, in order to capture the electron localization
in real materials using the LSMS scheme, the boundary con-
ditions must couple the LIZ to an effective medium which
reflects the typical order parameter. The essential aspects of
the typical medium theory are discussed in the following
section.

III. TYPICAL MEDIUM APPROACH

Recent studies [5,55] have shown that disorder-driven elec-
tron localization is captured by typical medium approaches.
The typical medium approach takes into account the dramatic
changes of the distribution of the local density of states
(LDOS) through the localization transition. More specifically,
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it changes from a Gaussian distribution to a skewed log-
normal distribution, where the algebraic average of the LDOS
stays finite while the geometric average of the LDOS which
is usually called the typical density of states (TDOS) drops
to zero [56]. This property of TDOS makes it a potential
candidate order parameter for the localization transition. Typ-
ical medium analysis helps to overcome the shortcomings of
the standard effective medium methods such as CPA [23]
and dynamical cluster approximation (DCA) [57] which fail
to describe the localization transition. The typical medium
theory (TMT) introduced for the first time by Dobrosavljević
et al. [55], successfully captures precursors of the Anderson
localization transition, but strongly overestimates the local-
ization effect due to its single-site nature. Later, a finite
size cluster extension of TMT, the so-called TMDCA, was
introduced [5] which accurately predicts the critical disorder
strength of the Anderson localization transition in a single-
band Anderson model with uniform disorder. The TMDCA
has been extended to systems with off-diagonal disorder [58]
and to multiband systems [59] in model Hamiltonians, where
it accurately reproduces the localization phase diagrams. The
obtained results are in agreement with other well-established
theoretical techniques such as the transfer matrix and the ker-
nel polynomial methods [58,59]. More recently, TMDCA was
also combined with the first-principles calculations to study
the localization effects in realistic materials with disorder
[60–62]. The TMDCA formulated within the multiscattering
theory is still used at the model Hamiltonian level [63].

IV. EMBEDDING SCHEME

In this section, we describe the construction of the effective
medium embedding scheme using concepts of LSMS. The
self-consistent embedding is a coupling framework which
provides rigorous boundary conditions for the primary region
(site, or cluster) to be embedded into a larger self-consistently
determined environment. Central to the embedding theory is
the embedding potential (e.g., a self-energy) which embodies
the functional connection between the primary region and the
environment. In the original LSMS calculation no embedding
scheme is used, in other words, the LIZ was effectively
embedded in a vacuum [39]. Later it has been shown that
the size of the LIZ and hence the computational effort may
be considerably reduced by embedding the LIZ in an effective
medium [40]. Using the CPA as the embedding effective
medium leads to the so-called locally-self-consistent Green’s
function method [41] which was applied to the metallic alloys.
On the contrary, as will be shown below, the embedding
into the effective typical medium allows one to address the
Anderson localization transition.

In the following we describe our computational scheme.
We first surround a site Ic of the lattice and form the LIZ (red
circle of Fig. 2). Sites within the LIZ are denoted by capital
letters (I, J ). We choose the LIZ of linear dimension LLIZ

to be contained in a supercell of dimension Lc > LLIZ [64].
The local interaction zone will be moved through all sites of
the supercell. The supercell is repeated to restore the lattice
translation invariance, generating the set of K points. Given
a supercell Green’s function Ḡ(ω, K ) the Fourier transform

FIG. 2. Setups of the LIZ for conventional LSMS without em-
bedding (a), and with embedding scheme (b). The index Ic denotes
the center of the LIZ. Blue circles represent sites inside the LIZ while
the green circles represent the homogeneous effective medium.

provides the real space Green’s function in the supercell:

ḠIJ (ω) = 1

Nc

∑
K

eiKRIJ Ḡ(ω, K ), (1)

where K are the supercell wave numbers, with Nc the number
of sites in the supercell, defined in the same way as those
in DCA [57]. The indices (I, J ) cover all lattice sites within
the supercell. The corresponding LIZ Green’s function has the
form

ḠLIZ
IJ (ω) = 1

Nc

∑
K

eiKRIJ Ḡ(ω, K ), (I, J ) ∈ LIZ, (2)

where Ḡ(ω, K ) is defined through the coarse-graining proce-
dure as

Ḡ(ω, K ) = Nc

N

∑
k̃

1

ω − ε(K + k̃) − �l (ω)
. (3)

The local effective self-energy is denoted by �l (ω) and ε(K +
k̃) is the lattice dispersion. The supercell wave numbers K
correspond to the Nc cells that divide the first Brillouin zone
equally. The wave numbers k̃ label the wave numbers within
each cell surrounding K . The supercell is embedded into the
effective medium, represented by �l present at all supercell
sites. Therefore, LIZ sites (contained in the supercell) experi-
ence the presence of the effective medium. Consequently, we
may rewrite the real space LIZ Green’s function ḠLIZ(ω) in
the following form:

ḠLIZ(ω) = [ω · I − t ′ − �l (ω) · I − �LIZ(ω)]−1. (4)

The underline indicates matrices of dimension LLIZ × LLIZ

corresponding to the number of sites contained within the LIZ.
The hopping matrix elements within the LIZ are given by (t ′),
and I is the corresponding identity matrix. The hybridization
function between the LIZ and the effective medium is �LIZ(ω)
and the LIZ excluded Green’s function can be defined as

G(ω) = [ω · I − t ′ − �LIZ(ω)]−1. (5)

We do not explicitly evaluate the hybridization function
�LIZ(ω); instead we directly calculate the LIZ excluded
Green’s function using

G−1(ω) = [ḠLIZ(ω)]−1 + �l (ω) · I. (6)
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FIG. 3. The self-consistency loop for the CPA/TMT embedding
method.

Here G(ω) is the real space Green’s function inside the LIZ
in the absence of disorder. Accordingly, G(ω) takes the same
values for all possible LIZs obtained by running the center
of the LIZ (Ic) through each sites in the supercell. Within the
supercell we include the disorder potential, and we calculate
the Green’s function within each LIZ centered around the
site Ic:

[GLIZ(ω,V, Ic)]−1 = G−1(ω) − V (Ic), (7)

where V (Ic) is a diagonal matrix of size NLIZ. Note that
the matrix GLIZ(ω,V, Ic) has the same dimension. The index
Ic (the center of the LIZ seen in Fig. 2) serves also as an
additional label indicating the presence of disorder at that
specific site.

We average GLIZ(ω,V, Ic) over the different LIZ realiza-
tions within the supercell, which is expressed as 1

Nc

∑
Ic

(· · · )
and over the disorder configurations, which is indicated by the
angle brackets 〈· · · 〉V . We employ two types of averaging, for
the effective medium:

(1) Linear average (CPA):

GLIZ
ave (ω) = 1

Nc

∑
Ic

〈GLIZ(ω,V, Ic)〉V , (8)

and for the typical medium:
(2) Typical average (TMT):

GLIZ
typ (ω) = e1/Nc

∑
Ic 〈ln [ρIc Ic (ω,V,Ic )]〉V

× 1

Nc

∑
Ic

〈
GLIZ(ω,V, Ic)

ρIc Ic (ω,V,Ic )

〉
V

, (9)

where the density ρIcIc (ω,V, Ic) is the density at the center of
the LIZ defined as

ρIcIc (ω,V, Ic) = − 1

π
Im[GLIZ(ω,V, Ic)]Ic,Ic . (10)

To obtain the typical value, we perform a geometric average of
the local density of states at the center of the LIZ over all the
LIZs and disorder configurations, which is expressed as the
exponential term in Eq. (9), while the second multiplicative
term of Eq. (9) is a linear average of the whole LIZ Green’s
function that is normalized by the density of states at its center.

In Fig. 3 we present the self-consistency loop for both
CPA and TMT embeddings as described above. The central

quantity to be iterated within the self-consistent calculation is
the local effective self-energy �l (ω). This can be computed
as

�l (ω) = [G−1(ω)]Ic,Ic − [
GLIZ−1

ave(typ)(ω)
]

Ic,Ic
, (11)

where GLIZ
ave(typ)(ω) is the disorder-averaged GLIZ(ω,V ). When

constructing the typical Green’s function for the TMT em-
bedding, we replace GLIZ

ave (ω) by GLIZ
typ (ω) in the calculation

of the local self-energy �l (ω) [Eq. (11)]. In Eq. (9), the
sum is over the sites Ic in the supercell. The typical Green’s
function is constructed in the spirit that its imaginary part
gives the geometric average of the LDOS for the central sites
in all the LIZs in all the disorder configurations. This quantity,
called theTDOS, serves as an order parameter to describe
the localization transition [55]. In the limit of weak disorder
the difference between the TDOS and the normal DOS is
negligible and Eq. (9) reduces to the normal averaged Green’s
function, Eq. (8); consequently, the TMT embedding reduces
to the CPA embedding.

The coarse-graining procedure of Eq. (3) is due to the fact
that the supercell is effectively embedded in the same effective
medium as the LIZ. For the case of supercell size Nc = 1,
Eq. (3) reduces to the local (momentum independent) Green’s
function. In this case NLIZ will also reduce to 1; therefore,
the LIZ Green’s function from Eq. (1) also becomes local.
Consequently, our method reduces to CPA or TMT depending
on how we perform the disorder averaging.

Note that a full matrix inversion is required only within the
LIZ. Thus, both the CPA and the TMT-based LIZ algorithms
scale like NcN3

LIZ, where the prefactor is due to the need to
solve Eq. (11) at the LIZ centered on every site in the system.
In the TMDCA formalism, the calculation scales as N3

c . Since
NLIZ � Nc, the proposed embedding method significantly re-
duces the computational cost compared to TMDCA.

V. RESULTS

In the following we apply the above embedding method to
the single-band 3D Anderson model with the Hamiltonian:

H = −t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) +

∑
iσ

Viniσ . (12)

The first term describes electrons with spin σ , hopping with
the amplitude t , between sites i and j (only nearest-neighbor
hopping is included). The second term describes static scatter-
ing processes on the local disorder center. The local potential
Vi is modeled as the random number drawn from a uniform
box distribution, p(V ) = 1

2W 	(W − |V |). By the condition
4t = 1 the energy units are fixed. In the calculation, we choose
cubic supercells of size Nc = L3

c . The corresponding LIZ
volumes are also of cubic shape with size NLIZ = L3

LIZ. The
calculations were performed for a total of 400 disorder real-
izations with the proper disorder averaging. Calculations are
performed in the thermodynamic limit despite the finite size
of the LIZ. This is a consequence of the fact that the supercell
containing LIZ is embedded into an effective medium. Note
that embedding schemes lead to faster convergence rates in
size for both supercells as well as for LIZs [40].
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FIG. 4. Comparison of the average DOS (solid curves) and the
typical TDOS (dashed curves) at different supercell sizes Lc =
4, 6, 8, 10 with fixed LIZ size LLIZ = 3. The disorder strength is set
to be W = 2.0. Inset: Comparison of DOS and TDOS at the band
center with supercell size Lc = 10 and three different LIZ sizes: 3, 5,
and 7. They are independent of the size of the LIZ.

Figure 4 shows the comparison of average and typical DOS
for different supercell sizes. We also plot in the inset the DOS
and TDOS at the band center as a function of the LIZ size. As
the size increases from 3 to 7 both DOS and TDOS remain
almost unchanged; therefore, in the following we will show
only results obtained for LLIZ = 3.

The other relevant length scale is the size of the supercell
Lc. We performed calculations for different supercell sizes
keeping fixed LLIZ = 3, as shown in the main panel of Fig. 4.
As can be seen, DOS results show no significant change for
different supercell sizes. On the contrary, the magnitude of
TDOS decreases slowly with the increase of the supercell
size Lc. Since the TDOS defines the order parameter of the
Anderson localization, it vanishes at the critical transition
point [5]. In order to compute the value of the critical disorder
strength Wc for each supercell, we extrapolate linearly the
values of TDOS at the band center towards zero. Data to be
extrapolated are taken form calculations performed for sets of
disorder strengths in the vicinity of the critical value Wc ≈ 2.1
[42–49].

In the following we investigate how effective the typical
embedding scheme is in capturing Anderson localization as
a consequence of strong disorder. In Fig. 5, we plot the
TDOS(ω = 0) at the band center as a function of disorder
strength W . The Anderson transition is then defined by van-
ishing TDOS(ω = 0) above the critical disorder strength Wc.
We can do a further extrapolation of Wc vs 1/Lc to estimate the
critical disorder strength Wc in the thermodynamic limit. This
is shown in the inset of Fig. 5. The extrapolated value Wc =
2.09 turns out to be in excellent agreement with the exact
results Wc ≈ 2.10 [42–49]. The other quantity that is also
sensitive to the localization physics is the inverse participation
ratio. The typical value of this quantity was studied in the
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c/4
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FIG. 5. Extrapolation of TDOS at the band center as a function
of disorder strength W for for various supercell sizes with fixed LIZ
size LLIZ = 3. Inset: extrapolation of the critical disorder strength Wc

to the thermodynamic limit.

finite size system which shows a critical behavior close to
the transition region upon a finite size scaling [65]. We also
calculate the generalized inverse participation ratio in our
TMT embedding method; as shown in the Appendix, it has
the similar behavior as that in Ref. [65] and also captures the
localization physics.

In conclusion, we have developed a method for disordered
systems, which takes advantage of a LIZ construction to effi-
ciently compute the local Green’s function corresponding to a
supercell embedded into an effective medium. We apply this
method to a single-band 3D Anderson model. For a typical
effective medium embedding of the supercell we are able to
capture the physics of Anderson localization. The numerical
extrapolation predicts an accurate critical disorder strength for
the localization transition. We find the embedding method has
a quick convergence as the LIZ size, and hence reduces the
computational effort.

The present method may serve as a guide for developing an
efficient typical medium embedding scheme in the multiple-
scattering framework. Eventually, this allows first-principles
studies of the localization effects in functional materials con-
taining disorder.
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APPENDIX: BEHAVIOR OF THE GENERALIZED
INVERSE PARTICIPATION RATIO

We also calculate the generalized inverse participation ratio
using Eq. (1) of Ref. [65].

G2(ω) =
∑

Ic
ρIcIc (ω, Ic)2

[ ∑
Ic

ρIcIc (ω, Ic)
]2 . (A1)

G2(ω) is obtained in the last step after the self-consistency
loop convergence is reached and the summation of Ic goes
over the whole supercell. We calculate the typical value of
G2(ω) at the band center using Eq. (16) of Ref. [65].

Gtyp
2 (ω) = exp[〈lnG2(ω)〉V ], (A2)

where the geometric average is done over the disorder con-
figurations. The results are shown in Fig. 6, and are similar
to those of Fig. 4(a) of Ref. [65]. For the weak disorder case,
the slope is close to a constant, while for the strong disorder
case, the slope decreases as the supercell size increases, which

0.1
1/Lc

0.001

0.01

0.1

G
2ty
p

W/4t=1.0
W/4t=1.2
W/4t=1.4
W/4t=1.6
W/4t=1.8
W/4t=2.0
W/4t=2.2

FIG. 6. The typical generalized inverse participation ratio calcu-
lated using the typical medium embedding formalism as a function
of supercell size, with various disorder strength. The supercell sizes
used are Ls = 4, 5, 6, 7, 8, 10 and the LIZ size is fixed with LLIZ = 3.

is consistent with the behavior of the localized states. This
further justifies that our method can capture the localization
physics.
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