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Analysis of the low-temperature phase in the two-dimensional long-range diluted XY model
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The critical behavior of statistical models with long-range interactions exhibits distinct regimes as a function
of ρ, the power of the interaction strength decay. For large enough ρ, ρ > ρsr , the critical behavior is observed to
coincide with that of the short-range model. However, there are controversial aspects regarding this picture, one
of which is the value of the short-range threshold ρsr in the case of the long-range XY model in two dimensions.
We study the 2D XY model on the diluted graph, a sparse graph obtained from the 2D lattice by rewiring links
with probability decaying with the Euclidean distance of the lattice as |r|−ρ , which is expected to feature the
same critical behavior of the long-range model. Through Monte Carlo sampling and finite-size analysis of the
spontaneous magnetization and of the Binder cumulant, we present numerical evidence that ρsr = 4. According
to such a result, one expects the model to belong to the Berezinskii-Kosterlitz-Thouless universality class for
ρ � 4, and to present a second-order transition for ρ < 4.
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I. INTRODUCTION

The two-dimensional (2D) XY model is one of the most
relevant models in statistical mechanics since it describes the
Berezinskii-Kosterlitz-Thouless (BKT) phenomenology, the
paradigm of topological phases [1] which cannot be described
by conventional symmetry breaking and long-range order. The
BKT phenomenology [2] is exhibited by a wide variety of
physical systems in two dimensions: Film superfluids [3] and
superconductors [4,5], superconducting arrays (see references
in Ref. [6]), cold atomic systems [7,8], and quantum many-
body systems in 1 + 1 dimensions [9], among others.

Moreover, the XY model exhibits an important theoretical
interest per se. It is used as a playground for the theories of
critical phenomena [10,11], of disordered systems [12–15] of
the chirality transition [16,17], of fractional dimensions [18],
of long-range interactions [19,20], of dynamical synchro-
nization [21] and of phase transitions in complex networks
[22–24].

A question of particular theoretical interest regarding the
XY model is the possible generalization of the BKT phe-
nomenology on the regular 2D lattice with long-range inter-
actions decaying with the Euclidean distance of the lattice as
|r|−ρ [25,26]. The question is framed in a more general topic
regarding the behavior of statistical models in d dimensions
with long-range interactions, which has been the subject of
vast literature. The critical behavior of these models is char-
acterized by the value of ρ: They may either belong to the
mean-field universality class (for ρ � ρmf), or to a non-mean-
field universality class with ρ-dependent critical exponents
(for ρmf � ρ � ρsr), or to the short-range, d-dimensional
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reference lattice universality class (for ρ � ρsr), where ρmf ,
ρsr are d- and model-dependent numbers. It is known, in-
deed, that increasing the long-range character of the inter-
action (by decreasing ρ) in the long-range O(n) model on
a d-dimensional lattice, leads to a critical behavior that is
equivalent to that of a short-range model in an equivalent
fractional dimension, De(ρ) � d [18,19]. In particular, the
self-consistent relation for De is De(ρ) = 2[d − ηsr (De(ρ))]/
(ρ − d ), where ηsr (D) is the anomalous dimension of the
short-range model in D fractional dimensions. This relation is
known as the short long-range equivalency. While in the limit
n → ∞ it is exact, for finite n there exist several controversial
aspects of the long -short-range mapping (see references in
Ref. [27]), and the validity of the expression for De(ρ) near
the short-range threshold ρ ↘ ρsr is still openly debated.

One of the most debated question in this context is the
value of ρsr. Fisher et al. [28] first put forward the pres-
ence of the three regimes: For d < ρ � 3d/2, the critical
behavior coincides with that of the mean-field model; for
3d/2 < ρ � ρsr, the system exhibits non-mean-field, peculiar
critical exponents depending on ρ; finally, for ρ > ρsr, the
critical behavior is expected to coincide with that of the short-
range model in d dimensions (recovered for ρ → ∞). They
proposed that ρsr = 2 + d and that, for 3d/2 < ρ � ρsr, the
anomalous dimension is η(ρ) = 2 + d − ρ. In this context,
at ρ = ρsr = d + 2, η(ρ) exhibits a discontinuity from 0 to
ηsr = η(∞), i.e., the value of the anomalous dimension in the
short-range model.

However, Sak [29] introduced a different picture in which
η(ρ) = 2 + d − ρ is continuous and the long short-range
transition arises when ρsr = 2 + d − ηsr (the value for which
η(ρ) = ηsr). This picture was confirmed by Monte Carlo
(MC) simulations for the Ising model [30] and contrasted
by subsequent numerical work [31,32] which proposed a
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non-mean-field correction to η(ρ) recovering ρsr = 2 + d , as
in Fisher’s work. Recently, further numerical work [27] has
shown that logarithmic corrections undermine the numerical
estimation of the critical exponents in Refs. [31,32] and they
propose Sak’s theory as the simplest explanation for the
observed results. Moreover, Sak’s result ρsr = 2 + d − ηsr has
been recovered by using the functional renormalization group
beyond the local potential approximation,[19] the equivalence
of the free-energy finite-size scaling [27,33–35], and perturba-
tion theory [36,37].

The value of ρsr in the case of the 2D XY model (n = 2,
d = 2) is particularly controversial. A blind application of the
functional renormalization group provides, for the anomalous
dimension of the 2D XY model, ηsr (n, d ) = 0 and, hence,
ρsr = 4 [19,38]. However, at the BKT transition η(BKT)

sr = 1/4
and, consequently, the application of Sak’s formula would
give ρsr = 3.75, which is consistent with the numerical results
of Ref. [24]. We notice that, for the 2D XY model, ρsr

separates two completely different critical behaviours: For
ρ > ρsr, a topological phase transition takes place, while
for ρ < ρsr, a standard transition to a magnetic phase is
expected.

If the correct value was ρsr = 3.75, the system would
present a peculiar phase for ρ ∈ (3.75 : 4). As a matter of fact,
it is known that the existence of a magnetized low-temperature
phase for continuous symmetry models on a graph is deter-
mined by its spectral dimension, ds: The generalized Mermin-
Wagner theorem and its inverse proved in Refs. [22,39] indeed
state that the XY model presents spontaneous magnetization
if and only if ds > 2. The value of ds has been calculated
in Ref. [40] for a 2D lattice with long-range interactions
showing that ds > 2 as soon as ρ < 4. As a consequence, the
long-range 2D XY model is expected to exhibit spontaneous
magnetization at undercritical temperatures for ρ < 4 and
absence of spontaneous magnetization for ρ � 4, in agree-
ment with further exact results [41–45]. Therefore, ρsr = 3.75
would imply that for 3.75 < ρ < 4, the system would be both
magnetized and it would feature some characteristics of the
BKT class, making the interval ρ ∈ (3.75 : 4) particularly
interesting.

An important point is that much about the critical behavior
of the long-range XY model has been studied when it is de-
fined on the long-range diluted graph, a sparse graph obtained
from a regular lattice with links rewired with probability
decaying according to the same power ρ of the interaction
decay. Interestingly, the diluted graph interpolates between the
reference (regular) lattice in d dimensions, for ρ → ∞, and a
random graph, for ρ → 0 [33]. Moreover, the numerical study
in Ref. [24] suggests that the long-range diluted graph has
the same spectral dimension as its fully connected long-range
counterpart.

It is, hence, expected that (ρ, d )-long range diluted O(n)
models in d dimensions present the same universality class
as their fully connected equivalents with long-range inter-
actions, decaying with the same power ρ of the distance
in a d-dimensional lattice [27,33–35,46]. This is expected
to happen for diluted graphs with an intensive number of
links, Nl = cN/2, where c is the coordination number of the
regular d-dimensional lattice recovered for ρ → ∞ (diluted
O(n) models may also exhibit a first-order phase transition

depending on the degree of dilution [47,48]). Such long-
range/diluted mapping is believed to hold; it is known to be at
least approximately valid and it has been studied in Ref. [24]
in the case of the 2D XY model. Therefore, the long-range
diluted graph provides a valid testing ground to investigate
the nature of the XY low-temperature phase and the value
of ρsr.

In this paper, we study the long-range diluted XY model
and we provide rather unambiguous numerical evidence of the
fact that in the interval 3.75 < ρ < 4, the system (1) presents
spontaneous magnetization and (2) is not scale invariant for
undercritical temperatures. These results confirm the gener-
alised Mermin-Wagner direct and inverse theorems [22,39]
and suggests, in agreement with Ref. [19], that the long-range
XY model belongs to the BKT universality class as far as
ρ > ρsr = 4.

In the following section, we will define the model. In
Sec. III, we will present the numerical protocol that we have
used, and the objectives of our paper. Section IV is to present
the results, while our conclusions are drawn in Sec. V.

II. THE LONG-RANGE DILUTED XY MODEL

The long-range diluted XY model is defined by the Hamil-
tonian

H[{si}] = −
∑
i< j

Ai jsi · s j, (1)

where s j , j = 1, . . . , N , is the degree of freedom of the jth
site, is a 2D vector with unit norm, and where A is the
adjacency matrix, Ai, j = 0, 1, of an undirected network that
belongs to the ensemble of long-range dilute graphs. They
are such that the probability of a link between two sites i, j,
Ai j = 1 is proportional to |ri j |−ρ , being |ri j | its distance in a
reference hypercubic d-dimensional lattice, constrained such
that the number of links in the graph is a fixed, extensive num-
ber, Nl = ∑N

i< j=1 Ai j , being Nl = 2N for periodic boundary
conditions (for details on the numerical construction of this
graph see Ref. [24] and Appendix B). When ρ → ∞, only
nearest neighbors of the original d-dimensional lattice survive
since their probability is infinitely larger than that of longer
range links, while, in the limit ρ → 0, the probability of a
given link does not depend on ri j , and the ensemble of graphs
coincides with the Ërdos-Rényi ensemble with N nodes and
Nl links. In Fig. 1, we show three realizations of long-range
dilute graphs for d = 2, N = 162, and three values of ρ.

FIG. 1. A graphical illustration of three realizations of the long-
range diluted graph. The reference lattice is a d = 2, N = 162, square
lattice with free boundary conditions, with ρ = 2, 4, and 8 (from left
to right). The total number of links is constant, Nl = 2(N − N1/2).
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As we already mentioned in the Introduction, it is believed
that the critical behavior of (d, ρ)-diluted models coincides
with that of their long-range equivalents at the same value of
d and ρ. Indeed, in Ref. [24], for the XY model in d = 2, the
three regimes (mean field, ρ-dependent non-mean field, short
range) have been found, with strong numerical evidence for
ρmf = 3d/2 and a moderate numerical evidence for the more
subtle estimation ρsr � 3.75. However, the question of the
presence of spontaneous magnetization has not been directly
addressed in Ref. [24].

As explained in the Introduction, the XY model is known
to present spontaneous magnetization only when defined in
graphs of spectral dimensions ds > 2 [22,39]. Both for the
long-range and the diluted graph, the spectral dimension is
known to be [24,40]

ds = ∞, ρ � d, (2)

ds = 2d

ρ − d
, d < ρ � 2 + d, (3)

ds = d, d � 2 + d. (4)

According to this result, we expect to find spontaneous mag-
netization in the d = 2 long-range dilute XY model as far as
ρ < 4, and no magnetized phase when ρ > 4. This fact may
induce us to propose the following excluding possibilities.
(A) ρsr = 3.75 and in the interval ρ ∈ (3.75:4), the model
presents an anomalous behavior, with some traits in common
with the BKT phase but, at the same time, with spontaneous
magnetization. (B) ρsr = 3.75 and in the interval ρ ∈ (3.75 :
4), the model presents standard BKT transition. In this case,
the inverse Mermin-Wagner extension [22] would not hold for
some reason in long-range systems. (C) ρsr = 4: The BKT
phase disappears at the same value of ρ at which a magnetic
state arises.

This motivates the study of the critical behavior for ρ ∈
(3.75 : 4). We will show that our numerical results are com-
patible with hypothesis (C) since the system at low temper-
ature presents spontaneous magnetization and no scale in-
variance, confirming the generalized inverse Mermin-Wagner
theorem [22].

III. METHODS

We will numerically address, by means of MC sampling
and finite size scaling, whether the long-range diluted 2D
XY model presents spontaneous magnetization and whether
it presents scale invariance for ρ in the interval (3.75 : 4).
For this purpose, we will focus on the case ρ = 3.875 in the
middle point of the interval under study. For this value of
ρ = 3.875, according to Eq. (4), ds � 2.1333. As a reference
comparison, we have also considered ρ = 4.5, for which the
system is expected to belong to the BKT universality class and
to present no spontaneous magnetization at low temperatures.

A. Fluctuations and error estimation

Two different sources of fluctuations are present in the
average of a generic observable O: First, the thermal fluc-
tuations, [〈O2〉 − 〈O〉2]; second, the fluctuations due to the
different realizations of the graph topology, [〈O〉2] − [〈O〉]2,

where 〈·〉 represents the ensemble average for a given real-
ization of the graph, and [·] represents the average over the
ensemble of long-range diluted graphs with power ρ. As error
bars in our numerical calculations, we have considered the lat-
ter, since it is, by definition, larger (see Appendix A). The cal-
culation of both quantities can be used to evaluate the relative
influence of intergraph fluctuations with respect to thermal
fluctuations within a given graph.

Algorithmically, the ensemble average 〈·〉 is estimated
by the average 〈·〉MC over successive configurations of the
MC Markov chain with a given initial condition, sequence
of random numbers and graph realization, while [·] is esti-
mated by [·]MC, the average over different realizations of the
Markov chain and the random graph (see further details in Ap-
pendix A). The MC dynamics provides correlated sequences
of observable estimations. The correct error estimations can
be computed through the jacknife method, which accounts for
such a correlation (see Ref. [49] and Appendix A). From now
on, we will refer to [·]MC and 〈·〉MC simply as [·] and 〈·〉.

B. The observables

1. Spontaneous magnetization

The spontaneous magnetization will be evaluated as the
average [〈|m|〉](N, β ) of the observable:

m({s j}) = 1

N

N∑
j=1

s j . (5)

As we explain in Appendix A, all the observables depend-
ing explicitly on the components of the magnetization (mx,
my) present a high correlation time, much longer than the
simulation time, while this is not the case for the observ-
ables depending only on its modulus |m| (see Appendix A).
The absolute value of the magnetization [〈|m|〉] is, hence,
a suitable quantity to numerically address whether a system
presents spontaneous magnetization for undercritical tem-
peratures. A system without spontaneous magnetization in
the thermodynamic limit, limN→∞[〈|m|〉](N, β ) = 0, would
exhibit a residual spontaneous magnetization at finite sizes,
[〈|m|〉](N, β ) > 0 that is, however, expected to decrease as a
homogeneous power law for large N : [〈|m|〉](N, β ) ∼ N−a(β ).
Vice versa, a system presenting spontaneous magnetization
would present a residual magnetization in the limit of large N :
limN→∞[〈|m|〉](N, β ) > 0. As a numerical strategy to address
the presence/absence of spontaneous magnetization, we will
check the absence/presence of an homogeneous power law
dependence on N of [〈|m|〉](N, β ).

2. Scale invariance

The question of the presence of scale invariance is ad-
dressed by means of the analysis of the Binder cumulant:

B(N, β ) = 2 −
[ 〈m4〉
〈m2〉2

]
. (6)

In the infinitely large N-limit, the Binder cumulant converges
to 1 and to 0 in the low and high-temperature phases, respec-
tively. Systems presenting a second-order phase transition ex-
hibit a crossing of the B(N, β ) curves in the β axis for various
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values of N . The crossing of the B(N, β ) and B(N/2, β ) curves
provides an estimation of the finite-size critical temperature
β∗(N ) that, in the large-N limit, converges with power-law
corrections in N to a single critical point, β∗ [49]. Oppo-
sitely, a system in the BKT universality class is expected to
present scale invariance for undercritical temperatures, hence
the Binder cumulant is expected to converge to a β-dependent
value for large N , B(∞, β ) < 1 for all values of β > β∗(N )
(see, for example, Refs. [24,50]); one expects a superposition
of different B(N, β ) curves for different, sufficiently large N’s
and for all β > β∗, rather than a crossing at β∗.

3. Other observables

We have also considered other thermodynamic quanti-
ties, mainly the susceptibility, χ (N, β ) = N[〈m2〉 − 〈m〉2];
the susceptibility of the modulus of the magnetization,
χ|m|(N, β ) = N[〈m2〉 − 〈|m|〉2]; the argument of the magne-
tization vector [〈arctan(my/mx )〉]; and the single components
of the magnetization, [〈mx〉]. In Appendix A, we present some
results regarding the correlation time of these observables.
However, our conclusions about the spontaneous magneti-
zation and the scale invariance are drawn from the study
of [〈|m|〉](N, β ) and B(N, β ). We will present them in the
following section.

C. Numerical protocol

1. Description of the simulations

For our analysis, we have employed MC sampling in
the canonical ensemble at inverse temperature β, using the
Metropolis algorithm [51]. We have simulated various val-
ues of β in the interval [0.7 : 1.1), in particular: β = 0.7 +
k(1.1 − 0.7)/32, k = 0, . . . , 31, and various values of the lin-
ear size L = N1/2 of the reference lattice (a square lattice with
periodic boundary conditions): L = 2� with � = 6, . . . , 10,
along with shorter simulations at two further values of L =
192, 384.

For each temperature, we have simulated an L-dependent
number Nr (L) of realizations of a diluted graph. For each
one, we have performed an L-dependent number of MC
sweeps devoted to observable sampling, nMCS(L), preceded
by a further 1/8 of nMCS(L) MC sweeps devoted to the
equilibration from the initial condition. The components of
the global magnetization [Eq. (5)] of each configuration have
been saved in memory every ts = 16 sweeps (so we have a
total of nmeas(L) = nMCS(L)Nr (L)/ts measures for each ob-
servable and inverse temperature). In Table I, we report nMCS

and Nr for the various simulations.

2. Equilibration checks

Due to the presence of logarithmic corrections near the
incriminated threshold ρ � 4 [27], the correlation times of the
relevant observables becomes rather large (see Appendix A),
and the MC thermaliszation and calculation of observables
is by far more subtle than that of the square lattice XY
model. For this reason, he have paid particular attention to the
analysis of equilibration times and to the error estimation of
the observables. As equilibration tests, for each of the relevant
observables, we have considered the averages as equilibrated

TABLE I. Length and number of realizations of the simulations.

ρ = 3.875 ρ = 4.5

L Nr (L) nMCS(L) nmeas Nr (L) nMCS(L) nmeas

64 20 1835008 2293760 20 1835008 2293760
128 20 1835008 2293760 20 1835008 2293760
256 20 1835008 2293760 20 1835008 2293760
512 15 1835008 1720320 20 1835008 2293760
1024 15 1835008 1720320 8 1835008 917504
192 100 114688 716800 100 114688 716800
384 100 114688 716800 100 114688 716800

as far as the corresponding correlation time, estimated through
the jacknife method (see [49] and Appendix A) is much lower
than the simulation time, and that the averages and standard
deviations of the observables performed over data blocks of
exponentially increasing length, become independent on the
block length (see Appendix A).

3. Software

To cope with the computational complexity of the prob-
lem, we have employed an efficient graphics processing unit
software for MC sampling of spin models in arbitrary sparse
topologies, developed by the authors of Ref. [24] in 2012,
whose performance, reaching below the nanosecond per spin
flip, was reviewed in Ref. [24]. The software exhibits several
improvements with respect to the 2012 version, especially
an improved algorithm for the efficient generation of the
long-range diluted graph for large values of ρ and N , that
turns necessary for the simulation of many realizations of
the L = 29 and L = 210 graphs, and that is described in
Appendix B.

IV. RESULTS

For both the analysis of [〈|m|〉] and of the Binder cumulant
B, we have considered a ρ-dependent set Bρ of 8 values of
β, which are reported in the legend of Fig. 2. Bρ is defined
by the subset of the simulated inverse temperatures that lie
in the interval [β∗

ρ : (0.925)−1β∗
ρ ], i.e., in an undercritical

temperature range whose length is 0.075 T ∗
ρ . The critical

inverse temperature β∗ for each value of ρ has been roughly
estimated by inspection of the Binder cumulant crossing (or
overlapping), see Sec. IV B and Fig. 4.

A. Spontaneous magnetization

We present the results concerning the quantity [〈|m|〉] in
Fig. 2, in which we plot ln[〈|m|〉](N, β ) versus ln N for each
of the two models, ρ = 4.5, ρ = 3.875. In Fig. 2 (left), we
report first the reference value ρ = 4.5, which we expect
to exhibit no spontaneous magnetization. We find, indeed, a
clear power law of the form ln[〈|m|〉](N, β ) � −a(β ) ln N
(the sum of squares residuals per degree of freedom of
the linear regression is lower than one for all the tem-
peratures β > β∗). The value of the exponent 2a(β ) in the
ρ = 4.5 case is reported in the inset of Fig. 2 (left) . Its
extrapolation to the estimation interval for β∗

4.5 (estimated
as explained in Sec. IV B) is compatible with its theoretical
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FIG. 2. Left: ln[〈|m|〉](N, β ) versus ln N for ρ = 4.5. Different curves correspond to different values of β > β∗
ρ in B4.5 (from bottom to

top, β increases). The lines are linear regressions whose summed squared residuals per degree of freedom are shown in the figure caption for
all β’s. Inset: The estimated exponent a(β ) vs β. The horizontal line indicates its predicted value at β∗

4.5, 1/16, while the thick green segment
over the horizontal line indicates the estimated interval for β∗

4.5. Right: Idem for ρ = 3.875.

expectation value, a = ηBKT/4 = 1/4. Indeed, in the BKT
universality class, 〈m2〉 is known to depend on N at fixed
undercritical temperatures as 〈m2〉(N, β ) ∼ N−η(β )/2, with
η(β ) → ηBKT as β ↘ β∗ [24]. Hence, supposing that the N
dependence at fixed β of 〈|m|〉 coincides with that of 〈m2〉1/2,
we expect that a(β ) converges to 1/16 as far as β ↘ β∗ for
ρ = 4.5 in the short-range regime.

The case ρ = 3.875, instead, cannot be fit into a linear
power law (the sum of squared residuals per degree of free-
dom of the linear regression is larger than one for all the tem-
peratures in B3.875, see the inset of Fig. 2 (right). The depen-
dence of ln[〈|m|〉](N, β ) on ln N is concave for ρ = 3.875,
it decreases slower than a power law, strongly suggesting the
presence of a nonzero homogeneous term, [〈|m|〉](∞, β ) >

0. The concavity of ln[〈|m|〉](N, β ) vs ln N is more clearly
exposed in Fig. 3, where we report the estimation for the

exponent a(β ), through linear regression ln[〈|m|〉](N, β ) ∼
−a(β ) ln N of the data in Fig. 2 for different values of Nmin,
the minimum value of the interval [Nmin : 10242] used in the
regression (in abscissa). The case ρ = 4.5 presents a slope
independent of Nmin within its errors (obtained accounting
for the standard deviation of the input data in Fig. 2 through
orthogonal distance regression [52]). Oppositely, the ρ =
3.875 case presents a slope which decreases in absolute value
with Nmin, indicating that the ln[〈|m|〉](N, β ) is concave with
respect to ln N .

Furthermore, in Appendix C, we show further numerical
evidence of the fact that, in the ρ = 3.875 case, the average
modulus of the magnetization is compatible with the law:
〈|m|〉(N, β ) = μ∞(β ) + cρ,βN−x, with x � 1/8.

We conclude that the data regarding the absolute value
of the magnetization strongly suggests that the ρ = 3.875

FIG. 3. Left: Estimation of a(β ) from the fits of ln[〈|m|〉](N, β ) versus ln N in Fig. 2, versus the minimum value of the interval used for
the fit, Nmin, for ρ = 4.5. Different curves correspond to different β’s in B4.5 (from bottom to top β increases). Right: Idem, for ρ = 3.875.
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FIG. 4. Left: The Binder cumulant B(N, β ) vs β for ρ = 4.5. Different curves correspond to different values of N (from bottom to top N
increases). Lines are a guide to the eye. Right: Idem, for ρ = 3.875.

dilute XY model exhibits spontaneous magnetization below
the critical temperature, while for ρ = 4.5 this is not the case,
as predicted by the generalized Mermin-Wagner theorem.

B. Scale invariance

In Figs. 4 and 5 we show our estimations of B(N, β ), versus
β for several values of N , and versus N for several values of β,
respectively, for both ρ = 4.5 and ρ = 3.875. Our reference
simulation at ρ = 4.5 exhibits an overlap, under the statistical
errors, of the curves B(N, β ) for large N’s at undercritical tem-
peratures, as expected (see Sec. III), since the superposition is
a signature of the BKT universality class. Such a superposition

is absent in the ρ = 3.875 case, exhibiting, instead, the typical
crossing in continuous order transition.

The presence/absence of superposition is shown more
explicitly in Fig. 5, in which we report ln(1 − B(N, β )) as a
function of ln N for different values of β > β∗. In the ρ = 4.5
case, the values of B(N, β ) corresponding to the three larger
sizes N = 2562, 5122, 10242 coincide within their statistical
errors for lower values of β or, at most, they decrease with
a functional dependence on N which is slower than power
law, suggesting that B(∞, β ) < 1. Oppositely, for ρ = 3.875,
the behavior of 1 − B(N, β ) is consistent with a decay to
zero as a power law for all β > β∗, strongly suggesting that
limN→∞ B(N, β ) = 1, and that the B(N, β ) curves cross at

FIG. 5. Left: ln(1 − B(N, β )) vs ln N for ρ = 4.5. Different curves correspond to different values of β in B4.5 (from bottom to top β

decreases). Lines are a guide to the eye. Right: Idem, for ρ = 3.875. The straight lines are the result of a single linear regression of the three
larger sizes of all the temperatures, subject to a common slope among all β’s and a β-dependent intercept. The total sum of squared residuals
per degree of freedom is lower than one.

054203-6



ANALYSIS OF THE LOW-TEMPERATURE PHASE IN THE … PHYSICAL REVIEW B 100, 054203 (2019)

FIG. 6. Left: Intragraph and intergraph error of the Binder cumulant versus β for ρ = 4.5, N = 5122, according to the three methods
(1)–(3) discussed in the text. The error bar corresponds to the confidence interval at the 97.5% according to the χ2 distribution with number of
degrees of freedom m = Nr , m = nb = nMCS/b and m = nb = nMCSNr/b, respectively. Right: Idem, for ρ = 3.875.

a common value β∗ for sufficiently large N , as expected in
second-order phase transitions.

The regression in Fig. 5 is a single linear fit ln(1 −
B(N, β )) = −xB ln N + gβ of all the data sets, such that the
slope −xB is forced to be a common parameter for all the tem-
peratures and the intercept gβ is free to depend on the temper-
ature. The regression provides a slow dependence of 1 − B
with the size xB = −0.253(2), i.e., roughly the inverse of
the square root of the linear size L = N1/2. In Appendix C,
it is shown that such a slow dependence can be understood
under the assumption of a dependence on N of 〈|m|〉 of
the type 〈|m|〉(N, β ) = μ∞(β ) + cρ,βN−x with x � 1/8, a
dependence for which we also provide numerical evidence in
Appendix C.

We conclude that the data regarding the Binder cumulant
indicates that the ρ = 3.875 dilute XY model does not exhibit
scale invariance in an interval of undercritical temperatures,
contrary to the ρ = 4.5 system.

V. CONCLUSIONS

MC simulations of the ρ = 3.875 long-range diluted XY
model, based on the analysis of the Binder cumulant and
on the modulus of the magnetization, clearly indicate that
this model does present spontaneous magnetization, and does
not present scale invariance in an interval of undercritical
temperatures. Consequently, it does not seem to belong to the
BKT universality class, at least for what concerns these two
features. In turn, according to the arguments of Sec. II, this
suggests that the limit power of the BKT universality class
interval [ρsr : ∞] is ρsr = 4, in agreement with the results of
Ref. [19] or, more safely, that it is ρsr > 3.875.

These results are also a numerical confirmation of the
direct and inverse generalized Mermin-Wagner theorem for
the XY model on graphs [22,39]. Moreover, they suggest that
the XY model with long-range interactions, according to the
graph long-range equivalency discussed in Sec. I, exhibits at

least some features of the BKT universality class as far as the
power of the interaction decay is ρ > 4, and vice versa.

As side results, we have observed that (1) the modulus of
the magnetization of systems with ρ > 4 decreases as a power
law [〈|m|〉](N, β ) ∼ N−a(β ) for undercritical temperatures (an
estimation of the power a(β ) is reported in Fig. 2 for various
values of β). (2) The critical inverse temperatures of the
systems with ρ = 3.875 and ρ = 4.5, by inspection of the
Binder cumulant crossing and overlapping, respectively, are,
roughly, β∗

3.875 ∼ 0.795(5) and β∗
4.5 ∼ 0.962(5), in agreement

with those found in Ref. [24]. Furthermore, a rough estima-
tion of the residual spontaneous magnetization μ∞ in the
thermodynamic limit for ρ = 3.875 as a function of β is
presented in Fig. 9. We argue that 〈|m|〉 = μ∞(β ) + c(β )N−x

with x � 1/8 in this case, and we relate the exponent x
to that governing the finite-size dependence of the Binder
cumulant in the ferromagnetic phase, 1 − B ∼ N−xB with
xB � 1/4.

As remarkable methodological side results, of which we
provide detailed explanations in the Appendices, we have
observed that (1) the observables depending explicitly on the
magnetization components mx, my, and not on the modulus
of the magnetization |m|, do not reach thermal equilibrium in
simulation timescales, not even for moderate sizes N and for
the particularly low algorithmic cost of our parallel software.
(2) For a correct estimation of the observable uncertainty,
it is necessary to account for the fluctuations induced by
the average over the ensemble of diluted graphs [·2] − [·]2.
Such fluctuations are larger than the thermal fluctuations,
especially for graphs near the short-range threshold ρ ∼ ρsr,
and for critical and undercritical temperatures (see Fig. 6). In
Appendix B, we provide two numerical recipes to account
for the graph-to-graph fluctuations and consequent statisti-
cal errors, and for their increment with respect to thermal
fluctuations.

Possible completions of this work are the calculation of
the critical exponents from our simulated data by means
of the quotient method [49] and an investigation of the
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relationship of these results with the observation of the
so called supraoscillating dynamical phase of the XY in
graphs [53–57]. It is possible that such a state, presenting
particularly long correlation times, corresponds to graphs
with ds � 2 (or ρ ∼ 4), thus making evident the link be-
tween such a phenomenology and the results of the present
paper.
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APPENDIX A: ERROR ESTIMATION
AND CORRELATION TIMES

In this Appendix, we will refer to realization, a single
implementation of the MC Markov chain with given initial
conditions, sequence of random numbers, and realization of
the graph. The average over realizations is denoted by [·],
while the average over the nmeas temporal measures within a
single realization is denoted by 〈·〉.

1. jacknife error estimation in a single realization

Within a realization, the observables at different times are,
in general, correlated, so the statistical error associated to
the average of an observable 〈O〉 is larger than the naive
standard deviation of the sequence of measures, σO/nmeas

1/2.
We now explain the way in which the uncorrelated error, σr ,
of the ensemble average within the rth realization, 〈O〉r (or,
in general, in an arbitrary sequence of nmeas of observables),
is estimated. We have used the jacknife method for error
estimation [49,58]. The data set {m(t )}nmeas

t=1 of measures of
the total magnetization is divided into blocks of size b. The
jacknife estimator for the variance of 〈O〉 (not of O) is

σ 2
(b) = 1

nb − 1

⎡
⎣ 1

nb

nb∑
j=1

O2
( j,b) − O(b)

2

⎤
⎦, (A1)

where j runs from 1 to the number of blocks nb = int(nmeas/b),
O( j,b) is the observable averaged over the set of magnetiza-
tions in the jth block, and O(b) is the average over j of the
later quantity.

For large block size b, the square root of the jacknife vari-
ance, σ(b), does not depend on b within its statistical error (see
below) and it becomes a fair error for 〈O〉. This estimation
coincides with the one obtained from the more immediate
Bootstrap method [49,58]. However, the jacknife method also
allows for the estimation of the correlation time associated to
〈O〉 (given N , β, and the algorithm used) [49,58],

τ(b) = σ(b)
2

σ 2
O/nMCS

, (A2)

where σ(b)
2 is the jacknife variance for large enough block

sizes b, and σ 2
O is the naive variance of the series of O(t ) mea-

surements from which the average 〈O〉 has been computed.
The last equation has been used to estimate the correlation
times that we present in the following subsection.

We remark that the jacknife method not only allows us
to estimate the standard deviation of correlated variables, but
also to compute the error of an observable of the data O[{si}i],
beyond linear propagation, and to estimate the error of the
error (the error of σ 2

(b), since it obeys a χ2-distribution [58]).
We have used such an estimation for the error of the error to
estimate, given N , β and the observable, the minimum block
size bmin such that σ 2

(b) do not change within its errors for
b > bmin. Furthermore, the error of the error has been used
to plot the error bars corresponding to the various correlation
times, τ , in the following section.

Finally, the standard deviation associated to O within a
single realization r, σr , is estimated as σ(bmin ). Eventually, σr

may also be estimated as σ(bmin ) + s(σ(bmin ) ), where s(σ(bmin ) ) is
the error of σ(bmin ), obeying the χ2-distribution.

2. Intragraph and intergraph error estimation

As we have anticipated, we have estimated the statistical
uncertainty of the average (over graph and time) of a generic
observable, [〈O〉], in three different ways.

(1) As the jacknife error associated to different MC mea-
sures of a single graph realization, σr , averaged over many
realizations of the graph, [σr]/N1/2

r , where Nr is the number
of realizations and where [·] = (1/Nr )

∑
r ·.

(2) As the standard deviation of the single-realization
measure 〈O〉r over different realizations, ([〈O〉2

r ] −
[〈O〉r]2)1/2/N1/2

r .
(3) As the jacknife error associated to the MC measures

in the concatenated series of MC simulations corresponding
to different realizations, treating them as a single equilibrated
simulation in which also the graph realization has changed.

While (1) is the ensemble average, intragraph error of
[〈O〉] (averaged over graph realizations), (2) and (3) are
expected to coincide and to account for both the intergraph
realization and (intragraph) ensemble error of [〈O〉]. Indeed,
in the particular case in which [·] is performed over many
independent Markov Chain MC realizations with the same
graph, both definitions are equivalent, and they are expected
to coincide within their errors (of the error). For this reason,
when different graph realizations are averaged in [·], the (2)
and (3) errors are larger than or equal to (1) and the excess of
(2) and (3) with respect to (1) accounts for the amount of the
error due from the intergraph realization only.

In Fig. 6, we show a comparison between the three errors
for the Binder cumulant O = B, N = 5122, ρ = 4.5 and dif-
ferent values of β, in abscissa. At large temperatures, the fluc-
tuations become independent of the graph realization and the
three errors coincide, while in the scaling region around the
finite-size critical temperature and below the critical tempera-
ture, the influence of the graph is non-negligible. We conclude
that error (1), accounting only for the thermal fluctuations,
is an underestimation of the error in these kinds of systems,
in which the graph topological disorder induces nontrivial
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intergraph fluctuations. As error bars in all the figures of this
paper, we have consequently considered error (3).

3. Correlation times

We have estimated the correlation times of different ob-
servables by means of Eq. (A2) and using a dedicated, par-
ticularly long simulation with ρ = 4.5, N = 5122, β = 1.05,
nMCS � 1.34 · 108. In particular, we present τ(b) vs b in Fig. 7,
for a series of observables: The susceptibility, the modulus
square of the magnetization, the single component of the mag-
netization, the argument of the magnetization, the modulus
of the magnetization, the susceptibility of the modulus of the
magnetization, and the Binder cumulant:

χ/N = [〈m2〉 − 〈m〉2], (A3)

μ2 = [〈m〉2], (A4)

μx = [〈mx〉], (A5)

φ = [〈arctan(my/mx )〉], (A6)

μ = [〈|m|〉], (A7)

χ|m|/N = [〈m2〉 − 〈|m|〉2], (A8)

B = 2 −
[ 〈m4〉
〈m2〉2

]
. (A9)

As is apparent from Fig. 7, the correlation times of the ob-
servables explicitly depending on the single components mx,y,
through a functional dependence different from the modulus,
|m|, exhibit very large values of τ(b), much larger than the
simulation time nMCS ∼ 2 · 106 and, most importantly, they
increase monotonously with the block size in a statistically
significant way, indicating that τ(b) [and, consequently, the

FIG. 7. Estimated correlation times τ(b) of various averaged ob-
servables O in MCS units as a function of the block-size of the
jacknife algorithm, b, for ρ = 4.5, N = 5122, β = 1.05. Lines are
a guide to the eye. The horizontal line signals the number of MCS
used in our simulations, nMCS = 1.835 · 106.

error σ(b)] is an underestimation of the real correlation time
and, consequently, that the observable is not thermalized.
Oppositely, the observables depending on |m| only, exhibit a
value of τ(b) which is constant in b within their errors and that
is lower than the simulation time.

The correlation time of the observable |m| is moderate
(τ � 105): Independently of the average global angle of
the magnetization vector, the system quickly acquires the
equilibrium value of 〈|m|〉. However, the Hamiltonian is in-
variant under global rotations of all the spins, implying an
enormous correlation time of the observable φ and of all
observables explicitly depending on the single components of
the magnetization, whose error, proportional to τ(b) Eq. (A2),
is underestimated. This prevents equilibrium measurements of
the observables χ and 〈m〉, at least in this circumstance and
for the used algorithms.

For the rest of the observables, presenting a low correlation
time, the effective number of uncorrelated measures (given an
observable, N , β and ρ) is of the order of nmeas divided by the
correlation time in units of ts, or nmeasts/τ(b) [see Eq. (A2)].

APPENDIX B: EFFICIENT GENERATION OF DILUTED
LONG-RANGE GRAPHS

To perform accurate estimations of observables presenting
large correlation times, as is the case of the 2D long-range
diluted XY model with ρ � 4, an accurate estimation of the
error of the relevant quantities is crucial. We have already seen
that, for an accurate estimation of the error, it is necessary to
account for intergraph fluctuations (see Appendix A), hence
to perform averages over different realizations of the graph.

With this aim, we have implemented an improved version
of the algorithm used (and described in Ref. [24]) for the
generation of single realizations of the long-range diluted
graph. For large values of ρ, the original algorithm cost is
O[N2]. Indeed, the algorithm starts from a graph with zero
links, it considers a given random potential link; the link is
finally added with its probability, ∼|ri j |−ρ . For large ρ, only
nearest neighbors of the reference 2D lattice present a non-
negligible probability of being created. Since the fraction of
nearest neighbors is O[N−1], and the algorithm adds Nl = 2N
of them, the complexity becomes O[N2].

The improved algorithm first calculates and stores a prob-
ability distribution of a link exhibiting distance d = |ri j |,
P(d ) = d−ρg(d )/Z , where g(d ) is the multiplicity of d in
the reference lattice with the given boundary conditions, and
Z is the corresponding normalizing factor. Afterward, the
following set of operations is sequentially performed Nl times:
A distance, d , is extracted with its relative probability, P(d );
a lattice site i is then chosen at random; a random neighbor, j,
of i, is chosen at random among those satisfying the constraint
|ri j | = d , considering the given boundary conditions; the link
i j is then created. The neighbor j is taken from a lookup table,
and the construction of the list with all the possible distances
of the lattice is performed efficiently with the help of a hashing
algorithm, allowing for sublinear search in the list (to check
whether a given distance is already present in the list, in
this way avoiding a further ∼O[N2] cost). The algorithm has
been checked comparing the indistinguishability of the degree
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FIG. 8. Execution time (seconds) required by generation of a
ρ = 4 diluted graph versus the size of the graph N , according to
the 2012 algorithm (triangles) and to the updated version of the
algorithm, “algorithm 2” (squares), using a 2.5GHz Intel-6 CPU.
Straight lines are linear fits, whose slope is reported in the legend.

histograms of the old and new algorithms for various values
of ρ, N .

The complexity of the new algorithm is overlinear,
∼O[N
], with 
 � 1.6, albeit both the generation of P(d )
and the choice among the N neighbors at their chosen distance
d ← P(d ) are performed in linear time. The overlinear time
comes from the sorting of the list of possible distances ac-
cording to their probability P(d ), in turn used to calculate the
cumulative of P(d ) to extract d ← P(d ). Such an overlinear
part, however, can be easily cured in successive improvements
of the algorithm (by choosing a linear-time sorting algorithm).
In any case, the new algorithm is much faster, allowing the
generation of a N = 106 graph in roughly one minute, against
the ∼four hours of the former version (see Fig. 8).

APPENDIX C: FINITE-SIZE SCALING OF THE BINDER
CUMULANT IN THE LOW-TEMPERATURE PHASE

In Sec. IV B, we have shown that, in the ρ = 3.875 case
where the system is expected to exhibit a second-order phase
transition, the Binder cumulant approaches its thermodynamic
value, 1, with a slow power-law dependence with the size
1 − B ∼ N−xB with xB � 1/4. We will argue in this section
that such a law is compatible with a dependence of the
absolute value of the magnetization with the size of the
type

〈|m|〉(N, β ) = μ∞(β ) + cρ,βN−x, x � 1/8, (C1)

FIG. 9. Main figure: 〈|m|〉(N, β ) versus N−1/8 for all inverse
temperatures in the interval B3.875 (from bottom to top β increases).
The straight lines are linear regressions whose squared sum of
residuals per degree of freedom is reported in the legend. Inset:
Intercept of the fit, μ∞(β ) for all inverse temperatures, vs β. The
lines are a guide to the eye. The error is smaller than the point
marker.

where μ∞(β ) = 〈|m|〉(∞, β ), cρ,β is a function of ρ and β

only, and the exponent x � 1/8 for ρ = 3.875, independent of
temperature. Afterward, we will show that, indeed, the value
x � 1/8 is compatible with the results of our simulations.

We consider the XY model for ρ < ρ∗, when it presents
a second-order phase transition. We assume that the prob-
ability distribution of the magnetization in a single realiza-
tion of the graph is a product of two independent Gaus-
sian distributions on its components, given a single realiza-
tion of the graph and a single initial condition: pN (m) =
N (mx|μx, σ

2) × N (my|μy, σ
2). In the ferromagnetic phase,

μx,y are nonzero in general, while in the paramagnetic phase
they vanish. The variance of the distribution is proportional
to the susceptibility, σ 2 = χ/(2N ). We are interested in the
finite-size scaling of the quantity

〈m4〉
〈m2〉2

= μ4 + 8σ 4 + 8μ2σ 2

μ4 + 4σ 4 + 4μ2σ 2
, (C2)

where μ = |μ| = (μ2
x + μ2

y )2, as it results from Gaussian
integration. In the thermodynamic limit, the Binder cumulant,
Eq. (6), takes the values 1 and 0 in the ferromagnetic and
paramagnetic phases, respectively.

We will suppose that, in the low-temperature phase, the
N dependence of 〈|m|〉 is 〈|m|〉 = μ∞(β ) + cβN−x. We will
omit the β dependence of these constants, as we have done
with that of χ . This results in

〈m4〉
〈m2〉2

= (μ∞ + cN−x )4 + 8(χ/2)2N−2 + 8(χ/2)2N−1(μ∞ + cN−x )2

(μ∞ + cN−x )4 + 4(χ/2)2N−2 + 4(χ/2)2N−1(μ∞ + cN−x )2
. (C3)
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In the ferrogmagnetic phase μ∞ > 0, and it is the only term
of order 1 in N . Dividing the numerator and the denominator
by μ∞, it is

〈m4〉
〈m2〉2

= 1 + A1

1 + A2
∼ 1 − A1 + A2

1 + A2 + O
[
A3

1, A2
2

]
, (C4)

where A1,2 denote the numerator and denominator terms
decreasing with N . The leading term in N of this expres-
sion is in −A1 + A2

1 + A2, it is positive and of order ∼N−2x

(more precisely, it is μ6
∞c2N−2x). We obtain, hence, that the

introduction of an N dependence on μ leads to the following
leading finite-size dependence of the Binder cumulant:

1 − B ∼ N−xB , xB = 2x, (C5)

and where x is such that 〈|m|〉 = μ∞ + cN−x.
The observed value of xB � 0.25 requires, hence, x � 1/8.

Let us now present some evidence supporting that, in the

ρ = 3.875 case, the average modulus of the magnetization
is, indeed, compatible with the law Eq. (C1). This is shown
in Fig. 9, in which we show the average modulus of the
magnetization with respect to N−1/8, along with a linear
regression. The summed squared residuals per degree of free-
dom is lower than one for all the temperatures (in the ρ = 4.5
case, this quantity is larger than 5 for all the temperatures).
The intercept of the fit allows us to estimate the residual
magnetization μ∞(β ), shown in the inset of Fig. 9, according
to the assumption that x = 1/8.

We remark that x � 1/8 is not a numerical estimation from
the data but a guess with which the data is compatible, as
shown by the low values of the squared residuals per degree
of freedom in Fig. 9. The error bars of 〈|m|〉 are, however,
large enough so the data results compatible with other values
of x � 1/8 as well. The estimation xB � 1/4 and the guess
x � 1/8 are, however, compatible with each other through the
relation Eq. (C5), and both are compatible with the data.
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