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Single-crystal diffuse scattering is generally interpreted using correlation parameters that describe probabili-
ties for certain configurations on a local scale. In this paper we present an interpretation of diffuse maxima using
a disordered superspace approach. In (D + d )-dimensional superspace two modulation functions are disordered
along the superspace axis as,i for i = 1, . . . , D, while the periodicity along the internal dimensions is maintained.
This simple approach allows the generation of substitutionally disordered model structures that show diffuse
maxima of any width at any position in reciprocal space. The extinction rules that are introduced by superspace
symmetry are also fulfilled by the diffuse maxima from structures generated using the disordered superspace
approach. In this paper we demonstrate the disordered superspace approach using a simple two-dimensional
binary substitutionally disordered system. The extension of the approach to (3 + d )-dimensional superspace is
trivial. The treatment of displacement and magnetic disorder as well as size-effect-like distortions in a similar
manner is possible.
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I. INTRODUCTION

Diffuse scattering has been observed in single-crystal
diffraction experiments since the beginning of x-ray crystal-
lography [1]. For moderately complex structures the average
structure determination using Bragg scattering has long been
a routine method and long-range-ordering patterns can be
easily identified. More recently, the solution and refinement
of modulated crystal structures have advanced [2–5]. The
superspace approach made the interpretation of modulated
structures straightforward, again opening up the possibility
to identify long-range, albeit aperiodically, ordered patterns.
The interpretation of diffuse scattering, on the other hand,
generally relies on a set of short-range-order parameters [6,7].
Compared to the analysis of long-range-ordered structures,
many parameters are needed to describe a diffuse scattering
pattern.

In contrast to long-range-ordered, aperiodically modulated
structures, there are almost no widely applicable programs
that perform structure solution for diffuse scattering. Instead,
a system-specific approach is taken for most systems that
are investigated in terms of correlated disorder. So far, no
standard algorithm has been established to solve any arbitrary
disordered structure.

In the early beginnings of diffuse scattering analysis,
computational power was barely available. Therefore, it was
impossible to build large computer-based models for the cal-
culation of diffuse scattering patterns. This required the devia-
tion of analytical models to describe diffuse scattering [8–10].
The analytical description was recently used to successfully
identify short-range-order patterns [11,12] and is, in terms of
computational modeling, by far the most efficient approach to
take.
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For powder diffraction data, one-dimensional pair distribu-
tion functions are frequently used to build disorder models and
interpret local interatomic distances [13,14]. The 3D-�PDF
method employs three-dimensional pair distribution functions
for the diffuse scattering analysis and can be seen as an
extension of the analytical models [15]. This method comes
with powerful software (YELL [16]), and the interpretation of
short-range-order phenomena in moderately complex systems
is straightforward.

The most widely used approach for refining diffuse scat-
tering patterns is based on Monte Carlo methods. There are
two different approaches for Monte Carlo modeling: direct
and reverse Monte Carlo modeling [14]. The direct modeling
approach requires an initial disorder model. Based on such an
initial idea, powerful programs, such as DISCUS [14], generate
a disordered crystal structure that obeys the short-range-order
parameters from the model. The calculated diffuse scattering
is then compared with the experimental results, and the short-
range-order parameters are adapted until sufficient agreement
is reached. Recent applications include, e.g., [17,18]. The
advantage of direct Monte Carlo modeling is the direct inter-
pretation of physically meaningful short-range-order param-
eters but comes at the cost of a high computation time. The
large setback is the initial model needed for the short-range
order, which is, in general, not straightforward and relies on
expert knowledge. Many iterations are possibly needed until a
meaningful set of short-range-order parameters is found that
describes the diffuse scattering at hand.

Reverse Monte Carlo modeling is also widely applied in
diffuse scattering analysis. In general a big crystal is built, and
then the atoms or molecules within this crystal are displaced
or exchanged until a calculated diffuse scattering pattern
agrees with the measured intensities. The big advantage is
that no initial short-range-order model based on an expert
guess is needed, but the resulting crystal structure is not
straightforward to interpret in terms of correlation coefficients
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[19]. Reverse Monte Carlo modeling has been successfully
applied to powder diffraction data since its introduction in
1988 [20].

All the approaches described above have in common that
the interpretation of the diffuse scattering is based on a set
of correlation coefficients. In the book by Krivoglaz [21] a
concentration wave approach to diffuse scattering analysis
is outlined. More recently, Withers mainly shaped the inter-
pretation of diffuse scattering in terms of modulation waves
[22,23]. The diffuse scattering is interpreted as the result of
many modulation waves acting on the basic crystal structure.
The modulation wave is assumed to have an arbitrary origin
within the structure and to generate broad diffuse maxima;
the amplitude is damped, e.g., in a Gaussian fashion, as the
wave diverges from this origin. While this interpretation sig-
nificantly differs from the correlation coefficient approach, it
still needs many parameters to describe a disordered structure
(e.g., [23] uses 3 × 105 perturbations to create a structure that
agrees with the experimentally observed diffuse scattering).

This paper presents a different modulation wave approach,
using the tools of superspace crystallography. The introduc-
tion of disorder into superspace requires only a few param-
eters to generate a model structure that shows a diffraction
pattern with a diffuse maximum at a freely chosen position in
reciprocal space and with freely chosen width. The approach
presented here deals with substitutional disorder. The internal
dimension is left perfectly periodic, and phase domains A
and B are introduced in the remaining superspace dimensions.
The width of the diffuse maximum is inversely proportional
to the size of the phase domains in superspace. This rela-
tionship is completely analogous to the inverse relationship
between diffuse maxima and domain sizes in the case of
short-range-ordered materials. This paper introduces the con-
cept of disorder in superspace and outlines the possibilities
in structural modeling and diffuse scattering interpretation.
The experimental demonstration is ongoing work beyond the
scope of this paper and will be published elsewhere. An
equivalent approach using disorder in superspace can be taken
for displacive disorder, size-effect-like relaxations, and mag-
netic disorder. The respective details and their experimental
applications are beyond the scope of this introductory paper.

II. SUPERSPACE AND MODULATION FUNCTIONS

Bragg reflections in reciprocal superspace are indexed
with (3 + d ) integers. The main Bragg reflections form the
reciprocal lattice G using the three reciprocal lattice vectors
a∗

1, a∗
2, and a∗

3. All main Bragg reflections can be indexed
using the lattice vector H = (hkl ), with integer h, k, and l .
Satellite reflections at H + ∑d

j=1 mjq j with integer mj appear
in addition to the main reflections, with the modulation wave
vectors q j :

q j =
3∑

i=1

σi, ja∗
i . (1)

For crystals with one modulation vector, the fourth recip-
rocal lattice direction a∗

4 is chosen to be orthogonal to
physical three-dimensional reciprocal space with a length of
a∗

4 = q, which ensures that the satellite reflections can also be

indexed with (3 + 1) integer indices. For (3 + d )-dimensional
superspace, the three-dimensional reciprocal space is then
seen as the projection of a (3 + d )-dimensional reciprocal
superspace [5]. If more than one modulation wave exists,
all d additional reciprocal axes are likewise orthogonal to
three-dimensional physical space.

The Fourier transform of the reciprocal superspace lattice
yields a (3 + d )-dimensional direct lattice. While in conven-
tional three-dimensional crystallography a point atom approx-
imation is taken, atoms are transformed into wavy strings
that are, on average, parallel to the additional dimensions in
superspace [5]. Direct three-dimensional space is obtained
as a cut through superspace perpendicular to the additional
dimensions. The intersection of this cut with the atom surfaces
in superspace yields the value of the modulation function at
this lattice position in real space.

For a simple occupational modulation with modulation
wave vector q the occupancy of an atom j in the unit cell at
vector n may be given as [3]

p(n + r j ) = p̄ + A cos[2πq(n + r j ) + t], (2)

where p̄ is the average occupancy. The amplitude A of the
modulation function has to be chosen so that 0 � p(n +
r j ) � 1 is ensured. The term t determines the initial phase
of the modulation function. The ordered superspace model
is depicted in Fig. 1(a) for a one-dimensional crystal in
two-dimensional superspace. The corresponding diffraction
pattern is shown in Fig. 1(b).

III. DISORDER DIFFUSE SCATTERING

The origin of diffuse scattering can be related to static or
dynamic disorder. While thermal diffuse scattering accounts
for effects that are connected to the correlated thermal motion
of atoms, disorder diffuse scattering covers effects due to
static occupational or displacive alterations of the crystal
structure that are present only on a local scale. Here we
consider disorder diffuse scattering.

Our initial system that is used to illustrate the concepts
of the superspace approach to diffuse scattering is a binary
disordered system that exhibits only occupational disorder.
Two atom types, A and B, are distributed over the lattice
points. The diffuse intensity ID(h) of such a system is given
as [12]

ID(h) = NmAmB| fA(h) − fB(h)|2

×
⎡
⎣1 +

∑
v∈Vp

αv cos(2πhv)

⎤
⎦. (3)

N is the number of atoms in the crystal, and mA and mB are
the relative abundances of species A and B. fA and fB are the
atomic form factors of species A and B. The sum runs over all
interatomic vectors v in the positive real-vector half-space:

Vp = {v = (u, v,w)T |(u > 0) ∨ (u = 0 ∧ v > 0)

∨(u = v = 0 ∧ w > 0)}. (4)

αv is the Warren-Cowley short-range-order parameter [8]:

αv = 1 − pAB
v

mAmB
, (5)
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FIG. 1. (a) The (1 + 1)-dimensional ordered superspace for a one-dimensional basic structure with occupational modulation. The
probability to find an atom at site x is indicated by the color transparency. (b) Reciprocal (1 + 1)-dimensional ordered superspace. For
occupational modulations only first-order satellites are observed; that is, in (1 + 1)-dimensional reciprocal superspace only Bragg reflections at
0a∗

s,2 and ±1a∗
s,2 are observed. (c) The (1 + 1)-dimensional disordered superspace for a one-dimensional basic structure with an occupational

modulation. Two types of modulation functions p+(x) (green) and p−(x) (orange) are introduced. The modulation functions are phase shifted by
π with respect to each other. (d) Reciprocal (1 + 1)-dimensional disordered superspace. The sharp satellite reflections at ±1a∗

s,2 are transformed
into broad diffuse maxima.

where pAB
v is the probability to find species B at vector v from

species A. For random distribution of species A and B αv = 0
for all interatomic vectors v �= (0, 0, 0)T , and only monotonic
diffuse Laue scattering is observed.

In a system that is positively correlated, likewise species
cluster together and form domains. In such a system all αv for
v that are within the average domain size are positive, and the
diffuse scattering accumulates around the Bragg reflections.
Figure 2 shows the diffuse scattering for two different first-
order correlation parameters α1.

IV. DISORDERED SUPERSPACE: A ONE-DIMENSIONAL
EXAMPLE

The following example illustrates the concept of disordered
superspace using a binary alloy. To simplify the initial de-
scription, we use a (1 + 1)-dimensional example with a single
atom position in the average unit cell. For a structure with
sharp satellite reflections, (3 + d)-dimensional superspace is
perfectly periodic. In the case of an occupational modulation,
the atom strings in superspace are density modulations along
straight lines parallel to the axis as,2, with a modulation
function:

p(x) = p̄ + A cos(2πqx). (6)

The amplitude A of the modulation function must ensure that
the probability p(x) is limited to the interval [0,1]. Equivalent

to a perfectly periodic crystal in three dimensions, the Fourier
transform of the periodic (3 + d) structure yields reciprocal
space, where the intensity is zero except for Bragg reflections.
Here the Bragg reflections include the Bragg reflections of
the average structure and the satellite reflections. If the den-
sity modulation in superspace is a simple cosine wave, the
intensity of satellite reflections is zero except for first-order
satellites with m = ±1 [see Fig. 1(b)].

To describe broad diffuse maxima, the periodicity of super-
space must be disrupted. To do so we introduce two different
modulation functions:

p+(x) = p̄ + A cos(2πqx), (7)

p−(x) = p̄ − A cos(2πqx). (8)

There are no experimental means of distinguishing these
two modulation functions. The two modulation functions are
distributed along as,1. At each position perfect order is main-
tained parallel to as,2 [see Fig. 1(c)]. The disorder in super-
space along the as,1 axis manifests itself as diffuse scattering
in rods parallel to a∗

s,1 at the position of the satellite reflections
at integer positions along a∗

s,2. The two modulation functions
are identical except for a shift by 1/2as,2. Thus, in projection
onto the axis as,1 the structure appears to be periodic, and
no diffuse scattering is observed at the position of the main
Bragg reflections. As each of the shifted modulation functions
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FIG. 2. Diffuse scattering of a one-dimensional model system
with occupational disorder. The calculated diffuse scattering is
demonstrated for two different first-neighbor Warren-Cowley short-
range-order parameters α1 > 0. The diffuse scattering was calculated
using the x-ray atomic form factors of Au and Ag atoms in the DISCUS

program [14] for x-ray scattering. The Bragg intensities were omitted
in the calculation.

in itself is strictly periodic along as,2, the diffuse scattering is
limited to integer positions along the a∗

s,2 axis [see Fig. 1(d)].
Physical reciprocal space is a projection of reciprocal

superspace onto three-dimensional space. In this (1 + 1)-
dimensional example, it consists of the sharp Bragg reflections
of the average structure plus the projected diffuse intensity.
The exact distribution of the diffuse intensity depends on
the ordering scheme for the two modulation functions in
superspace.

The direct-space realization is modeled by analyzing the
value of each modulation function at a suitable intersection of
superspace with the physical direct space. If the modulation
wave vector is of incommensurate length, any cut at a position
t along the internal axis in this (1 + 1)-dimensional example
along as,2 will give an equivalent structure. If at any position
at the cut of a1 with superspace the modulation function p+(x)
is encountered, its value gives the probability to place an
atom of type A into the physical structure. If the modulation
function p−(x) is encountered, its value gives the probability
to place an atom of type A into the physical structure. The
diffuse intensities in Fig. 3 are calculated from example bi-
nary disordered model structures using the x-ray atomic form
factors of Au and Ag in the DISCUS program [14]. The average
occupancy is mA = mB = 1

2 . The modulation functions are

p+(x) = 0.5 + 0.5 cos(2πqx), (9)

p−(x) = 0.5 − 0.5 cos(2πqx). (10)

The diffuse intensity distribution calculated for these truly
one-dimensional structures corresponds exactly to the pro-
jection of the diffuse intensity in (1 + 1)-dimensional recip-
rocal space and is equivalent to the diffuse intensity ob-
tained for the one-dimensional structures used to calculate the
diffuse intensity in Fig. 2. Variation of the Warren-Cowley
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FIG. 3. (a) Diffraction pattern for a disordered superspace model
with occupation modulation. A one-dimensional disordered AuAg
1:1 crystal is simulated using the DISCUS program [14]. The mod-
ulation functions p+(x) = 0.5 + 0.5 cos(2πqx) and p−(x) = 0.5 −
0.5 cos(2πqx) are used. Several different Warren-Cowley short-
range-order parameters αs,1

1 are used. q =
√

7
7 . (b) Same simulation

as in (a); the effect of several different modulation wave vectors is
shown. αs,1

1 = 0.85. For computational details see the Appendix B.

short-range-order parameters αs,1
1 gives control over the width

of the diffuse maxima, while their locations are defined by the
modulation wave vector q.

In Fig. 3 the Warren-Cowley short-range-order parameters
have been limited to the range [0,1]. This range is sufficient,
as it allows us to vary the width of the diffuse maxima from
sharp satellites for α = 1 to a completely flat diffuse band for
α = 0. A negative short-range-order parameter would shift the
location of the diffuse maxima in reciprocal superspace by
1
2 a∗

s,1 (see Fig. 1). After the projection of reciprocal superspace
onto physical superspace the diffuse maxima would be located
at a different q vector. This shift is, however, preferably
performed by changing q, as demonstrated in Fig. 3(b). The
computational procedure for model building is described in
the Appendix B.

V. (2 + 1)-DIMENSIONAL DISORDERED SUPERSPACE:
DIFFUSE LINES AND EXTINCTION CONDITIONS

The concept described in the previous section can easily
be expanded to two or three dimensions. Unless restricted by
symmetry [5], the satellite vector and the diffuse maxima,
respectively, may possess arbitrary coordinates in reciprocal
space. The ordering of the phase domains is equivalent to
the one-dimensional case, but the phase domains may have
different sizes along different superspace directions. Figure 4
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FIG. 4. Schematic drawing of a (2 + 1)-dimensional superspace
showing occupation modulation. The two modulation functions
p+(x) = 0.5 + 0.5 cos(2πqx) and p−(x) = 0.5 − 0.5 cos(2πqx) are
indicated in green and orange. The components of the modulation
wave vector q = (σ1, σ2) define the tilt of the superspace layer
defined by as,1 and as,2 versus physical space, spanned by a1 and
a2.

shows a schematic representation of a (2 + 1)-dimensional
superspace.

The simulated diffraction patterns of model substitution-
ally disordered systems are shown in Fig. 5. The width of
the diffuse maxima in two-dimensional reciprocal space is
defined by the Warren-Cowley short-range-order parameters
along as1 and as2 [see Fig. 5(a)]. In this example the satellite
reflections are broader along k than along h since αs

(1,0) <

αs
(0,1). This can be directly transferred to the Fe/vacancy

ordering in the diffuse scattering observed in the incommen-
surately modulated compound Fe1.35Ge [24].

The ordering pattern in superspace allows straightforward
generation of model structures which show diffuse rods in
reciprocal space, as is demonstrated in Fig. 5(b). The mod-
ulation functions are almost perfectly ordered along the su-
perspace direction (1̄, 1) (αs

(1̄,1) = 0.95), while along (1,1) the
modulation functions are not ordered (αs

(1,1) = 0). Note that
the choice of the satellite vector q is independent of the direc-
tions along which superspace is ordered. The specific shape
of the diffuse maxima is defined by directions along which
superspace is subject to short-range order. The generation
of diffuse rods as described here can be directly applied to
the diffuse scattering in ThAsSe as described in [25], where
the diffuse rods run along H± ≈ 0.14〈110〉∗ ± β〈11̄0〉∗ ±
γ [001]∗, with β and γ being essentially continuous.

Extinction conditions in single-crystal diffuse scattering
contain valuable information [22]. In conventional crystal-
lography reflection conditions are encountered whenever the
basic structure obeys symmetry operations with a transla-
tional component, such as lattice centering, glide planes, and
screw axes. In superspace crystallography, the same reflection

conditions are encountered for the main Bragg reflections
and further reflection conditions are observed for the satellite
reflections [5] when the basic structure shows symmetry. The
superspace groups as listed in the International Tables for
Crystallography [26] additionally allow a symmetry transfor-
mation in superspace, yielding further reflection conditions
for the satellite reflections.

To demonstrate the extinction conditions for the diffuse
satellite reflections, model structures in superspace groups
pg1( 1

2β ) and pm1(0β )s0 are generated [see Figs. 5(c) and
5(d)]. The diffuse satellite reflections obey reflection condi-
tions resulting from internal translational symmetry, as well
as from external translational symmetry of the modeled struc-
tures. The reflection conditions as listed in the International
Tables for Crystallography [26] can be directly applied to the
disordered superspace approach.

In Fig. 5(c) the simulated average structure is in the plane
space group pg, with one atom at (0.1,0) and the one atom
on the symmetry-related site at (−0.1, 0.5). The modulation
functions for the second site are transformed for the su-
perspace group pg1( 1

2β ) by the principles described in [5].
The main Bragg reflections are extinct for 0k: k �= 2n. In
a modulated crystal structure with a first order harmonic,
occupation modulation the satellite reflections that belong to
the extinct main reflection are extinct as well. The disordered
superspace approach maintains the overall average symmetry,
and therefore, the broad diffuse maxima obey the same reflec-
tion condition: In Fig. 5(c) no diffuse maxima are observed at
01 ± q as the parent Bragg reflection is extinct. At 02 ± q the
diffuse maxima are observed as the parent Bragg reflection 02
is present.

In Fig. 5(d) the simulated average structure is in the plane
space group pm, with one atom at (0.1,0) and the one atom
on the symmetry-related site at (−0.1, 0.0). The main Bragg
reflections show no extinction condition, as no symmetry
elements containing translational elements are included in
the plane space group descriptor. An additional translational
element along the internal superspace direction is introduced
in the superspace group pm1(0β )s0. In an ordered superspace
all satellite reflections 0km, m �= 2n, are extinct due to an
intrinsic translation in superspace. For the simulated case
of occupational disorder only first-order satellite reflections
are observed; hence, no satellite reflections are observed for
parent Bragg reflections 0k. This extinction condition can be
directly transferred to the diffuse maxima in the disordered
superspace approach: In Fig. 5(d) no diffuse maxima are
observed at 0k ± q. For all other parent Bragg reflections
with h �= 0 the broad diffuse satellites at hk ± q are observed.
These two model simulations show that extinction conditions
for diffuse maxima or diffuse rods can be directly translated
into model structures using superspace symmetry and the
disordered superspace approach.

It is worth mentioning that the diffraction pattern shown
in Fig. 5(d) is generated by a two-dimensional crystal struc-
ture showing pure substitutional disorder. The extinction of
satellite reflections at h = 0 would suggest a translational
disorder with a displacement direction along a1. The re-
flection conditions as described by superspace crystallog-
raphy call for caution in the direct interpretation of such
diffuse scattering patterns and need a careful analysis of both
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FIG. 5. Diffraction pattern of (2 + 1)-dimensional disordered superspace models. Primitive unit cells in p1 with only one atom per unit
cell are used in (a) and (b), with a modulation wave vector q = ( 1

2 ,
√

7
7 ). (a) αs

(1,0) = 0.7, αs
(0,1) = 0.5. (b) αs

(1,1) = 0, αs
(1̄,1) = 0.95. (c) The

diffuse satellite reflections follow the main reflection extinction condition of their respective parent main reflection 0k: k = 2n. Superspace
group pg1( 1

2 β ), q = ( 1
2 ,

√
7

7 ). (d) The diffuse satellite reflections also follow the extinction conditions for internal symmetry. Superspace group

pm1(0β )s0, q = (0,
√

7
7 ). The choices of the q vectors used fulfill the symmetry restriction but are otherwise arbitrary and are chosen purely

for demonstration purposes.

diffuse and Bragg scattering data to determine the underlying
disorder.

By adding integer numbers to any of the components of the
modulation wave vector the position of the diffuse maxima
can be tuned in reciprocal space. The disordered superspace
approach allows direct access to extinction conditions ob-
served in single-crystal diffuse scattering.

VI. POSSIBLE APPLICATIONS

Incommensurately modulated crystals are often encoun-
tered at phase transitions [5]. Such a phase transition is an
ordering process, in general from a disordered towards an
ordered crystal structure upon lowering of the temperature.
In some cases a phase transition was observed where diffuse
scattering was observed above the phase transition, and below
a modulated crystal structure was observed (see, e.g., [27]).
We suggest a disordered superspace model to describe such
phase transitions and to generate structural models.

Diffuse rods along high-symmetry directions have been
frequently observed in single-crystal diffuse scattering (see
[22] and references therein). The disordered superspace
approach as demonstrated here allows the straightforward
generation of model structures with such diffuse rods and

also provides direct access to possible observed extinction
conditions.

A superspace composition which differs from mP = mM =
0.5 allows us to generate sharp satellite reflections on top of
broad diffuse maxima. The mullite system as presented in
[28] is only one example of a system showing sharp satellite
reflections on top of diffuse scattering.

Another application of the proposed disordered superspace
model is in the field of diffuse scattering where reverse Monte
Carlo modeling is used: In reverse Monte Carlo modeling a
crystal structure is altered at random until the observed and
calculated diffuse scatterings overlap. The diffuse scattering
consists of broad maxima at fixed positions in reciprocal
space. Using the proposed disordered superspace model a
building principle can be directly derived from the position
and width of the diffuse maximum. The resulting structure
has the same or even more physical meaning than a result of
a reverse Monte Carlo simulation, but the computational cost
is drastically reduced. A direct interpretation of the diffuse
maxima in terms of correlation parameters and modulation
functions is possible.

In general the described disordered superspace model
allows the generation of a crystal structure with a diffuse
maximum at an arbitrary position in reciprocal space. The
structures generated here show diffuse maxima at ±q from
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each Bragg reflection. This may seem to be a restriction on the
diffuse scattering, but considering Eq. (3), purely occupational
disorder is also symmetric around Bragg reflections. Hence,
for purely occupational disordered systems the disordered
superspace model does not restrict possible configurations in
reciprocal space.

VII. CONCLUSION

A formalism was demonstrated that allows the interpreta-
tion of diffuse maxima as the result of a disordered super-
space. The computational procedure demonstrated here allows
fast realization of structural models from reciprocal space
analysis: The position and width of a diffuse maximum can be
directly transferred into a disordered superspace model. The
superspace model needs only a few parameters, namely, the
modulation wave vector and the Warren-Cowley short-range-
order parameters for the ordering of the modulation functions
in superspace, to sufficiently describe a disorder model. The
comparison to disorder description with correlation coeffi-
cients can easily be achieved, as the superspace approach
delivers a recipe for structure building. The disordered su-
perspace approach combines the tools supplied by superspace
crystallography and the description of pair correlations from
conventional diffuse scattering analysis to provide a more
general and flexible description of diffuse maxima at arbitrary
positions in reciprocal space.

The reasons listed above are why we suggest that the
disordered superspace model building is superior to reverse
Monte Carlo modeling methods in diffuse scattering analysis.
The reduction of disorder parameters compared to correlation-
parameter-driven description is immense and thus simplifies
the interpretation of diffuse scattering.

The disordered superspace approach can be generalized
to cover displacive disorder, size-effect-like relaxations, and
magnetic disorder. For this purpose the binary disordered
superspace approach introduced here will be extended. In-
stead of using two modulation wave functions that are phase
shifted by π , a continuous type of disorder will be introduced
to superspace using phase shifts t of the modulation wave
functions. The theoretical framework and the experimental
demonstration are beyond the scope of this paper and will be
published elsewhere.

ACKNOWLEDGMENTS

E.M.S. thanks the Bavarian Equal Opportunities Sponsor-
ship – Realisierung von Frauen in Forschung und Lehre (FFL)
– Realizing Equal Opportunities for Women in Research and
Teaching for funding. P. B. Klar is acknowledged for the intro-
duction to superspace crystallography and fruitful discussion.

APPENDIX A: ANALYTICAL EXPRESSION FOR THE
DISORDERED SUPERSPACE APPROACH

This Appendix will outline a mathematical concept and
derive an expression for the diffuse scattering intensity from a
primitive disordered superspace model, with one occupied site
per unit cell. The different pair probabilities used in the deriva-
tion are mathematical constructs that enable straightforward

calculation of the diffuse scattering intensities. We do not
suggest a physical interpretation of these pair probabilities.
The analytical expression here is constrained to occupational
modulations of the type

pA(x) = mA + A cos(2πqx). (A1)

Here mA is the average probability to find an atom of type
A. The disordered superspace is composed of two types of
modulation functions, P and M. The superspace composition
is given as mP = 1 − mM .

The probability to find an atom of type A on a site x
depends on the type of modulation function at (x, 0) in the
disordered superspace model. The probability to find an atom
of type A on a site x for the modulation function type M is
denoted pM

A (x). The probabilities pP
A(x), pM

B (x), and pP
B(x) are

defined accordingly:

pM
A (x) = mA − A cos(2πqx), (A2)

pP
A(x) = mA + A cos(2πqx), (A3)

pM
B (x) = mB + A cos(2πqx), (A4)

pP
B(x) = mB − A cos(2πqx), (A5)

where the probabilities fulfill pB(x) = 1 − pA(x).
An analytical expression for the diffuse scattering intensity

requires the definition of pair probabilities. Depending on
the modulation functions on the site at (xi, 0) and on the
site at (x j, 0), the probability to find a pair AA varies. Here
the 16 different pair probabilities of type pPP

AA(xi, x j ) need to
be calculated. The expressions for pPP

AA(xi, x j ), pPM
AA (xi, x j ),

pMP
AA (xi, x j ), and pMM

AA (xi, x j ) are stated here; the others can
be calculated accordingly.

pPP
AA(xi, x j ) = pP

A(xi )pP
A(x j )

= m2
A + mAA[cos(2πqxi ) + cos(2πqx j )]

+ A2 cos(2πqxi ) cos(2πqx j ), (A6)

pPM
AA (xi, x j ) = m2

A + mAA[cos(2πqxi ) − cos(2πqx j )]

− A2 cos(2πqxi ) cos(2πqx j ), (A7)

pMP
AA (xi, x j ) = m2

A − mAA[cos(2πqxi ) − cos(2πqx j )]

− A2 cos(2πqxi ) cos(2πqx j ), (A8)

pMM
AA (xi, x j ) = m2

A − mAA[cos(2πqxi ) + cos(2πqx j )]

+ A2 cos(2πqxi ) cos(2πqx j ). (A9)

For the calculation of the diffuse scattering intensity, it is
necessary to calculate the expectation value of the probability
to find a pair of type AA separated by a vector v. Therefore,
〈pPP

AA(v)〉 needs to be calculated:

〈
pPP

AA(v)
〉 = 1

N

N∑
i=1

pPP
AA(xi, xi + v)

= m2
A + A2

2
cos(2πqv)
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+ 1

N

N∑
i=1

(mAA{cos(2πqxi ) + cos[2πq(xi + v)]}

+ A2

2
cos[2πq(2xi + v)])

= m2
A + A2

2
cos(2πqv), (A10)

where N is the number of atoms in the crystal. The remaining
15 pair probabilities can be calculated accordingly.

The probability to find a pair of modulation functions in
superspace PM separated by a vector (v, 0) is defined by the
superspace Warren-Cowley short-range-order parameter:

αs
v = 1 − pPM

(v,0)

mPmM
. (A11)

The diffuse scattering intensity can then be calculated, analo-
gous to the formulas presented in [12]:

ID(h) = N | fA(h) − fB(h)|2
⎧⎨
⎩1 +

∑
v∈Vp

[
(mP − mM )2

+ 4mPmMαs
v

]
A2 cos(2πqv) cos(2πhv)

⎫⎬
⎭. (A12)

For a positive correlation (αs
v > 0), the diffuse scattering

intensity shows diffuse maxima at H ± q. The shape of the
diffuse maximum is governed by the superspace correlations
αs

v > 0. For large inter-unit-cell superspace vectors v the
superspace correlations αs

v → 0.
For an unequal superspace composition mP �= mM even at

large inter-unit-cell superspace vectors v the terms with (mP −
mM )2 contribute to the diffuse scattering. This gives rise to
the sharp satellite reflections at H ± q on top of the diffuse
scattering.

This analytical approach shows that the shape of the diffuse
maxima in reciprocal space can be fully described by the
Warren-Cowley short-range-order parameters αs

v in super-
space, while the position is solely defined by the q vector.

APPENDIX B: COMPUTATIONAL REALIZATION OF A
DISORDERED SUPERSPACE MODEL

The disordered superspace structures are simulated using
the DISCUS program [14]. A one-dimensional crystal of 20 000
unit cells is generated. Half of the atoms are of type P
(modulation function p+), and half of the atoms are of type
M (modulation function p−). Using a Monte Carlo algorithm,
the atoms are sorted with a positive correlation, yielding,
e.g., a desired positive correlation given by αs,1

1 = 0.85. This
generates phase domains in the direction of as,1.

The disordered modulated crystal structure is an AuAg 1:1
crystal, with a lattice constant of 5 Å. The atoms are placed
at the origin of the unit cell. A loop over all atoms in the
disordered superspace structure is taken. If the modulation
function is of type p+, an Au atom is inserted in physical space
at x with probability

pAu
+ (x) = 0.5 + 0.5 cos(2πqx). (B1)

An evenly distributed random number in the interval [0,1] is
generated. If this random number is larger than pAu(x), an
Au atom is inserted; otherwise, an Ag atom is inserted. If the
modulation function is of type p−, an Au atom is inserted in
physical space with probability

pAu
− (x) = 0.5 − 0.5 cos(2πqx). (B2)

This procedure generates a physical structure with equal
probabilities for Au and Ag atoms. The main Bragg reflections
were omitted in the calculation of the diffraction pattern. The
approach was extended for the (2 + 1)-dimensional diffrac-
tion patterns shown in Fig. 5.
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