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A two-dimensional electron gas in a high magnetic field displays macroscopically degenerate Landau levels,
which can be split into Hofstadter subbands by means of a weak periodic potential. By carefully engineering
such a potential, one can precisely tune the number, bandwidths, band gaps, and Chern character of these
subbands. This allows a detailed study of the interplay of disorder, interaction, and topology in two-dimensional
systems. We first explore the physics of disorder and single-particle localization in subbands derived from the
lowest Landau level, that nevertheless may have a topological nature different from that of the entire lowest
Landau level. By projecting the Hamiltonian onto subbands of interest, we systematically explore the localization
properties of single-particle eigenstates in the presence of quenched disorder. We then introduce electron-electron
interactions and investigate the fate of many-body localization in subbands of varying topological character.
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I. INTRODUCTION

The quantum Hall effect has been one of the most impor-
tant and well-studied physical phenomena in recent decades.
In the presence of a perpendicular magnetic field, the single-
particle states of a two-dimensional electron gas reorganize
themselves into highly degenerate Landau levels. In the high-
field limit, where the cyclotron energy is much larger than all
other energy scales in the problem, all the physics can be pro-
jected to the lowest Landau level (LLL) as inter-Landau-level
mixing becomes negligible. A disordered potential causes a
broadening of the LLL and is well understood as the ba-
sis of the integer quantum Hall transition [1]. In this case,
there is a subthermodynamic number of extended states with
Chern number C = 1 at the center of the LLL [2]. On the
other hand, in the presence of a periodic potential, the LLL
splits into an intricate set of Hofstadter subbands [3]. The
spectral properties and topological character of the subbands
depend on the details of the periodic potential in a fine-tuned
manner.

The addition of weak disorder to the Hofstadter problem
causes the topologically nontrivial subbands to acquire critical
energies, each with a diverging localization length [4–7]. The
scaling theory of localization predicts that all the single-
particle states in a two-dimensional subband will be localized
if it does not have a topological character (i.e., its Chern
number is zero). When the strength of disorder is increased,
the subbands broaden and critical energies corresponding to
opposite Chern numbers annihilate each other in this process.
Finally, at a disorder much stronger than the periodic poten-
tial, the Hofstadter subbands are washed away and the LLL
problem with a single critical energy is recovered.

The role of disorder in the presence of a periodic potential
has been studied in continuum and lattice single-particle
models as well as experimentally in the context of its implica-
tions on the Hall conductivity, electron localization, and crit-
ical exponents [5,8–21]. However, the idea that the periodic

potential can be carefully engineered to isolate both topolog-
ical subbands with Chern numbers other than +1 (the LLL
value), as well as topologically trivial subbands with zero
Chern number, has not received as much attention in the
studies of disordered systems.

In this paper, we first explore various ways of creating
Hofstadter subbands with large band-gap-to-bandwidth ratios.
This enables us to safely neglect intersubband mixing and
allows us to project all the physics to one or a few subbands,
even when disorder and electron-electron interactions are
present.

It is well known that electron-electron interactions stabilize
a gapped fractional quantum Hall phase at specific filling frac-
tions of the LLL. The addition of disorder causes a ground-
state transition to an Anderson insulator [22,23]. However, the
highly excited states of the many-body spectrum do not show
a corresponding localization transition [24]. This is argued
to be a consequence of the diverging localization length in
the single-particle spectrum, which delocalizes all many-body
states in the presence of interaction [25].

Many-body localization (MBL) has been the subject of
a considerable amount of work in the past decade [26–31].
The existence and stability of the MBL phase in one di-
mension is by now well established thanks to a combination
of numerical and theoretical methods [32–39], including a
mathematical proof for the case of short-range interactions
[40,41]. However, many open questions remain, including the
fate of the MBL phase in dimensions greater than one [42–48],
the impact of long-range interactions [49], and the importance
of rare region effects on the stability of the MBL phase
[50–53].

Our construction of nearly flat topological and nontopo-
logical bands in the LLL allows us to study the disordered
and interacting problem in a projected Hilbert space in a two-
dimensional continuum model. It also enables us to decouple
the effects of dimensionality and topology in destabilizing
MBL in the LLL.
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This paper is organized as follows. In Sec. II, we set up
the single-particle version of this problem and describe two
methods for creating flat subbands. In Sec. III, we analyze
the effects of disorder on single-particle flat-band models.
We perform numerical exact diagonalization and use the
inverse participation ratio of wave functions as a metric of
localization. In Sec. IV, we study the many-body problem in
the presence of electron-electron interactions and use eigen-
value level statistics as well as memory of initial conditions
under unitary dynamics as diagnostic tools for characterizing
the ergodic-to-localized phase transition. We summarize our
conclusions in Sec. V.

This paper is an extension of our previous work [54].
There, based on spectral statistics, we argued that there is
evidence for an ergodicity breaking transition in topolog-
ically trivial LLL subbands in the one-dimensional limit.
Results for two-dimensional scaling were not conclusive,
showing a finite-size drift of the putative transition point.
This work has two aims: (i) to describe in detail the single-
particle localization properties of the models studied, clarify-
ing the genuine many-body nature of our previous results, and
(ii) to corroborate and extend those results. In particular, these
extensions include (i) a method for splitting the LLL into
nearly flat subbands of arbitrary Chern number, which enables
the study of (de)localization in higher-Chern bands; (ii) a
more thorough two-dimensional finite-size scaling of one of
our models; and (iii) an additional metric, beyond the level
spacing statistic, to independently diagnose the breaking of
ergodicity.

II. SINGLE-PARTICLE PROBLEM WITHOUT DISORDER

In the high-field limit, the cyclotron energy and Zeeman
splitting become arbitrarily large; as a result, we can work
with Hamiltonian of spin-polarized electrons

HLLL = PLLLV1-bodyPLLL, (1)

where PLLL is the projector onto the LLL. We consider a
torus of dimensions Lx and Ly, enclosing Nφ = LxLy

2π l2
B

flux

quanta, where the magnetic length lB = √
h̄/eB. We study two

different examples of V1-body.

A. Lattice of point impurity scatterers

The first model we consider is a lattice of pointlike impu-
rities, modeled by δ functions [55]:

V1-body(r) = −V0

∑
n1,n2

δ(r − n1a1 − n2a2), (2)

where a1 and a2 are the primitive lattice vectors. The total
number of delta functions Nδ is such that Nφ

Nδ
= p

q , for co-
prime integers p and q. If Nδ < Nφ , we obtain p − q de-
generate bands at E = 0. This manifold is topological with
total Chern number C = 1. The remaining q bands are non-
topological and are centered around energy −V0 [Figs. 1(a)
and 1(b)].

Our ultimate goal is to study the effect of disorder and
interaction on the nontopological split-off bands derived from
the LLL. Thus, we seek to pull out as many states as possible
from the E = 0 band (Nδ → Nφ). However, this generically
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FIG. 1. (a) Hofstadter-type fractal band structure of a square
lattice of point impurities as in Eq. (2), as a function of flux per unit
cell p/q. For p/q > 1, there is topological manifold at zero energy,
and split-off bands with collective Chern number zero at negative
energies. (b) Same as (a), but with a triangular lattice. (c) The total
bandwidth of the split-off bands falls off exponentially with flux. The
thin dashed lines are drawn as guides to the eye.

increases the bandwidth-to-band-gap ratio, as we will see
next, so an optimum must be found.

The width of the E �= 0 split-off bands falls off exponen-
tially with the amount of flux per delta function scatterer
[Fig. 1(c)]. For p

q > 1, this is nearly equal to the bandwidth-
to-band-gap ratio. In the dilute limit, each point impurity
localizes one state of the form exp(− r2

2l2
B

), having a Gaus-
sian tail with length scale lB. In a tight-binding picture, the
width of the band formed from these states depends on the
overlap between nearest-neighbor wave functions. This gives

a bandwidth ∼exp (− r2
n

4l2
B

), where rn is the nearest-neighbor

distance. The unit cell of a square lattice has area r2
n , and

encloses p/q flux quanta. Since an area of 2π l2
B encloses

one flux quantum, the bandwidth for square lattices scales

as exp (− r2
n

4l2
B

) = exp (−π p
2q ). For the same value of flux p/q,

the triangular lattice gives a smaller bandwidth, scaling as
exp (− π p√

3q
). In later sections, we specifically consider values

of p/q around 6, where the bandwidth-to-band-gap ratio is
O(10−3).
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TABLE I. Values of Fourier components vmx ,my from Eq. (3), that
optimize the band flatness (width-to-gap ratio) at flux per unit cell
p/q = 2. Square symmetry enforces vmx ,my = vmx ,−my = v−mx ,my =
vmy,mx . The coefficients ṽmx ,my ≡ e− π

4 (m2
x +m2

y )vmx ,my are rescaled by the
form factor of the LLL.

(mx, my ) vmxmy × 10−3 ṽmxmy

(1,0) 4.16 1895
(3,0) −35.80 −30
(1,1) −5.11 −1062
(2,1) 8.08 159
(3,1) −38.98 −15
(3,2) 20.10 0.7
(3,3) 20.66 0.01

B. Smooth periodic potential

More generally, we can take an arbitrary periodic poten-
tial V (x, y) = V (x + a, y) = V (x, y + b) on a rectangular unit
cell of size a × b. In terms of the Fourier series

V1-body(x, y) =
∑

mx,my

vmx,my e
i2π (mxx/a+myy/b). (3)

If the unit cell encloses p
q flux quanta, then the magnetic

Brillouin zone is defined by quasimomenta kx and ky with 0 �
kx < 2π

qa and 0 � ky < 2π
b . There are p Hofstadter bands.

At a fixed k, the band structure can be calculated by diag-
onalizing a p × p matrix, with elements 〈ψβ,k|V1-body|ψβ ′,k〉.
The β, β ′ ∈ {0, 1, . . . , p − 1} are band indices. The Chern
numbers C of the subbands must obey the diophantine
equation [56] pC + qs = 1, s ∈ Z.

We start by considering two fluxes per unit cell (p =
2, q = 1), which gives two subbands with Chern numbers
C = 0 and +1, respectively. Our goal is to obtain widely
separated bands with small dispersions Eb and a large gap
Eg, so that disorder Vdis and interaction Vint can lie in an
intermediate range Eb � Vdis,Vint � Eg. We therefore opti-
mize the periodic potential for maximal flatness Eb/Eg → 0 in
the space of square-symmetric potentials, with |mx|, |my| < 4.
This results in the Fourier coefficients shown in Table I, with
a real space potential profile as plotted in Fig. 2(a). The
overall normalization (irrelevant to the Eb/Eg ratio) is chosen
to yield unit bandwidth Eb = 1. Given the absence of terms
with both mx and my even, the resulting band structure has
the symmetry E1(k) = −E2(k); the bands thus are identical
except for their Chern numbers (see Appendix A for details).
The listed Fourier coefficients yields a remarkably large band-
gap-to-bandwidth ratio of Eb/Eg ≈ 8735 (Fig. 2(b)), allowing
us to tune disorder and interaction over several orders of
magnitude while safely neglecting intersubband mixing.

We conclude by noting an interesting consequence of
single-particle Hamiltonian, which facilitates the engineering
of flat bands with different Chern numbers. A pair of poten-
tials V, V ′ may be constructed for flux-per-unit-cell values
p
q ,

p
q′ , where q �= q′, such that q − q′ is a multiple of p, that

yield exactly the same band structure {E1(k), . . . Ep(k)}, ex-
cept for the Chern numbers of the bands. This is accomplished
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FIG. 2. (a) The potential V (x, y) described by the Fourier coef-
ficients in Table I is plotted on one unit cell. (b) When a uniform
magnetic field with two flux quanta per unit cell is applied, a
band structure with extremely flat bands symmetric about E = 0 is
created. The upper C = 1 band is plotted here. In units where the
bandwidth is unity, the band gap Eg ≈ 8735. The dispersion of the
C = 0 band is obtained by reflection.

by the rescaling

v′
mx,my

= vmx,my e
π
2p (q′−q)

(
m2

x
b
a +m2

y
a
b

)
. (4)

Taking q′ > q, the rescaling factor is rapidly divergent in |m|,
posing some constraints on the behavior of vm. However, if v

has compact support (only a finite number of nonzero entries),
then the transformation is always well defined. As an example,
we can take p

q′ = 2
3 and use the v coefficients from Table I

to obtain two nearly flat bands with Chern numbers C = +2
and −1, respectively. The proof of this construction is in
Appendix A. In the rest of the paper, we study the effects of
disorder and interaction on these identically dispersive nearly
flat Chern subbands with C = −1, 0, 1, and 2.

III. DISORDER AND SINGLE-PARTICLE LOCALIZATION

In the absence of disorder, both models introduced in
Sec. II feature extended Bloch eigenfunctions. In the presence
of quenched disorder, the electronic eigenstates acquire a
finite localization length ξ . In the following, we calculate ξ as
a function of disorder strength for the two models introduced
in Sec. II. For each eigenstate, calculated by exact diag-
onalization, we estimate the localization length ξ = 1√

2πP2
,

where the inverse participation ratio P2 ≡ ∫
d2r |ψ (r)|4. This
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definition ensures that a purely exponentially localized wave
function ψ (r) ∼ e−r/ξ has a localization length ξ .

The energy-resolved ensemble-averaged localization
lengths 〈ξ (E )〉 are computed for different finite sizes. 〈ξ (E )〉
is usually peaked close to the center of the band, and falls
off near the tails of the band. In the following, we use the
maximal localization length ξ̄ ≡ max

E
〈ξ (E )〉 as a measure

of the localization of the wave functions in a band. In
Appendix B, we briefly comment on the validity of the
averaging procedure by examining the distribution of ξ itself.
Another effect of quenched disorder is an increase in the
energy bandwidth Eb of a band. In this section, we quantify
the impact of disorder on localization in the LLL subbands
using these two measures ξ̄ and Eb for two different models.

A. Disordered point impurities

We start with the lattice of point impurities and randomize
the strengths and positions of scatterers by replacing Eq. (2)
with

V1-body(r) = −
Nδ∑

n=1

Vnδ(r − rn). (5)

The Vn are independently and identically distributed uni-
form random variables in [1 − W, 1 + W ]. In this paper, we
consider 0 < W < 1. The positions of the scatterers rn are
randomly distributed on the torus, with a circular exclusion
zone around each scatterer of area 2π l2

B
Nφ

Nδ
ρ. Placing impuri-

ties randomly allows us to circumvent the constraints imposed
by lattice-based models. Similar to the lattice case, if Nδ <

Nφ , there is a manifold of Nφ − Nδ degenerate states at zero
energy with total Chern number C = 1.

The width of the remaining Nδ split-off states is controlled
by the disorder, which has two independent components. The
randomness in the scatterers’ strengths is controlled by W , and
randomness in their positions is controlled by the density pa-
rameter 0 < ρ < π

2
√

3
= 0.907. The upper bound for ρ comes

from a triangular lattice, which is the closest possible packing
in two dimensions. For large ρ, the distribution of scatterers
becomes more regular (the maximum value indeed forces the
configuration to be a triangular lattice with no randomness
left). At the opposite end, ρ = 0 corresponds to maximal
randomness and allows two scatterers to sit arbitrarily close to
each other, thus entirely closing the band gap (if two scatterers
sit at the same exact position, then Nδ → Nδ − 1, and the
split-off band loses one state).

In Fig. 3, we explore the parameter space of positional
and amplitude disorder in this model. We set the number
of scatterers Nδ = Nφ/6, so that there are effectively 6 flux
quanta per point impurity. For this density of scatterers, the
bandwidth of the split-off states is <10−3 in the disorder-free
case (see Fig. 1). In general, the bandwidth Eb of the split-off
states increases with disorder. At a fixed value of positional
disorder ρ, there is a regime where the bandwidth Eb and
the maximum localization length of the band ξ̄ are largely
independent of amplitude disorder W . As W is increased,
there is a transition to a regime where the amplitude disorder
W becomes more relevant. In this regime, ξ̄ decreases with
increasing W , and Eb increases linearly with W . The localiza-
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FIG. 3. (a) The bandwidth Eb of the split-off states for the model
described in Eq. (5) is plotted as a function of amplitude disorder
W and density parameter ρ. The bandwidth Eb is defined as the
energy interval within which 90% of the split-off states lie. (b) The
maximum average localization length ξ̄ of the band is calculated
using the inverse participation ratio as described in the text. We
set Nφ = 6Nδ and perform exact diagonalization of 200 realizations
of disorder at each parameter value. The system size is Nφ = 3000
(torus dimension ≈137lB).

tion length at the center of the split-off band ξ̄ is very small
(�137lB, the linear dimension of the torus studied).

For the purpose of the many-body problem, which we will
discuss in Sec. IV, we are interested in a regime where the
bandwidth is small (so the projection is justified), yet the
states respond strongly to changes in disorder (so an ergodic-
to-localized transition is plausible). For this reason, we fix
ρ = 0.4 (close to midway between completely disordered and
jammed scatterers) and vary W in the vicinity of 10−2.

B. Periodic potential with correlated disorder

To localize states in the flat Hofstadter subbands generated
by the continuum periodic potential of Eq. (3), we introduce
a short-range correlated disorder represented by a potential
Vdis(r) with

〈Vdis(r)Vdis(0)〉 = W 2σ−2e−r2/2σ 2
. (6)

Here, 〈. . . 〉 denotes averaging over realizations, σ is a correla-
tion length, and W quantifies the strength of disorder. Setting
σ = 0 yields uncorrelated Gaussian white noise.

As in the previous case, we explore the single-particle lo-
calization properties as a function of the disorder parameters.
In this case, the much larger bandwidth-to-band-gap ratio of
the disorder-free problem allows us to vary W over a large
dynamic range without mixing the two bands. We seek a
parameter regime where the localization length is rather small
even for moderate disorder and small system sizes.
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FIG. 4. (a) Similar to Fig. 3(a), the bandwidth-to-band-gap ratio
Eb/Eg of the Hofstadter subbands of the continuum periodic potential
of Fig. 2 is plotted as a function of the strength W of the correlated
disorder potential [Eq. (6)] for three different values of disorder
correlation length σ . Each of the two bands has the same bandwidth
Eb within numerical accuracy. (b) The maximum average localization
length ξ̄ of the C = 0 subband is plotted as a function of disorder
W and system size Nφ . The disorder correlation length is fixed at
σ = 2lB. The inset on the right shows the saturation of ξ̄ with system
size at W = 20, for different values of disorder correlation length σ .
(c) Same as (b), but for the C = 1 subband. Unlike the previous case,
the localization length diverges with increasing system size.

In Fig. 4, we study the bandwidth and localization length
of states in the C = 0 and 1 bands as a function of disorder
strength and correlation length. Disorder makes the bands
broaden to an equal extent, but we are able to attain a large
amplitude of disorder W ≈ 1000 without closing the gap.
For the C = 0 band, the localization length saturates to a
small value (∼2.5lB) for large enough disorder W � 10 for all
system sizes. We also observe (inset) that using a larger cor-
relation length σ makes the localization length of the C = 0
band saturate much faster with system size. This is especially
useful toward the many-body problem, where system sizes
accessible by numerical diagonalization are by necessity very
small. For this reason, in Sec. IV we shall fix σ = 2lB when
considering this model. On the contrary, for the C = 1 band,
the localization length grows with system size without bound,
indicating the presence of a divergent localization length in
the thermodynamic limit, i.e., a critical energy much like in
the whole LLL. The scaling of ξ̄ is expected to be described
by the nontrivial multifractal scaling exponents of the integer
quantum Hall effect [1,57].
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FIG. 5. The maximum average localization lengths ξ̄ of the C =
+2 and −1 subbands are plotted as a function of the correlated
disorder strength W for the model with 2

3 flux quanta per unit cell.
The correlation length of the disorder potential σ = 2lB. The inset
shows the scaling of ξ̄ as a function of system size at fixed disorder
W = 20.

The periodic potential with coefficients as in Table I is
rescaled by Eq. (4) and unit cell is simultaneously resized
to admit 2

3 flux quanta per unit cell. This yields a band
structure exactly as for the previous case (see Fig. 2), but with
subbands having Chern numbers +2 and −1, respectively.
When correlated disorder is added to this model, we see in
Fig. 5 that both subbands have a diverging localization lengths
ξ̄ . The C = +2 subband has two critical energies in the middle
of the band, and shows stronger delocalization [11,58,59].

In the many-body case, we would therefore expect the C =
+2 subband to resist MBL more strongly than the C = ±1
subbands.

IV. LOCALIZATION WITH INTERACTIONS

In Sec. II we presented two methods to engineer nearly
flat subbands with varying topological character from the
LLL, and in Sec. III we added disorder to both and studied
their single-particle localization properties. We next turn on
electron-electron interactions and turn our attention to the
possibility of many-body localization in these models.

While the model based on a smooth periodic potential
has the advantage that it allows us to project the disordered
potential onto very flat bands of arbitrary Chern number, the
periodicity of the potential places a severe restriction on the
sizes we can access numerically in the interacting case. This
constraint is absent in the model based on point impurities,
which allows greater flexibility in choosing system sizes at
the cost of (i) lack of tunability of Chern numbers, (ii) a
strong asymmetry between the C = 0 and +1 subbands, and
(iii) worse band flatness ratio. The two models thus feature
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distinct strengths and weaknesses as platforms for the study
of localization with interactions.

A. Method

We consider the Hamiltonian

HLLL = PsbPLLL[V1-body + Vint]PLLLPsb, (7)

where Vint is an interaction term and Psb further projects the
LLL Hamiltonian onto a single subband of desired Chern
character obtained through the methods discussed in previous
sections. With Ne electrons, the filling fraction ν = Ne/No,
where No is the number of single-particle orbitals in the
projected subband.

We choose Vint to be a Haldane V1 pseudopotential in-
teraction Vint(k) = Vc(1 − k2l2

B)e−k2l2
B/2. There are now two

independent parameters: the interaction strength Vc, and the
disorder strength characterized by W (and ρ, in the point-
impurity model) as described in the previous section.

We investigate the onset of a possible many-body local-
ization transition by two methods: eigenvalue statistics and
infinite-time persistence of an initial charge density imbal-
ance. We compute the many-body eigenvalues {En} and eigen-
vectors {|φn〉} of the Hamiltonian in Eq. (7) via numerical
exact diagonalization on rectangular tori of dimensions Lx ×
Ly. Then, we compute the eigenvalue spacing ratio

rn = min (En − En−1, En+1 − En)

max (En − En−1, En+1 − En)
. (8)

The ensemble-averaged mean value of this statistic 〈r〉 is
a useful diagnostic of localization-delocalization transitions
[33,34,60]. In a delocalized (thermal) phase, the eigenvalue
statistics are governed by the Gaussian unitary ensemble
(GUE), characteristic of an ergodic system with broken time-
reversal symmetry. In this case, 〈r〉 ≈ 0.5996 [61]. In a disor-
dered (localized) phase, the eigenvalue spacing distribution is
Poissonian and 〈r〉 = 2 ln 2 − 1 ≈ 0.3862.

A popular experimental method to probe many-body local-
ization and prethermalization is the time evolution of an initial
density imbalance in the system [62–68]. In the ergodic phase,
unitary time evolution from any initial state should scramble
the system completely, so the initial imbalance should vanish
at long times. On the other hand, in the many-body localized
phase, memory of initial conditions is retained to arbitrarily
long times under unitary evolution, so a finite residual imbal-
ance should be observed even after infinite time.

In order to probe this effect numerically, we consider the
relaxation of an initial charge density imbalance, modeled by
the traceless Hermitian operator

M =
∫

dr c†
rcr cos(2πx/Lx ). (9)

We initialize a mixed state close to infinite temperature
with density matrix ρ0 = 1+εM

D , where ε is a small positive
coefficient and D is the Hilbert space dimension. The initial
amplitude of charge density imbalance is

〈M0〉 = Tr[ρ0M] = ε

DTrM2 (10)

= ε

D
∑

m

〈φm|M2|φm〉. (11)

TABLE II. Summary of system sizes studied in the point-
impurity model, as described in Sec. III A. We exactly diagonalize
four different system sizes, each with square aspect ratio, at a filling
ν = Ne/Nδ = 1/3. The number of scatterers is Nδ = Nφ/6.

Nφ Nδ Ne Lx/lB = Ly/lB

54 9 3 6
√

3π

72 12 4 12
√

π

90 15 5 6
√

5π

108 18 6 6
√

6π

This means the system initially has higher charge density
near x � 0 than it does at the opposite side of the torus, near
x � Lx/2. Unitary evolution will relax this imbalance in the
ergodic phase but not completely in the MBL phase.

The amplitude of the charge density imbalance at times t >

0 is given in terms of the time-evolved density matrix

ρt = e−iHtρ0eiHt =
∑
m,n

ei(En−Em )t |φm〉〈φm|ρ0|φn〉〈φn|. (12)

At long times t � h̄/δE (where δE is the typical many-body
energy spacing), the off-diagonal density matrix elements
accumulate phases that time average to zero (we assume the
disorder prevents any degeneracies). In this limit, using the x∞
notation as shorthand for limT →∞ 1

T

∫ T
0 dt x(t ), we have

ρ∞ =
∑

m

(〈φm|ρ0|φm〉)|φm〉〈φm| (13)

and therefore

〈M∞〉 = Tr[ρ∞M] = ε

D
∑

m

[〈φm|M|φm〉]2. (14)

The remnant charge imbalance is the ratio 〈M∞/M0〉. It
lies between zero and one and quantifies the extent to which
the initial charge density modulation is “remembered” at
infinite time. It provides us with a useful metric to comple-
ment the level statistics to diagnose the lack of ergodicity and
thus the possibility of a many-body localization transition.

In the following, we apply these methods to the two
models previously discussed. We first study the disordered
distribution of point impurities. This allows us to study two-
dimensional (2D) finite-size scaling in the nontopological
C = 0 subband with a fixed filling, which we set to ν = 1

3 .
Table II summarizes the system sizes studied in this model.
Next, for the smooth periodic potential of Sec. II B, we solve
the problem on rectangular tori of dimensions Lx × Ly at
various fillings. This system gives us access to C = 0, C =
±1, and C = 2 subbands, depending on the flux per unit cell.
The Hilbert space dimension grows exponentially with the
system size, limiting the maximum size. Further, we must
ensure that the torus admits an integer number of unit cells
with periodic boundary conditions.

If we keep the orientation of the torus aligned with that of
the lattice, so that both Lx and Ly are multiples of the lattice
constant a, we are severely limited in the sizes we can access.
This limitation is partially alleviated by rotating the torus with
respect to the lattice, as illustrated in Fig. 6. In the case of
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a

Lx
=
√

10a

Ly
=
√

10a

FIG. 6. The torus of size Lx × Ly can be rotated with respect
to the underlying periodic potential. This allows us to obtain tori
with linear dimensions that are an irrational multiple of the lattice
constant. In this example, the torus encloses an area of 10a2. Periodic
boundary conditions are imposed on parallel edges as indicated.

p/q = 2 flux quanta per unit cell, the system sizes we can
access are listed in Table III.

We perform two kinds of analysis. First, at a fixed filling of
ν = 1

3 and Lx = 3a, we compare the results at different values
of Ly. This is equivalent to quasi-one-dimensional scaling.
Second, we attempt a two-dimensional scaling by comparing
the results for square tori Lx = Ly of different sizes. In the
latter case, no one filling is available at every size, therefore
we interpolate the data to estimate the scaling behavior at a
fixed filling ν = 1

3 .
Finally, for the case where each unit cell encloses p/q = 2

3
flux quanta (where the subbands have Chern numbers C = +2
and −1), the system sizes are listed in Table IV.

B. Results

In Fig. 7, we show the 〈r〉 statistic and the persistence
of charge imbalance 〈M∞/M0〉 as a function of disorder

TABLE III. Summary of system sizes studied in the smooth
potential model of Sec. III B with p/q = 2. The unit-cell side is
a = 2

√
π lB ≈ 3.54lB. For each value of Nφ , the accessible fillings

ν = 2Ne/Nφ lie between νmin and νmax, spaced by �ν. We perform
calculations for seven different sizes for 2D scaling on square tori,
and three different sizes for quasi-1D scaling on rectangular tori.

Nφ
Lx
a × Ly

a νmin νmax �ν

16 2
√

2 × 2
√

2 0.25 0.5 0.125
18 3 × 3 0.222 0.444 0.1111
20

√
10 × √

10 0.2 0.5 0.1
26

√
13 × √

13 0.154 0.462 0.0769
32 4 × 4 0.125 0.5 0.0625
34

√
17 × √

17 0.118 0.471 0.0588
36 3

√
2 × 3

√
2 0.111 0.5 0.0556

24 3 × 4 0.167 0.5 0.0833
30 3 × 5 0.133 0.467 0.0667
36 3 × 6 0.167 0.5 0.0556

TABLE IV. Same as Table III, but for p/q = 2
3 flux quanta per

unit cell. The period of the smooth potential is a = 2
√

π/3lB ≈
2.05lB. In this case, we perform calculations only on square tori.

Nφ
Lx
a × Ly

a νmin νmax �ν

12 3
√

2 × 3
√

2 0.333 0.5 0.167
24 6 × 6 0.167 0.5 0.0833
30 3

√
5 × 3

√
5 0.133 0.467 0.0667

strength for the C = 0 of the disordered distribution of point
impurities. We fix the interaction strength Vc = 1, and the
noninteracting bandwidth Eb � 0.1 as in Fig. 3(a).

This model was shown to have clear evidence of a crossing
of the 〈r〉 statistic between Poisson and random matrix behav-
ior at a filling ν = 1

2 around W = 10−2 for quasi-1D scaling
[54]. Two dimensional scaling also showed such crossing, but
it was unclear whether that behavior persisted in the thermo-
dynamic limit or whether it slowly drifted to infinite disorder.
Here, we study a different filling of ν = 1

3 . The 〈r〉 statistic
decreases with disorder W , as expected, and also shows a
crossing between different sizes around W ≈ 10−2. The 〈r〉
value does not attain its GUE value of 0.6 as W → 0 because
of the residual positional disorder of scatterers and also partly
due to finite-size effects. The persistence of charge imbalance
〈M∞/M0〉 also shows a clear monotonically increasing trend
as a function of disorder. We observe a crossing in the curves
at W ≈ 10−2, consistent with the eigenvalue statistics. The
lack of access to larger system sizes precludes us from making
a conclusive statement about whether this behavior is char-
acteristic of a finite disorder transition in the thermodynamic

0.38

0.40

0.42

0.44

〈r〉

Ne

3

4

5

6

10−3 10−2 10−1

W

0.4

0.6

0.8

1.0

〈M
∞

/M
0
〉

FIG. 7. Two-dimensional scaling of the 〈r〉 statistic (above) and
remnant charge imbalance 〈M∞/M0〉 (below) as a function of disor-
der W for electrons at a filling fraction ν = 1

3 in the C = 0 subband
of the disordered point impurity model. Details of system sizes are
given in Table II.
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FIG. 8. The 〈r〉 statistic is plotted as a function of the interaction
strength Vc and disorder strength W for a filling of 1

3 for the C =
0 (left) and C = 1 (right) bands, for four different system sizes
(Nφ = 18, 24, 30, 36), increasing from top to bottom. The C = 1
band shows an increasing tendency to delocalize as the system size
is increased. Approximately 100 different disorder realizations are
averaged over at Ne = 6 and around 10 000 at Ne = 6. One linear
dimension of the torus is kept fixed (Lx) while the other is increased.

limit. It is possible that there is a slow drift of the crossing
with system size, indicating the instability of true MBL in
this system in the two-dimensional limit. Further studies are
necessary to clearly disambiguate the two scenarios.

The many-body localization transition is a high-
temperature phenomenon, and is not expected to depend
on the properties of the ground state. That our results for
ν = 1

2 and 1
3 are so similar is consistent with this expectation.

Next, we turn to the smooth potential of Sec. II B, and
perform quasi-1D scaling at filling ν = 1

3 . In Fig. 8, we show
the 〈r〉 statistic for both the C = 0 and 1 subbands. It is
evident that although disorder and interaction provide two
independent energy scales W and Vc, respectively, only their
ratio W/Vc seems to matter in controlling the ergodic-to-MBL
transition, as long as W and Vc are both sufficiently larger than
the bandwidth (which we set to 1). In the rest of the paper,
we fix the interaction strength at Vc = 8, which is a factor
of 103 smaller than the intersubband gap, and large enough
to be in the regime where results depend solely on W/Vc.

Both subbands show an increasing tendency to delocalize as
the system size is increased. However, the critical disorder
strength Wc at which 〈r〉 is midway between Poisson and
GUE statistics seems to approach a finite value for the C = 0
subband, while that for the C = 1 subband seems to diverge
with system size.

In Fig. 9, we plot the eigenvalue statistic 〈r〉, and the persis-
tence of charge imbalance 〈M∞/M0〉 as a function of disorder
strength for 2D scaling on square tori. Values are obtained by
interpolating the curves as a function of filling for different
sizes to obtain curves at ν = 1

3 (see Appendix C for details).
In the C = 0 subband, it is evident that there is a signature
of a finite disorder transition. At small W , the remnant charge
imbalance is close to zero, indicating a thermal phase in which
memory of initial conditions is washed away completely.
At large W , the remnant charge imbalance is nonzero. The
transition between the two regimes becomes sharper as the
system size is increased, indicating that the phenomenon is
likely to persist in the thermodynamic limit. This behavior
is mirrored in the eigenvalue 〈r〉 statistic, which smoothly
interpolates between the GUE value at small disorder and the
Poisson value at large disorder with a crossing very close to
the Poisson value, in line with previous works [34].

The C = 1 subband, on the other hand, behaves qualita-
tively differently. The remnant charge imbalance does not
increase appreciably with disorder and approaches zero con-
tinuously as the system size is increased. The eigenvalue
statistic 〈r〉 also has no crossing and the value of the critical
disorder strength Wc at which it is midway between Poisson
and GUE values drifts to infinity with system size.

In Fig. 10, we repeat the same analysis for the case where
the projected subbands have Chern numbers +2 and −1, re-
spectively. In this case, the lattice commensurability condition
constrains the square tori to have a number of unit cells that is
a multiple of 3. This makes fewer sizes amenable to numerical
exact diagonalization than in the previous case.

Both subbands tend to delocalize, with the crossover of the
〈r〉 statistic between GUE and Poisson values drifting rapidly
as a function of system size, suggesting absence of MBL in
the thermodynamic limit. The remnant charge imbalance also
behaves very similarly, saturating at a very small value, and
tending toward zero at all disorder strengths as the system
size is increased. These findings are symptomatic of the
absence of MBL in these Chern subbands, as is expected.
Interestingly, there is a small quantitative difference between
the C = −1 and +2 subbands in this case: while both show
a tendency to delocalize, the C = +2 subband delocalizes
more easily. At any given disorder strength W and system
size Nφ , the C = +2 subband has a larger 〈r〉 and smaller
〈M∞/M0〉 than the C = −1 subband. This is consistent with
the theoretical picture in which many-body delocalization is
caused by single-particle critical states [25]: the presence
of two critical energies [11,58,59] in the C = +2 subband
makes it quantitatively more robust against localization than
the C = −1 subband, which has a single critical energy.

V. DISCUSSION

In this paper we have systematically examined the inter-
play of topology and disorder in the lowest Landau level,
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FIG. 9. The 〈r〉 statistic (above) and remnant charge imbalance 〈M∞/M0〉 (below) are plotted against disorder both for the C = 0 (a) and
C = 1 subbands (b) at a filling of ν = 1

3 . For values of Nφ not divisible by 3, the curves are obtained by interpolating from the nearest available
rational fraction. The 〈r〉 statistic of the C = 0 subband attains the localized Poisson value at much smaller disorder than the C = 1 subband.
The value of 〈M∞/M0〉 is also much larger for the C = 0 subband, and also appears to flow toward a step function as system size is increased.
In (c), we plot the critical disorder Wc as a function of system size Nφ . We define Wc to be the value of W at which 〈r〉 = 0.5 (roughly halfway
between Poisson and GUE) in the upper panel. In the lower panel, we define Wc to be the value of W at which 〈M∞/M0〉 attains roughly half
its saturation value. For the C = 0 subband, we define 〈M∞/M0〉(Wc ) = 0.4, and for the C = 1 subband, we define 〈M∞/M0〉(Wc ) = 0.2.

with and without interactions. By providing an explicit recipe
to construct potentials that lead to nearly flat Hofstadter
subbands with arbitrary Chern number in the lowest Landau
level, we have been able to study various topological subbands
individually. The ability to neglect intersubband mixing arises

from the large bandwidth-to-band-gap ratio (≈102 to 104,
depending on the model). The process of projection to a
gapped subspace is analogous to other studies of MBL in
tight-binding models or cold-atom systems, where higher
bands and continuum scattering states are neglected.

0.4

0.5

0.6

〈r〉

(a) C = +2
GUE

Poisson

(b) C = −1
GUE

Poisson

100 101 102

W

0.0

0.2

0.4

0.6

0.8

1.0

〈M
∞
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0
〉
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W
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0
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(c)

(c)
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FIG. 10. Same as Fig. 9, but for p/q = 2
3 flux quanta per unit cell. The two subbands have Chern numbers +2 and −1, respectively. Both

the 〈r〉 statistic (above) and remnant charge imbalance 〈M∞/M0〉 (below) are consistent with the absence of MBL in the thermodynamic limit.
In (c), the critical disorder is defined as 〈r〉(Wc ) = 0.5 in the upper panel and 〈M∞/M0〉(Wc ) = 0.2 in the lower panel.
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Using exact diagonalization on finite-sized systems, we
analyzed the energy spectrum as a whole, as well as individual
many-body eigenstates, in search for signatures of localiza-
tion. We find that MBL is absent in topological subbands of
the lowest Landau level, in both the one-dimensional and two-
dimensional thermodynamic limits. Furthermore, we find that,
at finite size, higher-|C| bands delocalize more strongly than
|C| = 1 bands (such as the whole LLL). This corroborates the
picture of delocalization being driven by topological (C �= 0)
single-particle states, which in the presence of interactions
act as nonlocal “communication channels” between distant
localized single-particle orbitals. Higher-|C| bands feature
more topological states, and are thus even more robust against
the localizing effect of disorder. On physical grounds, these
statements about the existence and stability of MBL are
expected to be true irrespective of microscopic details such
as the the type of interaction, periodic potential, and filling
fraction.

However, the situation is rather different in topologically
trivial LLL subbands. In principle, such C = 0 bands have no
obstruction to localization since all single-particle states are
localized, as we showed in Sec. III. While it is unclear if a
many-body localized phase is stable in two dimensions in gen-
eral, our finite-size results suggest that, up to rare region ef-
fects which lie beyond the scope of numerical diagonalization,
many-body states in C = 0 subbands of the LLL show several
physical signatures of localization, namely, absence of many-
body level repulsion and persistence of initial conditions. The
results for quasi-1D scaling are fairly unambiguous, and have
already been discussed in our previous work [54]. This work
adds weight to the evidence that similar behavior also holds in

the two-dimensional thermodynamic limit, though ultimately
further work is needed before a conclusive statement can be
made.
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APPENDIX A: NEARLY FLAT CHERN SUBBANDS

In this Appendix, we discuss details of the engineering
of nearly flat LLL subbands, and prove the validity of the
transformation in Eq. (4) for obtaining bands with identical
dispersion but tunable Chern number.

We start by deriving the single-particle Hamiltonian of
an electron in the LLL with a smooth periodic potential,
as described in Sec. II B. This Hamiltonian has discrete
translational symmetry, so its spectrum has a Bloch
band structure. A unique feature of projecting the sys-
tem to the LLL is that the subbands thus formed gener-
ically have a topological character described by an inte-
ger Chern number. We also explain how, starting from
one set of parameters, a whole family of energetically
equivalent yet topologically distinct Hamiltonians may be
constructed.

On a rectangular torus of dimensions Lx × Ly (where
LxLy = 2πNφ l2

B), the LLL wave functions form a basis of
dimension Nφ . In the Landau gauge A = −Byx̂, the basis
wave functions are given by

ψn(x, y) = 1

(
√

π lBLx )
1
2

∞∑
l=−∞

ei2π (n+lNφ ) x
Lx exp − 1

2l2
B

[
y − Ly

Nφ

(n + lNφ )

]2

. (A1)

In this gauge, the magnetic translation operators are [69] t (x)
a = exp(i apx

h̄ ) and t (y)
b = exp(ib py−eBx

h̄ ). We wish to study the LLL
system with a periodic potential V (x, y) = V (x + a, y) = V (x, y + b), with each unit cell of area ab enclosing p/q flux quanta,
with p and q coprime. The problem of obtaining the spectrum of energy eigenvalues and the the eigen wave functions is simplified
by transforming the basis wave functions above to a Bloch basis of simultaneous eigenstates of t (x)

a , t (y)
b , and V . The generic

noncommutativity of the translation operators forces us to consider a magnetic unit cell that consists of q primitive unit cells of
the periodic potential, such that [t (x)

qa , t (y)
b ] = 0.

The Bloch LLL wave functions are

ψβ,k(x, y) =
(

2 p
q

b
a

) 1
4

√
qab

∞∑
r=−∞

eikybre
ix

[
kx+ 2π

qa (β+r p)
]

exp

{
− π p

qab

[
y − b

p

(
kxqa

2π
+ β + r p

)]2
}

, (A2)

where the band index β ∈ {0, 1, . . . , p − 1}. The quasimomentum k is defined through the eigenvalues of the translation
operators t (x)

qa |ψβ,k〉 = eikxqa|ψβ,k〉 and t (y)
b |ψβ,k〉 = eikyb|ψβ,k〉.

In the presence of a periodic potential V (x, y) = ∑
mx,my

vmx,my e
i2π (mxx/a+myy/b), the degeneracy of the LLL is broken, and we

obtain a block-diagonal Hamiltonian at each k. Let Hβ,β ′ (k) ≡ 〈ψβ,k|V1-body|ψβ ′,k〉, then

Hβ,β ′ (k) =
∑

mx,my

vmx,my e
− πq

2p (m2
x

b
a +m2

y
a
b )

∑
r

(−1)rmy eikybre
i2π

my
p

(
kx qa
2π

+ β+β′
2

)
δβ−β ′+r p+qmx=0

=
∑

mx ≡ q−1(β ′ − β ) mod p
my

ṽmx,my e
−ikyb(β−β ′ )/pei2πmyβ/pei

qmykx a−qmx kyb
p eiπqmxmy/p, (A3)
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where the LLL-projected Fourier coefficients ṽmx,my are de-
fined as

ṽmx,my = vmx,my e
− πq

2p (m2
x

b
a +m2

y
a
b ) (A4)

and we have introduced the notation q−1 mod p to denote
the multiplicative inverse of q in Zp, i.e., the unique x ∈ Zp

such that xq ≡ 1 mod p (this is well defined since p, q are
coprime).

The elements of this matrix can be computed easily,
and hence the entire single-particle spectrum over the mag-
netic Brillouin zone k ∈ [0, 2π

qa ] × [0, 2π
b ] can be obtained. In

Sec. II, we first consider the specific case of p = 2 and q = 1,
which gives us a 2 × 2 matrix. The trace of this matrix is

TrH (k) =
∑

β=0,1

Hββ (k)

=
∑

even mx,

my

ṽmx,my e
i
2 (mykxa−mxkyb)

∑
β=0,1

eiπmyβ

= 2
∑

even mx,

even my

ṽmx,my e
i
2 (mykxa−mxkyb). (A5)

The matrix can thus be made traceless by setting to zero all
Fourier coefficients vmx,my with both mx and my even. This
results in a band structure with symmetry E1(k) = −E2(k).

This single-particle Hamiltonian has an interesting feature
that enables us to construct the same band structure for two
different values of flux per unit cell p/q and p/q′, such that
q′ ≡ q mod p.

This is accomplished by demanding that the LLL-projected
Fourier coefficients are the same ṽmx,my = ṽ′

mx,my
. As a conse-

quence, the Hamiltonians of the two systems are related by a
transformation

e−ikyb (β−β′ )(q−1)
q Hβ,β ′ (k/q) = e−ikyb (β−β′ )(q′−1)

q′ H ′
β,β ′ (k/q′). (A6)

This is a unitary transformation as it may be rewritten in the
form

H ′(k/q′) = UH (k/q)U †, (A7)

where U is a diagonal matrix of complex phases Ull =
eikybl ( q−1

q + q′−1
q′ ).

Since the two Hamiltonians are related by this unitary
transformation, the band structures {E1(k), . . . , Ep(k)} are
identical, up to a rescaling of the magnetic Brillouin zone.

However, the Chern numbers of the subbands are different
in the two cases as they are calculated from the eigenstates
|φm(k)〉 as

Cm = i

2π

∫
d2k ẑ · 〈∇kφm(k)|×|∇kφm(k)〉. (A8)

This transformation is used in the main text to obtain a set of
C = +2,−1 subbands in a model with 2

3 magnetic flux quanta
per unit cell.

APPENDIX B: DISTRIBUTION OF SINGLE-PARTICLE
LOCALIZATION LENGTH

In Sec. III, we define the localization length ξ (E ) from
the inverse participation ratio (IPR), and calculate the energy-
resolved maximum of its ensemble average as a proxy for

1 2 3 4

ξc/lB

p(
ξ c

/l
B
)

at
W

=
20

C = 0

Nφ

18

72

162

648

0 5 10 15

ξc/lB

C = 1

FIG. 11. The distribution (over an ensemble of realizations) of
single-particle localization lengths near the centers of the C = 0
and 1 subbands of the model in Sec. III B. Dotted lines denote the
position of the mean of the distribution, used to generate the points
in Fig. 4. The most localized Wannier orbital that can be constructed
out of LLL wave functions has ξ = √

2 and leads to a hard cutoff in
the distribution.

the localization of the entire band. Since the distribution of
IPR is not always a well-behaved Gaussian-type distribution
[70] and often has power-law tails, it is not immediately clear
that ensemble averaging of ξ (E ) leads to a robust and stable
measure of localization. In Fig. 11, we plot the distribution of
ξc (ξ in a small energy window at the center of the subband)
for the case of periodic potential with correlated disorder
at fixed disorder strength W = 20 and disorder correlation
length σ = 2lB (see Fig. 4 for the mean localization length
ξ̄ as a function of W ). We find that while the distributions are
skewed, the means represent the distributions well. Further,
we notice that the distribution for the C = 0 subband remains
stationary as system size is increased, while that for the C = 1
subband moves, and has a completely different shape.

APPENDIX C: DETAILS ON FILLING INTERPOLATION

In this Appendix, we present the raw data of spectral statis-
tics and charge density imbalance based on which the findings
in Sec. IV B are obtained. The periodic potential with two
flux quanta per unit cell, as described in Sec. II B, constrains
our system sizes to be Nφ = 2(n2

1 + n2
2) with integer n1, n2 in

order to obtain square tori. For a fixed system size Nφ , we
obtain raw data for 〈r〉(W ) for various fillings ν = Ne/2Nφ

(see Fig. 12). Since the Hilbert space dimension of the pro-
jected problem grows as ( Nφ/2

νNφ/2), limitations on computational
power make it impossible to study the exact size scaling at
fixed filling ν.

We study the 〈r〉 statistic as a function of disorder W at
different fillings and interpolate the data to obtain an estimate
at ν = 1

3 . In Fig. 12, we show the raw 〈r〉 statistic. At all
system sizes, the eigenvalue statistic moves from GUE-like
at small disorder to Poisson-like at large disorder. At a fixed
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FIG. 12. We plot the raw eigenvalue statistic 〈r〉 for the eight different dimensions of square tori described in Table III. At each size Nφ ,
we are able to obtain several different fillings. This enables us to interpolate the data to obtain results at a fixed filling ν = 1

3 .

system size Nφ , smaller fillings cross over to the localized
Poisson regime more easily. This is because smaller fill-
ings are more single-particle like and have a smaller Hilbert
space dimension compared to fillings near ν = 1

2 . Since the
trends are very smooth as a function of system size, we can
synthesize a 〈r〉(W ) curve at any intermediate filling of our

choice by linear interpolation between the two nearest fillings
at that size. This enables us to make a comparison of eigen-
value statistics at fixed filling ν = 1

3 (see Fig. 9).
The same procedure is followed for the charge density

imbalance 〈M∞/M0〉. In Fig. 13, we show the raw data that
are interpolated to obtain the curves in Fig. 9.

FIG. 13. Similar to Fig. 13, we plot the raw charge density imbalance 〈M∞/M0〉 for the eight different dimensions of square tori described
in Table III.
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