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Exceptional rings protected by emergent symmetry for mechanical systems
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We propose mechanical systems, described by Newton’s equation of motion, as suited platforms for symmetry
protection of non-Hermitian degeneracies. We point out that in contrast to other systems with gain and loss,
fine tuning of parameters is not required to realize symmetry-protected non-Hermitian degeneracies due to an
emergent property of mechanical systems. The presence of symmetry-protected exceptional rings with extended
chiral symmetry is numerically demonstrated for a mechanical graphene with friction. Furthermore, classification
of symmetry-protected non-Hermitian degeneracies is addressed by taking into account the emergent properties
of mechanical systems.
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I. INTRODUCTION

After the discovery of a topological insulator for a quantum
well of HgTe/CdTe [1–3], topological phenomena have been
analyzed extensively [4,5]. Interestingly, topological phenom-
ena can be observed even for classical systems. For instance,
topologically protected excitations are reported for classical
systems described by the Newton’s law [6–8]. Other repre-
sentative examples are systems described by the Maxwell’s
equations, e.g., photonic crystals [9–11] and electric circuits
[12–14]. In particular, chiral edge states [15–17] realized for
photonic crystals [11] provide the basis for novel devices
(e.g., directional filters [18]), which enhances the significance
of classical topological systems. The above topological phe-
nomena both for quantum and classical systems are mathe-
matically described as an eigenvalue problem of a Hermitian
matrix.

Recently, theoretical and experimental efforts have opened
a new field of research, non-Hermitian topological sys-
tems, where the eigenvalue problem becomes non-Hermitian
[19–21]. The non-Hermitian topological phenomena have
been reported for a variety of systems, such as open quantum
systems [22–26], photonic crystals [27–33], and correlated
systems in equilibrium, etc. [34–36]. In this field, as well
as the bulk-edge correspondence under the non-Hermitian
skin effect [37–42], the interplay between symmetry and the
non-Hermiticity has been addressed as a central issue. In
particular, the non-Hermiticity unifies [43,44] and ramifies
[45] the symmetry classes. Furthermore, recent theoretical
studies [46–48] have revealed that symmetry enriches the
topology of exceptional points which arise from defectiveness
of the Hamiltonian [25,49] (i.e., the breakdown of its diag-
onalizability). These novel non-Hermitian degeneracies are
referred to as symmetry-protected exceptional rings (SPERs)
for two-dimensional systems and symmetry-protected excep-
tional surfaces (SPESs) for three-dimensional systems.

So far, open quantum systems [22–26] and photonic sys-
tems [27–32] have mainly been analyzed as the experimen-
tal platforms of the non-Hermitian topological physics. In

these systems, fine tuning is required in experiments to an-
alyze the interplay of symmetry and non-Hermiticity, such as
emergence of the aforementioned symmetry-protected non-
Hermitian degeneracies. For example, to preserve parity-
time symmetry (PT symmetry) in photonic systems, one
needs to tune gain and loss as well as coupling between
sites [50,51]. Therefore, for experimental realizations of
symmetry-protected non-Hermitian degeneracies, it is impor-
tant to find a system where relevant symmetry is preserved
without fine tuning.

We here elucidate that without fine tuning, mechanical
systems host symmetry-protected non-Hermitian topological
degeneracies with extended chiral symmetry, which is an
emergent property of the mechanical systems. Specifically,
we demonstrate the presence of SPERs with extended chiral
symmetry [48] for a mechanical graphene with homogeneous
fiction. Interestingly, in such a system, the zeroth Chern num-
ber characterizing the SPERs can be obtained by experimental
observable quantities. Furthermore, we also carried out topo-
logical classification of symmetry-protected non-Hermitian
degeneracies by taking into account emergent properties of
mechanical systems. The obtained result elucidates the robust-
ness of SPERs in the mechanical graphene; SPERs survive
even when the system is rotated because of the presence
of CP symmetry, while SPERs vanish further breaking the
inversion symmetry with inhomogeneous potentials arising
from gravity.

The rest of this paper is organized as follows. In Sec. II,
we elucidate that mechanical systems with friction host
symmetry-protected non-Hermitian degeneracies with the
emergent symmetry by recasting the equation of motion as
an eigenvalue problem of a non-Hermitian matrix. In Sec. III,
we demonstrate the emergence of SPERs with extended chiral
symmetry for the mechanical graphene with homogeneous
friction. In Sec. IV, we address topological classification of
symmetry-protected non-Hermitian topological degeneracies
by taking into account the special characteristics of mechani-
cal systems.
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II. SYMMETRY-PROTECTED NON-HERMITIAN
DEGENERACIES WITH EMERGENT SYMMETRY

First, we show that a wide variety of mechanical systems
host symmetry-protected non-Hermitian degeneracies, such
as SPERs in two dimensions. Consider a mechanical system
with friction where internal forces (e.g., the Coriolis force)
and the Lorentz force are absent. In this case, the system
preserves emergent symmetry (4) which results in the above
symmetry-protected non-Hermitian degeneracies.

In the following, we discuss the symmetry of the systems
and discuss the symmetry protection of the non-Hermitian
degeneracies.

A. Matrix form of equation of motion

Let us consider a mechanical system, such as a coupled
vibration system. Then, the equation of motion is given by

üμ

k = −Dμν (k)uν
k + �

μν
0 (k)u̇ν

k, (1)

where uμ

k denotes the Fourier transformed displacement

(μ, ν = x, y) u̇μ

k := duμ

k
dt . Summation over repeating indices is

assumed. The first and second terms describe the potential
force and the force proportional to the velocity.

In the matrix form, the above equation is rewritten as

φ̇k(t ) = M(k)φk(t ), (2a)

M(k) =
(

0 1l

−D(k) �0(k)

)
ρ

, (2b)

with φ(t ) = (uk u̇k)T . The matrix D(k) is Hermitian and
positive definite, which guarantees that the system is mechan-
ically stable.

Because the Hermitian matrix D(k) is positive definite, we
can introduce a Hermitian matrix Q(k) with D(k) = Q2(k)
(for more details, see Appendix A). Thus, the equation of
motion (2) is rewritten as [6,8]

i∂tψ(t ) = Hψ(t ), (3a)

H =
(

0 Q(k)

Q(k) i�0(k)

)
ρ

, (3b)

with

ψ(t ) =
(

Q(k) 0

0 i1l

)
ρ

φ(t ). (3c)

The matrices H and M in Eq. (2a) give the same eigenvalues
(i.e., the same frequency). Therefore, the dynamics of the
system is described by the matrix H which is Hermitian in
the absence of dissipation. Because Eq. (3) is mathematically
identical to the Schrödinger equation, we refer to the matrix H
as Hamiltonian in the following. When i�0(k) is a Hermitian,
the system conserves the energy. Otherwise, the system is
dissipative.

B. Emergent symmetry

Remarkably, mechanical systems possess extended chiral
symmetry as an emergent property; in contrast to other plat-
forms of non-Hermitian physics (e.g., quantum systems or

photonic crystals), the Hamiltonian H describing mechanical
systems preserves extended chiral symmetry (4) regardless
of its details. Furthermore, the system preserves CP symme-
try (6), provided that the inversion symmetry is present. In the
following, we see the details.

(i) Emergent symmetry. Any system, whose matrix �0(k)
purely describes loss of energy, possesses the extended chiral
symmetry as an emergent property

ρ3H†(k)ρ3 = −H (k), (4)

where ρ’s are Pauli matrices. Mathematically, the above
emergent symmetry is preserved if i�0(k) is anti-Hermitian.
Introducing the Coriolis force or the Lorentz force breaks the
extended chiral symmetry.

(ii) CP symmetry. When the system is inversion symmetric,
the CP symmetry is preserved. To see this, we first mention
particle-hole symmetry of mechanical systems. Particle-hole
symmetry is preserved for any D and �0 rewritten as real
matrices in the real space. Namely, when the matrices satisfy
D∗(k) = D(−k) and �∗

0 (k) = �0(−k), the system preserves
the particle-hole symmetry

ρ3H∗(k)ρ3 = −H (−k). (5)

Thus, if the system is inversion symmetric [i.e, UI D(k)UI =
D(−k) and UI�0(k)UI = �0(−k) with U 2

I = 1l hold], the
Hamiltonian preserves the CP symmetry

UCPH∗(k)U †
CP = −H (k), (6)

with UCP = UI ⊗ ρ3. CP symmetry may exist even when
the Coriolis force is present. However, to preserve the CP
symmetry, the system needs to be inversion symmetric,
which requires fine tuning. We note that the matrix Q(k)
inherits symmetry of the matrix D(k) (for more details see
Appendix A).

We note that particle-hole symmetry itself is another type
of emergent symmetry [8]. However, it requires momen-
tum flipping and thus irrelevant for symmetry-protected non-
Hermitian degeneracies.

C. Symmetry-protected non-Hermitian degeneracies with
extended chiral symmetry

Here, we show that the extended chiral symmetry (4)
results in symmetry-protected non-Hermitian topological de-
generacies [48] by analyzing the Hamiltonian around a band-
touching point. The topological characterization of these de-
generacies is discussed in Sec. III B.

First, we note that in the presence of the extended chiral
symmetry, the energy eigenvalues form a pair (E ,−E∗) or
take pure imaginary values (E ∈ iR) (see Appendix B). This
fact indicates that each pair (E ,−E∗) cannot split without
going through a band touching (i.e., band touching both for
real and imaginary parts).

Let us consider a one-dimensional line in the BZ where
a pair of bands splits via a band-touching point. As we see
below, the Hamiltonian is defective at this band-touching
point. Around but not at the band-touching point, we first
project the Hilbert space to the space spanned by the pair of
bands. Then, the Hamiltonian and the operator of extended
chiral symmetry are reduced into 2 × 2 matrices. Here, the
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chiral operator is written as U� = n · σ [52] with a unit vector
n ∈ R3. Therefore, without loss of generality, the Hamiltonian
and the operator of extended chiral symmetry are written as

H = id0σ0 + (b + id ) · σ, (7a)

U� = σ3, (7b)

with b = (b1, b2, 0) and d = (0, 0, d3). The eigenvalues of the
Hamiltonian H are written as

E = id0 ±
√

b2 − d2. (7c)

Therefore, at the band-touching point satisfying b = d , the
Hamiltonian is written as H = (id0 b

0 id0

)
with a proper choice

of the basis. This result indicates that the Hamiltonian is
defective [53] (i.e., it is not diagonalizable).

We note that CP symmetry also results in symmetry-
protected non-Hermitian degeneracies, which can be seen in a
similar way as the above case (see Appendix C).

III. SPERS FOR A MECHANICAL GRAPHENE
WITH FRICTION

We demonstrate the emergence of the SPERs for a mechan-
ical graphene with friction (Fig. 1).

A. Model

We first consider only potential forces. After that the
Coriolis force and friction are introduced. We consider that
the spring mass forms the honeycomb lattice whose unit cell
is illustrated with a red dashed box in Fig. 1. In this figure,
primitive translation vectors a1 and a2 are shown with blue
arrows. We also suppose that the mass points are trapped in
harmonic potentials arising from gravity, which can be real-
ized by introducing dents of the floor. When the displacement

FIG. 1. Sketch of the mechanical graphene where mass points
are connected by springs. The system is composed of A and B
sublattices represented with white and black circles. The unit cell
is enclosed with the red dashed box. a1 and a2 are the primitive
translation vectors. We note that the system is horizontal.

is sufficiently smaller than the lattice constant, the Lagrangian
is represented as the following quadratic form:

L = m

2

∑
k,μ,α

u̇μ

kα
· u̇μ

−kα
− 1

2

∑
k

Dμν

αβ (k)uμ

k,α
uν

−k,β , (8a)

with Dμν
αβ (k) = Dμα;νβ (k) and

D(k) = 3κ
(

1 − η

2

)
1l +

(
κ0

A DAB(k)

D†
AB(k) κ0

B

)
, (8b)

DAB(k) = κ (γ3 + γ1e−ik·a1 + γ2e−ik·a2 ), (8c)

γ1 := (1 − η)

(
1 0

0 1

)
+ η

(
3
4

√
3

4√
3

4
1
4

)
, (8d)

γ2 := (1 − η)

(
1 0

0 1

)
+ η

(
3
4 −

√
3

4

−
√

3
4

1
4

)
, (8e)

γ3 := (1 − η)

(
1 0

0 1

)
+ η

(
0 0

0 1

)
. (8f)

Here, m denotes the mass and κ describes the potential force
of springs. κ0

α denotes the strength of the potential force aris-
ing from the gravity for sublattice α (α = A, B). uμ

kα
denotes

the Fourier transformed displacement of the mass point at α

sublattice. The μ(= x, y) denotes the μ component. Prestress
in the spring is controlled by η := l0/R [7] where l0 denotes
natural length of the spring and R denotes lattice constant
(R = 1).

Taking variational derivative of the Lagrangian, we obtain
the equation of motion

üμ

kα
= −Dμν

αβ (k)uν
kβ. (9)

Now, let us introduce the frictional force and the Coriolis
force which are proportional to velocity, the equation of
motion is written as

üμ

kα
= −Dμν

αβ (k)uν
kβ + �

μν
0αβ (k)u̇ν

kβ, (10a)

�
μν

0αβ = −bαδμνδαβ + 
0ε
μνδαβ, (10b)

with 
0 ∈ R and bα � 0. Here, summation over repeating
indices is assumed. εμν is an antisymmetric matrix with
εxy = 1. The term proportional to bα describes the frictional
force, and the term proportional to 
0 describes the Coriolis
force (i.e., 
0 denotes the angular velocity).

We note that Eqs. (1) and (10) describing the above system
are rewritten in the form of Eq. (3) with φ = (uk, u̇k)T and
uk = (ux

kA uy
kA ux

kB uy
kB)T .

Here, we briefly summarize the symmetry. When the Cori-
olis force is absent, the system preserves extended chiral
symmetry (4) regardless of the other details of the system.
Aside from the extended chiral symmetry, CP symmetry (6)
with UCP = 1l ⊗ s1 ⊗ ρ3 is preserved because our system is
inversion symmetric. Here, si (i = 1, 2, 3) denotes the Pauli
matrix acting on the sublattice degrees of freedom. Due to
the above symmetry, SPERs may emerge in the mechanical
graphene.
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FIG. 2. (a) [(b)] Energy dispersion ω(k) of the mechanical
graphene for (b, η) = (0, 0) and [(b, η) = (0, 0.8)].

B. Numerical demonstration

We demonstrate that the mechanical graphene hosts
SPERs. Specifically, after the results of the conservative
system, we show the presence of SPERs with the extended
chiral symmetry (4) for the system with friction (Sec. III B 2).
In Sec. III B 3, we show that SPERs survive even in the
absence of the extended chiral symmetry. This is because the
system preserves CP symmetry (6). In Sec. III B 4, we see
that breaking both of the extended chiral symmetry and CP
symmetry changes the SPERs to exceptional points.

In the following, we discuss the data for m = κ = 1.

1. System without friction

Let us start with the case of bA = bB = 0 where the sys-
tem is not dissipative. By diagonalizing the matrix M(k),
we obtain the band structure for η = 0 which is plotted in
Fig. 2(a). In this case, the longitudinal and transverse waves
are decoupled, which results in twofold degeneracy of each
band as shown in Fig. 2(a). Increasing η lifts the degeneracy
[see Fig. 2(b)]. For both cases of η = 0 and 0.8, one can
observe the following two behaviors: (i) the linear dispersion
is observed around the � point, which corresponds to the
Nambu-Goldstone modes; (ii) the real part of the energy
eigenvalue is symmetric for Re[ω] = 0, which arises from
extended chiral symmetry and CP symmetry [see Eqs. (4) and
(6)].

2. System with friction

Now, we move on to the system with friction by setting
b = 0.5. In this case, the eigenvalues ω take complex values.
The real and the imaginary parts of the energy eigenvalues
for η = 0.8 are plotted in Figs. 3(a) and 3(b), respectively.
Because of the extended chiral symmetry, eigenvalues (ω’s)
form a pair (ω,−ω∗) or take pure imaginary ω ∈ iR, indi-
cating that each pair cannot split without showing a band
touching (see Sec. II C). Correspondingly, energy eigenvalues
satisfy Im[ω] = −b/2 in the region where Re[ω] �= 0. We
note that the Hamiltonian is written as Eq. (E2) up to the term
(−ib/2)1l.

As discussed in Sec. II C, the Hamiltonian becomes defec-
tive (i.e., it is not diagonalizable) at the ring of band-touching
points. This can be seen in Fig. 3(c). This figure shows points
in the BZ where the determinant of the matrix U (k) becomes
zero. Here, each column of the matrix U (k), which is a
square matrix of order dimM, corresponds to the eigenvectors

FIG. 3. Numerical results of the mechanical graphene with fric-
tion. (a) [(b)] The real part (imaginary part) of the eigenvalues ω(k).
(c) Momentum points k0 satisfying |detU (k0)| < 0.005. (d) The
zeroth Chern number N0Ch [i.e., the number of occupied bands for
−iH ′ρ3 with H ′ = H − (trH/dimH )1l] at each point of the BZ. For
computation of N0Ch, we have used Eq. (11). The data are obtained
for 
 = κA = κB = 0 and (b, η) = (0.5, 0.8) with bA = bb = b =
0.5. We note that the imaginary part of eigenvalues takes a distinct
value except for the case of Im[ω] = −b/2.

of M(k). Therefore, on the points plotted in Fig. 3(c), the
Hamiltonian becomes defective. We note that for some modes,
the damping rate inside of the SPER becomes smaller than
the one outside of the SPER [see Fig. 3(b)], which holds for
generic systems with homogeneous friction [54]. Therefore,
the emergence of SPER results in the following dynamical
behavior which may be observed in experiments. A region
emerges in the BZ for which the displacement damps slowly
compared to the ones for the other region. The modes on the
exceptional rings show critical damping.

Here, we address the characterization of the exceptional
points. As pointed out in Ref. [48], SPERs are character-
ized with the zeroth Chern number (the definition is in Ap-
pendix E). This fact is consistent with Z classification for
class BDI with δ = 1 (see Sec. IV). Figure 3(d) shows that
the SPERs emerge at the boundary separating two domains
with distinct values of N0Ch, which characterizes the SPERs.
Interestingly, when the frictional force is homogeneous, the
zeroth Chern number N0Ch can be simplified as

N0Ch(k) =
∑

n=1,...,dimH

�>[2ω0n(k) − b] (11)

when the frictional force is homogeneous. �>(x) takes 1, 1
2 ,

and 0 for x > 0, x = 0, and x < 0, respectively. ω0n (n =
1, . . . , dimH) is the energy eigenvalue of the system without
friction. The details of the derivation are summarized in
Appendix E. Remarkably, the right-hand side of Eq. (11) is
composed only with experimental observables, indicating that
the N0Ch is measurable in experiments.
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FIG. 4. Numerical results of the rotating mechanical graphene
with homogeneous friction. (a) [(b)] The real part (imaginary
part) of the eigenvalues ω(k). (c) Momentum points k0 satisfying
|detU (k0 )| < 0.005. (d) The Z2 invariant (12) for each point of
the BZ. The data are obtained for κA = κB = 0 and (b, 
0, η) =
(0.5, 0.05, 0.8) with bA = bb = b = 0.5.

We consider that the zeroth Chern number and the presence
of the region where the modes damp slowly are experimental
signals of SPERs.

3. Rotating system with homogeneous friction

As seen in Sec. II C, the robustness of the exceptional
rings in this two-dimensional system arise from the extended
chiral symmetry (4). Here, we see that the SPERs in the
mechanical graphene can survive even in the absence of
the extended chiral symmetry. In order to see this, we here
analyze effects of the symmetry breaking. First, we analyze
the system by introducing the Coriolis force which breaks the
extended chiral symmetry. Figures 4(a) and 4(b) show the real
and the imaginary parts of the eigenvalues for the parameter
set (bA, bB,
0, κB, η) = (0.5, 0.5, 0.05, 0, 0.8), respectively.
These figures show that band-touching points form a ring.
Figure 4(c) elucidates the points where the matrix M(k)
becomes defective. These figures indicate that the SPERs
survive even in the absence of the extended chiral symmetry.
In this case, the SPERs are protected by CP symmetry (6) (see
Appendix C).

Classification results obtained in Sec. IV elucidate that
the SPERs can be characterized by the Z2 invariant. The Z2

invariant of the zero-dimensional systems is given by [43]

s(k) = sgn[detiH ′(k)], (12)

with H ′ = H − (trH/dimH )1l. Here, sgn(x) take 1 and −1 for
x > 0 and x < 0. In Fig. 4(d), one can see that the Z2 invariant
characterizes the SPERs.

FIG. 5. Numerical results of the rotating mechanical graphene
with inhomogeneous friction and the harmonic potentials. The data
are obtained for (bA,
0, κB, η) = (2, 0.05, 0.05, 0.8) and bB = κA =
0. (a) [(b)] The real part (imaginary part) of the eigenvalues ω(k).
(c) Momentum points k0 satisfying |detU (k0)| < 0.005.

4. Rotating system with inhomogeneous friction and
the harmonic potentials

Further breaking CP symmetry changes the SPER to
the exceptional points. Figure 5 shows data for the pa-
rameter set (bA, bB,
0, κA, κB, η) = (2, 0, 0.05, 0, 0.05, 0.8).
Figures 5(a) and 5(b) show that the band touching occurs
at points rather than rings [55]. Correspondingly, the points,
where the determinant of the matrix U approaches to zero,
does not form rings [see Fig. 5(c)]. The above results indicate
that exceptional points appear for mechanical systems when
the systems have neither the extended chiral symmetry nor
CP symmetry.

With breaking CP symmetry but preserving extended chi-
ral symmetry, we can observe the SPERs with extended chiral
symmetry.

IV. CLASSIFICATION OF THE NON-HERMITIAN
DEGENERACIES IN MECHANICAL SYSTEMS

So far, we have observed the existence of SPERs in the me-
chanical graphene with extended chiral symmetry (4), which
is an emergent property of mechanical systems. The mecha-
nism of symmetry protection has been discussed in Sec. II C.

In this section, we address classification of topological
non-Hermitian degeneracies, which allows us to discuss the
symmetry protection in a more systematic way. The classifi-
cation results also predict topological non-Hermitian degen-
eracies for other cases of symmetry and dimensions, which is
summarized in Sec. IV C 1.

The above issue has recently been addressed for generic
non-Hermitian matrices [56]. However, we would like to
stress that the special characteristics, such as the emergent
symmetry, need to be taken into account for systematic under-
standing of non-Hermitian degeneracies in mechanical sys-
tems, which is supported by the numerical results in Sec. III B.

A. Relevant symmetry

In Sec. II B, we have seen that mechanical systems may
preserve extended chiral symmetry (4) and the CP symmetry
(6). Therefore, we address the topological classification for
the following symmetry constraints:

UT PHT (k)U †
T P = H (k), (13a)

UCPH∗(k)U †
CP = −H (k), (13b)

U�H†(k)U †
� = −H (k). (13c)
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Equations (13b) and (13c) are generic forms of CP symmetry
and extended chiral symmetry discussed in Sec. II B. The
first condition is obtained by the product of Eqs. (13b) and
(13c). As discussed in Sec. III B, the mechanical graphene
may preserve the extended chiral symmetry and CP symme-
try. Rotating the system violates Eq. (13c), and introducing
inhomogeneity breaks Eq. (13b).

We note that for systems preserving CP symmetry with
(CP)2 = −1, additional CP symmetry [CP′ = UCP′K and
(CP′)2 = 1] should be taken into account. This is because
particle-hole symmetry (5) is generically preserved for me-
chanical systems; Eq. (5) is satisfied for any D and �0 rewrit-
ten as real matrices in the real space.

One may consider another type of CP symmetry
UCPHT (k)U †

CP = −H (k). However, this symmetry is incom-
patible with homogeneous friction (for more details see
Appendix G). Therefore, we only consider the symmetry
shown in Eq. (13).

B. Brief description of classification scheme

In the following, we explain how to classify non-Hermitian
topological degeneracies. This section describes technical de-
tails and the readers may skip them and directly proceed to
Sec. IV C 1.

1. Band gap for non-Hermitian systems

As pointed out in Ref. [45], there are two ways to define
the band gap for the non-Hermitian systems because the
eigenvalues take complex values. The first one is the point
gap [43] and the second one is the line gap [25]. The results
obtained in Sec. III B indicate that adopting the point gap
captures the SPERs and the symmetry-protected exceptional
surfaces (SPESs), which we see below.

First, we define that a system is gapped when its Hamil-
tonian H (k) satisfies detH (k) �= 0. Second, consider two
subsystems in the BZ whose point gap is finite. If the two
Hamiltonians describing these subsystems are topologically
distinct, then, the gap needs to close (detH = 0) in a region
separating the two subsystems, which corresponds to the non-
Hermitian degeneracies.

2. Classification scheme

The classification of dEP-dimensional non-Hermitian de-
generacies (i.e., gapless nodes) in d spatial dimensions
is accomplished by classifying (δ − 1)-dimensional gapped
Hamiltonian with δ = d − dEP.

The strategy of the classification is mapping the non-
Hermitian Hamiltonian to a Hermitian matrix whose classi-
fication is well established. Such mapping is accomplished by
defining

H̃ (k) :=
(

0 H (k)

H†(k) 0

)
χ

. (14)

The condition detH = 0 is equivalent to detH̃ = 0, indicating
that the gap closing of the non-Hermitian Hamiltonian H can
be captured with Hermitian Hamiltonian H̃ .

Now, we discuss the symmetry constraints on H̃ . The T P
symmetry (13a) is rewritten as

T̃ PH̃ (k)T̃ P
−1 = H̃ (k), (15a)

with T̃ P = UT P ⊗ χ1K. The CP symmetry (13a) is rewritten
as

C̃PH̃ (k)C̃P
−1 = −H̃ (k), (15b)

with C̃P = UCP ⊗ χ0K. The extended chiral symmetry (13a)
is rewritten as

�̃H̃ (k)�̃−1 = −H̃ (k), (15c)

with �̃ = U� ⊗ χ1. Here, the operator K takes complex con-
jugation. χ ’s are the Pauli matrices acting on the extended
Hilbert space. In addition to the above symmetry, the Her-
mitian Hamiltonian H̃ always preserves the chiral symmetry
�̃ := 1l ⊗ χ3.

Therefore, the topological classification of non-Hermitian
degeneracies is reduced to the classification of the Hermitian
Hamiltonian H̃ for tenfold way symmetry classes, which are
called AZ + I classes [57], in the presence of additional chiral
symmetry � = 1l ⊗ χ3. The latter problem can be solved by
approach based on the Clifford algebra. The detailed calcula-
tions are shown in Appendix H.

We remind that in the presence of CP symmetry with
(CP)2 = −1, there exists additional CP′ symmetry with
(CP′)2 = 1; CP′ symmetry should be considered for sym-
metry classes CII, C, and CI. Thus, we need to carry out
the classification for the corresponding Hermitian systems by
taking into account the additional chiral symmetry � and CP′
symmetry, which is discussed in Appendix H 3.

C. Classification results

1. Overview

Tables I and II summarize the classification results of
dEP-dimensional non-Hermitian topological degeneracies in
the d-dimensional BZ, specifying the relevant symmetry of
the mechanical systems. This classification results elucidate
the presence/absence of a topological invariant for the (δ −
1)-dimensional subspace of the BZ with δ := d − dEP; e.g.,
zero-dimensional topological invariants of SPERs observed in
Sec. III B correspond to the case of δ = 1 [(d, dEP) = (2, 1)].

The mechanical graphene analyzed in Sec. III B belongs to
classes A, BDI, or D. In particular, the results of classes BDI
and D in Table I support the robustness of SPERs observed
in Figs. 3 and 4. The mechanical graphene with homoge-
neous friction belongs to class BDI where the classification
result is Z for δ = 1. This fact indicates the presence of a
zero-dimensional topological invariant (for more details, see
Sec. IV C 2). Introducing the Coriolis force, the symmetry
class changes to class D where the classification result is Z2

for δ = 1, meaning the presence of a zero-dimensional Z2

invariant (for more details, see Sec. IV C 3).
Furthermore, Table I supports that a wide range of me-

chanical systems host SPERs in two dimensions. This can be
seen by noticing the following facts: (i) the systems preserve
extended chiral symmetry (4) as an emergent property when
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TABLE I. Classification results for each case of codimension
δ = d − dEP. Here, we consider dEP-dimensional gapless node for d
spatial dimensions. The “0” in the second, third, and fourth columns
denotes that the corresponding symmetry is absent. The ±1 in
the second (the third) column represents the sign of (T P)2 = ±1
[(CP)2 = ±1], respectively. From sixth to ninth columns, the classi-
fication results are summarized where Z or Z2 means the presence of
topological phases with the corresponding topological invariant. The
“0” in these columns indicates the absence of topological phases. For
symmetry classes CII, C, and CI, systems preserve CP′ symmetry
with (CP′)2 = 1 as well as CP symmetry with (CP)2 = −1. This
additional symmetry changes the classification results for these three
symmetry classes. Thus, the results for CII and CI are shown in
Table II. The classification results for d-dimensional gapped systems
are obtained for δ = d + 1.

T P CP � Homotopy δ = 1 2 3 4

A 0 0 0 π0(Cδ ) 0 Z 0 Z

AIII 0 0 1 π0(Cδ−1) Z 0 Z 0
AI 1 0 0 π0(Rδ+6) 0 Z Z2 Z2

BDI 1 1 1 π0(Rδ+7) Z Z2 Z2 0
D 0 1 0 π0(Rδ ) Z2 Z2 0 Z

DIII −1 1 1 π0(Rδ+1) Z2 0 Z 0
AII −1 0 0 π0(Rδ+2) 0 Z 0 0
CII −1 −1 1
C 0 −1 0 π0(Cδ ) 0 Z 0 Z

CI 1 −1 1

�0(k) describes only dissipative forces; (ii) these systems
belong to class AIII if further symmetry is absent.

Table II summarizes classification results for systems pre-
serving CP symmetry with (CP)2 = −1. This table shows that
classification results depend on commutation or anticommuta-
tion relation of the two operators, CP and CP′, which is one of
the special characteristics for mechanical systems. This table
indicates the existence of symmetry-protected non-Hermitian
degeneracies for class CII+ which are characterized with a
zero-dimensional topological invariant. We discuss this result
by analyzing a 4 × 4 matrix in Sec. IV C 4.

In the following, we discuss the details.

2. SPERs in mechanical graphene

In Sec. III B 2, we have seen that the mechanical graphene
for 
0 = 0 and bA = bB hosts SPERs with extended chiral

TABLE II. Classification results for symmetry classes CII and
CI. In these cases, systems preserve CP′ symmetry with (CP′)2 = 1
as well as CP symmetry with (CP)2 = −1. (CP)(CP′) = (CP′)(CP)
holds for symmetry classes CII+ and CI+, while (CP)(CP′) =
−(CP′)(CP) holds for symmetry classes CII− and CI−.

T P CP � Homotopy δ = 1 2 3 4

CII+ −1 −1 1 π0(Cδ−1) Z 0 Z 0
CI+ 1 −1 1 π0(Cδ−1) Z 0 Z 0
CII− −1 −1 1 π0(Rδ+2) 0 Z 0 0
CI− 1 −1 1 π0(Rδ+6) 0 Z Z2 Z2

symmetry. This fact can be seen from the classification re-
sults. The mechanical graphene preserves the CP symmetry
[(CP)2 = 1] as well as the extended chiral symmetry. Thus,
the symmetry class is BDI where the classification result is
Z for δ = 1 (see Table I). Thus, the zeroth Chern number
(N0Ch ∈ Z) can be defined at each point of the BZ, indicating
the presence of SPERs and SPESs in two and three dimen-
sions, respectively. Therefore, the mechanical graphene with
homogeneous friction exemplifies Z classification of class
BDI with δ = 1, which is consistent with the result shown in
Fig. 3(d).

Introducing inversion-symmetry-breaking terms changes
the symmetry class from BDI to AIII. Table I indicates that
the SPERs in the mechanical graphene survive even in the
absence of inversion symmetry; the classification result of
class AIII for δ = 1 is Z. This fact is consistent with our
numerical simulation.

3. SPERs in rotating mechanical graphene

In Sec. III B 3 we have seen that the rotating mechanical
system hosts SPERs with CP symmetry when the frictional
force is homogeneous. This fact can be understood from the
classification results. The rotating mechanical systems with
inversion symmetry preserve CP symmetry. Thus, the rotating
mechanical graphene belongs to class D where the classifica-
tion result is Z2 for δ = 1 (see Table I). Thus, the Z2 invariant
(12) can be defined at each point of the BZ, indicating the
presence of SPERs and SPESs in two and three dimensions,
respectively. Therefore, the rotating mechanical system with
homogeneous friction exemplifies the Z2 classification of
class D [see also Fig. 4(d)].

Introducing inhomogeneity breaks CP symmetry and
changes the symmetry class from D to A. Table I shows that
the classification results of class A is 0 for δ = 1 and Z for
δ = 2. This fact indicates that the system may have a one-
dimensional Z invariant taking a nontrivial value, although
there is no zero-dimensional topological invariant. This result
explains the instability of SPERs against inhomogeneity for
the rotating mechanical graphene; SPERs change into EPs due
to inhomogeneity [see also Fig. 5(c)].

4. Z classification for CII+ and δ = 1

Tables I and II indicate the following facts. For class
CII+, there exist symmetry-protected non-Hermitian degen-
eracies characterized by a zero-dimensional Z invariant.
These symmetry-protected non-Hermitian degeneracies are
unstable against the perturbation breaking extended chiral
symmetry (e.g., rotation) in contrast to the ones for class BDI.
This is because the perturbation changes the symmetry from
class CII+ to class C where there is no topological invariant
for δ = 1.

In the following, we discuss the above results by analyzing
a 4 × 4 matrix. Suppose that operators of T P and CP symme-
try are given by

UT P = iτ2ρ0, (16a)

UCP = iτ2ρ3, (16b)
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as well as these operators we assume that system preserves the
CP′ symmetry whose operator is given by

UCP′ = τ0ρ3. (16c)

A 4 × 4 Hamiltonian satisfying the above symmetry is written
as

HCII+ = id00τ0ρ0 + b01τ0ρ1 + b22τ2ρ2 + id03τ0ρ3. (17)

For b00 = b22 = 0, the above Hamiltonian describes the
one-dimensional subsystem of a mechanical square lattice
(kx = ky) whose details are discussed in Appendix F. The
eigenvalues of the Hamiltonian can be obtained as

E = id00 ±
√

b2
01 + b2

02 − d2
03 (18)

by noticing that it commutes with U := UCPU ∗
CP′ = τ2ρ0.

Therefore, satisfying only one condition results in the defec-
tive Hamiltonian (i.e., the nondiagonalizable Hamiltonian).
This fact indicates the presence of exceptional points in
the one-dimensional subsystem (kx = ky) of the mechanical
square lattice, which corresponds to the case with (d, dEP) =
(1, 0).

Now, we add a perturbation breaking both of T P and
extended chiral symmetry,

H ′ = b20τ2ρ0 + b23τ2ρ3 + id02ρ2τ0 + id21τ2ρ1. (19)

The symmetry class of the resulting Hamiltonian (HC :=
HCII+ + H ′) is class C. Because the system preserves CP and
CP′ symmetry, we can block diagonalize the Hamiltonian HC

with the matrix U [58]. Thus, the resulting eigenvalues of this
model are written as

Es = (sb20 + id00) ±
√

b′2 − d ′2 + 2isb′ · d ′, (20)

with b′ = (b01, b22, b23) and b′ = (d21, d02, d03). Here, s takes
±1, labeling each sector of U . Therefore, satisfying both
of two conditions b′2 − d ′2 = 0 and b′ · d ′ = 0 result in the
defective Hamiltonian. This fact indicates that exceptional
points in the subsystem (kx = ky) of the mechanical square lat-
tice are unstable against rotation because rotating the system
introduces the Coriolis force described by b23τ2ρ3 in Eq. (19).

V. SUMMARY

We have elucidated that mechanical systems host
symmetry-protected non-Hermitian degeneracies (e.g.,
SPERs) with the extended chiral symmetry (4), which is
an emergent property of mechanical systems. This fact
indicates that mechanical systems are suited experimental
platforms of symmetry-protected non-Hermitian degeneracies
because fine tuning is not required in contrast to other
experimental platforms (e.g., photonic systems). Specifically,
we have demonstrated the emergence of the SPERs for the
mechanical graphene with homogeneous friction. In this
system, the zeroth Chern number, characterizing SPERs, can
be obtained only from experimentally observable quantities;
the coefficient of the fiction and the frequency for the case
without dissipation. In addition, at any point inside of the
SPERs, there exists a mode damping slowly compared to the
one outside of the ring, which can be an experimental signal
of SPERs.

Furthermore, we have carried out topological classification
by taking into account the special characteristics of mechani-
cal systems in order to systematically understand the interplay
of non-Hermitian degeneracies and the emergent symmetry.
The obtained results elucidate the presence of SPERs with
CP symmetry for rotating mechanical graphene. The obtained
results also predict symmetry-protected non-Hermitian degen-
eracies in two and three dimensions whose demonstration for
specific mechanical systems is left as a future work.
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APPENDIX A: SYMMETRY OF THE MATRIX Q(k)

We show that the matrix Q(k), satisfying D(k) = Q2(k),
inherits symmetry of D(k). First, we note that the matrix Q
can be specifically obtained by diagonalizing D:

Q(k) = U (k)�(k)1/2U †(k), (A1a)

D(k) = U (k)�(k)U †(k), (A1b)

where U (k) is a unitary matrix. �(k) is a diagonal matrix
whose elements are eigenvalues of the positive-semidefinite
matrix D(k).

Now, we show that the following two relations hold.
For

UI D(k)UI = D(−k), (A2a)

the matrix Q satisfies

UI Q(k)UI = Q(−k). (A2b)

For

D∗(k) = D(−k), (A3a)

the matrix Q satisfies

Q∗(k) = Q(−k). (A3b)

First, we prove Eq. (A2b). As the condition (A2a) hold, we
have

UI Q(k)UI = UI [D
1/2(k)]UI

= [UI D(k)UI ]
1/2

= [D(−k)]1/2

= Q(−k), (A4)

which results in Eq. (A2b).
In a similar way, with Eq. (A3a), we have

Q∗(k) = [D1/2(k)]∗

= [D∗(k)]1/2

= [D(−k)]1/2

= Q∗(k), (A5)

which results in Eq. (A3b).
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APPENDIX B: EIGENVALUES OF HAMILTONIAN WITH
EXTENDED CHIRAL SYMMETRY

Here, we show that in the presence of the extended chiral
symmetry (U�H†U †

� = −H), the energy eigenvalues form a
pair (E ,−E∗) or take pure imaginary values. Suppose that
|φn

R〉 and |φn
L〉 are right and left eigenvectors of H :

H
∣∣φn

R

〉 = En

∣∣φn
R

〉
, (B1a)

H†
∣∣φn

L

〉 = E∗
n

∣∣φn
L

〉
. (B1b)

Then, we have

H†U�|φn
R〉 = −U�H |φn

R〉 = −EnU�|φn
R〉. (B2)

Comparing with Eq. (B1b), we see that the energy eigenvalues
form a pair (E ,−E∗) or are pure imaginary.

APPENDIX C: SYMMETRY-PROTECTED
NON-HERMITIAN DEGENERACIES WITH CP

SYMMETRY

1. Analysis of a 2 × 2 matrix around the band-touching point

Now, we elucidate that CP symmetry with CP2 = 1 pro-
tects the SPERs in the two-dimensional BZ. (The following
argument also holds for three-dimensional systems which host
SPESs.)

First, we note that in the presence of CP symmetry (6),
two eigenvalues of the Hamiltonian form a pair (E ,−E∗)
or become pure imaginary. This can be seen as follows.
Consider the right eigenstate |φn

R〉 of the Hamiltonian H with
the eigenvalue E . Then, we obtain

HU
∣∣φn

R

〉∗ = −UH∗∣∣φn
R

〉∗ = −E∗U
∣∣φn

R

〉∗
, (C1)

where we have used Eq. (6). The above fact indicates that
each pair (E ,−E∗) cannot split without going through a band
touching.

Now, let us consider the case where two energy bands
touch at a point in the BZ. Around the point the Hamiltonian
can be represented as a 2 × 2 matrix which is generically
given by

H2×2(k) =
∑

α=0,...,3

(bα + idα )σα. (C2)

σ ’s are the Pauli matrices which act on the two states showing
the band touching. In this two-dimensional Hilbert space,
the CP operator is represented as CP = K (CP = σ2K) for
CP2 = 1 (CP2 = −1), respectively. The derivation is shown
in Appendix C 2. In the presence of CP symmetry with CP =
K, the generic Hamiltonian is written as

H2×2(k) =
(

i(d0 + d3) id1 − ib2

id1 + ib2 i(d0 − d3)

)
. (C3)

Diagonalizing the matrix yields

E±(k) = id0 ±
√

b2
2 − (d2

1 + d2
3 ), (C4a)

indicating that the condition of the band touching is

b2
2 = d2

1 + d2
3 . (C4b)

At the band-touching point, the Hamiltonian describing these
two bands becomes defective because the Hamiltonian can be
written as

H2×2(k) = |b2|
(

0 1
0 0

)
. (C5)

For b2 = d2
1 + d2

3 = 0, the Hamiltonian becomes Hermitian
and is diagonalizable. However, such condition cannot be
satisfied without fine tuning. We note that the condition of the
band touching (C4b) specifies a one-dimensional line in the
BZ which corresponds to SPERs.

For CP = σ2K, the eigenvalue problem is reduced to the
one for a Hermitian matrix because the CP symmetry results
in

H2×2(k) = id0σ0 +
∑

μ=1,2,3

bμσμ. (C6)

2. Representation of the CP transformation

We show that the operator of CP symmetry is represented
as

CP = K (C7)

for CP2 = 1, and

CP = σ2K (C8)

for CP2 = −1. This can be seen as follows. A generic unitary
matrix UCP can be represented as

UCP = eib·σ, (C9)

with b ∈ R3 up to the global phase factor. Thus, we can see

UCPU ∗
CP = [cos2(b) + sin2(b)b̂ · b̂

′
]

+ i
[

sin2 b(b × b′) + 1
2 sin(2b)(b̂ − b̂

′
)
] · σ,

(C10)

with b := (b1, b2, b3) and b′ := (b1,−b2, b3). b̂ (b̂
′
) is a unit

vector proportional to b̂ (b̂
′
) respectively.

Because UCPU ∗
CP is proportional to the identity operator,

we see that one of the following conditions are satisfied:
(i) b = nπ with n = 0, 1, 2, . . . , (ii) b = (b1, 0, b3)T , and (iii)
b = (0, b2, 0)T . For cases (i) and (ii), we have UCP = σ0. For
case (iii), we have UCP = σ2.

For case (ii), we note that b · σ with b = (b1, 0, b3)T is
a real-symmetric matrix which can be diagonalized with an
orthogonal matrix. Thus, without loss of generality, we have
UCP = σ0 = cos(b)σ0 + i sin(b)σ3 which is reduced to UCP =
σ0 by a proper choice of the gauge.

APPENDIX D: DETAILS OF THE
MECHANICAL GRAPHENE

Here, we derive Eq. (8). We suppose that the dissipation
and the internal force are absent and that the spring mass
forms the honeycomb lattice (Fig. 1).

As a first step, we focus on the two mass points of this
spring-mass system [Fig. 6(a)]. In this case, the potential
energy arising from the spring is described as

Us = κ

2

(√
R2

0 + δx − l0
)
, (D1)
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x

R0

x2

FIG. 6. Sketch of the system. (a) Two mass points connected
with a spring. (b) Mass points trapped by dents of the floor.

where l0 denotes natural length of the spring, and κ de-
notes a spring constant. Two-dimensional vectors are shown
in Fig. 6(a); R0 connects two lattice points: δx := x1 − x2

where xi (i = 1, 2) describes the displacement of mass points.
Supposing that δx 	 R0, the potential energy can be expanded
as

Us = κ

2

[
(R0 − l0)2 + 2(1 − η−1)R · δx + δxμγ

μν

R0
δxν

]
,

(D2)

with μ = x, y, R̂0 = R0/R0, and γ
μν

R0
= (1 − η)δμν +

ηR̂μ
0 R̂ν

0.
Therefore, the Lagrangian of the mass points with mass m

is given by

L = T − U1 − U2, (D3a)

T = m

2

∑
i

ẋ2
i , (D3b)

U1 =
∑

i

κ0
i

2
x2

i , (D3c)

U2 = κ

2

∑
〈i j〉

[
(Ri j − l0)2 + 2(1 − η−1)Ri j · (xi − x j )

+ (xiμ − x jμ)γ μν

Ri j
(xiν − x jν )

]
. (D3d)

Here, we assume that the mass points are trapped on dents of
the floor [Fig. 6(b)], which induces the potential term U1. κ0

i
describes strength of the harmonic potential arising from the
dents of the floor. κ0

i = κ0
α when the site i belongs to sublattice

α. U2 describes the potential energy arising from the springs. i
and j label mass points. Ri denotes the equilibrium position of
mass point i. Ri j := Ri − R j . The second term of Eq. (D3d) is
zero as long as the equilibrium is achieved for xi = 0. Thus,
we omit it.

Applying Fourier transformation,

ukα (t ) = 1√
N

∑
i∈α

eik·R̃i xR̃iα
(t ), (D4)

the Lagrangian is rewritten as

L = m

2

∑
k,μ,α

u̇μ

kα
· u̇μ

−kα
− 1

2

∑
k

Dμν
αβ (k)uμ

k,α
uν

−k,β , (D5a)

with Dμν
αβ (k) = Dμα;νβ (k) and

Dμα;νβ (k) = 3κ
(

1 − η

2

)
1l +

(
κ0

A DAB(k)

D†
AB(k) κ0

B

)
,

(D5b)

Dμν
AB(k) = −κ (γ3 + γ1e−ik·a1 + γ2e−ik·a2 ), (D5c)

γ1 := (1 − η)

(
1 0
0 1

)
+ η

(
3
4

√
3

4√
3

4
1
4

)
, (D5d)

γ2 := (1 − η)

(
1 0
0 1

)
+ η

(
3
4 −

√
3

4

−
√

3
4

1
4

)
, (D5e)

γ3 := (1 − η)

(
1 0
0 1

)
+ η

(
0 0
0 1

)
. (D5f)

Here, xR̃iα
denotes the displacement of the mass point at α(=

A, B) sublattice of the unit cell specified by R̃i. The above
results correspond to Eq. (8).

APPENDIX E: SIMPLIFIED ZEROTH CHERN NUMBER
FOR MECHANICAL SYSTEMS

First, we define the zeroth Chern number. Consider a
traceless non-Hermitian Hamiltonian satisfying the extended
chiral symmetry

U�H†U †
� = −H, (E1)

where U� is a unitary matrix satisfying U 2
� = 1l. In this case,

the zeroth Chern number counts the number of the occupied
bands (εn < 0) where εn with n = 1, . . . , dimH denotes the
eigenvalue of the Hermitian matrix −iHU� .

The simplified form of the zeroth Chern number (11) can
be obtained as follows. In the similar way as Sec. II A, for
�0 = −b1l with b > 0, we can obtain the traceless Hamilto-
nian describing the mechanical system

H =
(

i b
2 1l Q(k)

Q(k) −i b
2 1l

)
, (E2)

preserving the extended chiral symmetry with � = ρ3. Here,
the matrix Q is defined as D = Q2 with the matrix D describ-
ing the potential force [see Eq. (A1)]. Namely, the eigenvalue
of the matrix Q corresponds to the frequency of the oscillation
ω0n(k). Diagonalizing the matrix Q, the matrix −iHρ3 is
rewritten as

−iHρ3 =
⊕

n

( b
2 iω0n

−iω0n
b
2

)
. (E3)

Correspondingly, the eigenvalue εn is written as

εn(k) = b

2
± ω0n(k). (E4)

Therefore, the zeroth Chern number is obtained as

N0Ch(k) =
∑

n=1,...,dimH

�>(2ω0n(k) − b), (E5)

where �>(x) takes 1, 1
2 , and 0 for x > 0, x = 0, and x < 0,

respectively. Notably, N0Ch is obtained with the experimental
observables for the mechanical system ω0n and b.
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APPENDIX F: MECHANICAL SQUARE LATTICE

In a similar way to Appendix D, we can obtain the La-
grangian of a spring-mass model forming a square lattice. The
matrix D(k) describing the potential force is written as

D(k) = 4κ
(

1 − η

2

)
τ0 − 2κ

[
(1 − η)[cos(kx ) + cos(ky)]τ0

+ η cos(kx )

(
1 0
0 0

)
τ

+ η cos(ky)

(
0 0
0 1

)
τ

]
= 2κ

(
1 − η

2

)[
2 − 2 cos

(
kx + ky

2

)
cos

(
kx − ky

2

)]
τ0

+ 2κη sin

(
kx + ky

2

)
sin

(
kx − ky

2

)
τ3. (F1)

For kx − ky = 0, we can see that the term proportional to
τ3 vanishes. Therefore, for a system with a homogeneous
frictional force, rewriting the equation of motion with Hamil-
tonian [see Eq. (3)], we can see that the obtained Hamiltonian
corresponds to Eq. (17) with

b00 = 0, (F2)

b01 =
√

4κ
(

1 − η

2

)
[1 − cos(kx )], (F3)

b22 = 0, (F4)

where b03 in Eq. (17) describes the strength of the frictional
force. Here, we have set the trap potential illustrated in
Fig. 6(b) as zero.

APPENDIX G: ANOTHER TYPE OF CP SYMMETRY

Non-Hermiticity of the Hamiltonian results in two types of
particle-hole symmetry [45]. One is given by Eq. (5) and the
other is

ρ3HT (k)ρ3 = −H (−k). (G1)

However, we note that CP symmetry, defined as the product
of particle-hole symmetry (G1) and inversion symmetry, is
incompatible to mechanical systems with homogeneous fric-
tion, which is one of the simplest setups for non-Hermitian
mechanical systems. When the Hamiltonian preserves the CP
symmetry,

UCPHT (k)U †
CP = −H (k), (G2)

with UCP = UI ⊗ ρ3 and U 2
I = 1l, we obtain

UI Q
T (k)UI = Q(k), (G3a)

UI�
T
0 (k)UI = −�0(k). (G3b)

For homogeneous friction �0 = −b1l, the second equation
yields b = 0, indicating that CP symmetry (G2) is incompati-
ble to mechanical systems with homogeneous friction.

APPENDIX H: TENFOLD WAY CLASSIFICATION OF
HERMITIAN HAMILTONIAN FOR AZ+I CLASSES WITH

ADDITIONAL CHIRAL SYMMETRY

We address the topological classification of Hermitian
topological insulators/superconductors in the presence or

TABLE III. Classification results for Hermitian systems of
AZ+I symmetry classes with additional chiral symmetry. The “0” in
the second, third, and fourth columns denotes that the corresponding
symmetry is absent. The ±1 in the second (the third) column rep-
resents the sign of (T P)2 = ±1 [(CP)2 = ±1], respectively. From
sixth to thirteenth columns, the classification results are summarized
where Z or Z2 means the presence of topological phases with
the corresponding topological invariant. The “0” in these columns
indicates the absence of topological phases.

T P CP � Homotopy d = 0 1 2 3 4 5 6 7

A 0 0 0 π0(Cd+1) 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 π0(Cd ) Z 0 Z 0 Z 0 Z 0
AI 1 0 0 π0(Rd+7) 0 Z Z2 Z2 0 Z 0 0
BDI 1 1 1 π0(Rd ) Z Z2 Z2 0 Z 0 0 0
D 0 1 0 π0(Rd+1) Z2 Z2 0 Z 0 0 0 Z

DIII −1 1 1 π0(Rd+2) Z2 0 Z 0 0 0 Z Z2

AII −1 0 0 π0(Rd+3) 0 Z 0 0 0 Z Z2 Z2

CII −1 −1 1 π0(Rd+4) Z 0 0 0 Z Z2 Z2 0
C 0 −1 0 π0(Rd+5) 0 0 0 Z Z2 Z2 0 Z

CI 1 −1 1 π0(Rd+6) 0 0 Z Z2 Z2 0 Z 0

absence of T P, CP, and chiral symmetry by taking into
account additional chiral symmetry. The classification without
additional chiral symmetry has been addressed in Ref. [57]
where the symmetry classes are called AZ+I symmetry
classes.

Here, we suppose d-dimensional systems to satisfy

{H (k), �} = 0, (H1a)

as well as constraints of each symmetry class. Here, the
Hamiltonian preserving T P, CP, and chiral symmetry satisfies

(T P)H (k)(T P)−1 = H (k), (H1b)

(CP)H (k)(CP)−1 = −H (k), (H1c)

�H (k)�−1 = −H (k), (H1d)

where the operators of T P and CP transformations are an-
tiunitary while the operator of the chiral transformation is
unitary. We note that the operators T P, CP, and � defined
above correspond to T̃ P, C̃P, and �̃ defined in Eq. (15). (In
order to simplify the notation, we have omitted the tilde.)

In this section, we assume that the additional chiral sym-
metry satisfies the following relations:

{T P, �} = 0, (H2a)

[CP, �] = 0, (H2b)

{�,�} = 0, (H2c)

which hold for the generic mechanical systems with friction
(see Sec. IV B).

The classification results are summarized in Table III.
In this table, we can see that the classification results for
AZ+I symmetry classes with additional chiral symmetry are
given by π (Cq+d ) and π (Rq+d ) while those for ordinary AZ
symmetry classes are given by π (Cq−d ) and π (Rq−d ). This
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TABLE IV. Classifying space and the corresponding homotopy
π0(Cq ) or π0(Rq ).

Classifying space π0(Cq ) or π0(Rq )

C0 Z
C1 0
R0 Z
R1 Z2

R2 Z2

R3 0
R4 Z
R5 0
R6 0
R7 0

difference arises from the fact that the inversion flips the
momentum k → −k.

In the following, we see the details of the calculations.

1. Classification scheme

The topological classification of the Hermitian Hamilto-
nian is accomplished by the following steps [59].

(1) Deform the Hamiltonian into the gapped Dirac Hamil-
tonian

H =
∑

j=1,...,d

k jγ j + mγ0. (H3)

Here, {γi, γ j} = 2δi, j holds for i, j = 0, . . . , d . When the
Hamiltonian can be block diagonalized with an unitary opera-
tor, we consider the above Dirac Hamiltonian for each sector.

(2) Consider a Clifford algebra Clq or Clp,q with symmetry
operators and the matrices describing kinetic terms. Here, Clq
denotes a complex Clifford algebra having q generators,

{e1, e2, . . . , eq}, (H4)

with e2
i = 1 for i = 1, . . . , q. Clp,q denotes a real Clifford

algebra having p + q generators,

{e1, . . . , ep; ep+1, . . . , ep+q}, (H5)

where p (q) generators square to −1 (1); e2
i = 1 (−1) for i =

1, . . . , p (i = p + 1, . . . , p + q), respectively.
Because T P and CP transformations are described by an-
tiunitary operators, we need to introduce an operator J to
describe the complex structure in the presence of T P or
CP symmetry (i.e., complex structure of real classes). Here,
the operator J satisfies the relations J2 = −1, {T P, J} =
{CP, J} = [H (k), J] = 0.

(3) Consider the extension problem by adding the mass
term γ0 in order to obtain the corresponding classifying
space. When the extension problem is written as Clq → Clq+1

(Clp,q → Clp,q+1), the corresponding classifying space is Cq

[Rq−p], respectively.
We note that when the extension problem is written as
Clp,q → Clp+1,q, the corresponding classifying space is
R2+p−q.

(4) Obtain the classification result π0(Cq) [π0(Rq)]. Here,
we use the fact listed in Table IV. We note that the Bott peri-
odicity holds: π0(Cq) = π0(Cq+2) and π0(Rq) = π0(Rq+8).

In the following, we apply the above scheme to each case
of AZ+I symmetry classes with additional chiral symmetry.

2. Application to systems of AZ+I classes with additional
chiral symmetry

a. Class A

In this case, the Hamiltonian satisfies

{H (k), �} = 0. (H6)

Thus, with the kinetic terms and the symmetry operator, we
can consider a Clifford algebra with the following generators:

{γ1, . . . , γd , �}. (H7)

Introducing the mass term, the extension problem is written as
Cl1+d → Cl2+d where Cl2+d has generators

{γ0, γ1, . . . , γd , �}. (H8)

Thus, the corresponding classifying space is C1+d , which
results in the classification result π0(C1+d ).

b. Class AIII

In this case, the Hamiltonian satisfies

{H (k), �} = 0, (H9a)

{H (k), �} = 0. (H9b)

In addition, � and � anticommute with each other [see
Eq. (H2c)].

Because the product U = i�� (U 2 = 1) commutes with
the Hamiltonian, one can block diagonalize the system into
the ±1 sector of U . The relations {U, �} = {U, �} = 0 in-
dicate that applying � or � exchanges the plus and minus
sectors. In other words, no symmetry is closed for each
sector. Thus, we can classify the mass terms of the block-
diagonalized Hamiltonian with the classifying space for the
extension problem Cld → Cl1+d where Cl1+d has generators

{γ0, γ1, . . . , γd}. (H10)

Therefore, the classification result is π0(Cd ).

c. Classes AI and AII

In this case, the Hamiltonian satisfies

(T P)H (k)(T P)−1 = H (k), (H11a)

�H (k)�−1 = −H (k), (H11b)

with the anticommutation relation of T P and � [see
Eq. (H2a)]. Noticing the relation (T P)k jγ j (T P)−1 = k jγ j for
j = 1, . . . , d , we have (T P)γ j (T P)−1 = γ j .

Thus, for class AI [(T P)2 = 1], the classifying space for
the extension problem is written as Cld,3 → Cld+1,3 where
Cld+1,3 is given by

{Jγ0, Jγ1, . . . , Jγd ; T P, JT P, �}. (H12)

Thus, the corresponding classifying space is Rd−1.
In a similar way, we can obtain the classifying space for

class AII [(T P)2 = −1]. The extension problem is written as
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Cld+2,1 → Cld+3,1 where Cld+3,1 has generators

{Jγ0, T P, JT P, Jγ1, . . . , Jγd ; �}. (H13)

Thus, the corresponding classifying space is Rd+3.
Therefore, we obtain the classification results π0(Rd+7) and

π0(Rd+3) for classes AI and AII, respectively. Here, we have
used the Bott periodicity π0(Rd ) = π0(Rd+8).

d. Classes D and C

In this case, the Hamiltonian satisfies

(CP)H (k)(CP)−1 = −H (k), (H14a)

�H (k)�−1 = −H (k), (H14b)

with the commutation relation of CP and � [see Eq. (H2b)].
Noticing the relation (CP)k jγ j (CP)−1 = −k jγ j for j =
1, . . . , d , we have (CP)γ j (CP)−1 = −γ j .

Thus, for class D [(CP)2 = 1], the extension problem is
written as Cl1,2+d → Cl1,3+d where Cl1,3+d has generators

{J�; γ0, γ1, . . . , γd ,CP, JCP}. (H15)

Thus, the corresponding classifying space is Rd+1.
In a similar way, we can obtain the classifying space for

class C [(CP)2 = −1]. The extension problem is written as
Cl3,d → Cl3,1+d where Cl3,1+d has generators

{CP, JCP, J�; γ0, γ1, . . . , γd}. (H16)

Thus, the corresponding classifying space is Rd−3.
Therefore, we obtain the classification results π0(Rd+1)

[π0(Rd+5)] for class D (C), respectively. Here, we have used
the Bott periodicity π0(Rd ) = π0(Rd+8).

e. Classes BDI, DIII, CII, and CI

In this case, the Hamiltonian satisfies

(T P)H (k)(T P)−1 = H (k), (H17a)

(CP)H (k)(CP)−1 = −H (k), (H17b)

�H (k)�−1 = −H (k) (H17c)

with � anticommuting with T P and commuting with CP [see
Eqs. (H2a) and (H2b)].

For class BDI [(T P)2 = (CP)2 = 1], the extension prob-
lem is written as Cl1+d,3 → Cl2+d,3 where Cl2+d,3 has gener-
ators

{JTC, Jγ0, Jγ1, . . . , Jγd ; T P, JT P, �}. (H18)

Thus, the corresponding classifying space is Rd .
For class DIII [(T P)2 = −1 and (CP)2 = 1], the extension

problem is written as Cl2+d,2 → Cl3+d,2 where Cl3+d,2 has
generators

{T P, JT P, Jγ0, Jγ1, . . . , Jγd ; JTC, �}. (H19)

Thus, the corresponding classifying space is Rd+2.
For class CII [(T P)2 = −1 and (CP)2 = −1], the exten-

sion problem is written as Cl3+d,1 → Cl4+d,1 where Cl4+d,1

has generators

{T P, JT P, JTC, Jγ0, Jγ1, . . . , Jγd ; �}. (H20)

Thus, the corresponding classifying space is Rd+4.

TABLE V. Classification results for Hermitian systems of AZ+I
symmetry classes with additional chiral symmetry and CP′ symme-
try. The “0” in the second, third, and fourth columns denotes that
the corresponding symmetry is absent. The ±1 in the second (the
third) column represents the sign of (T P)2 = ±1 [(CP)2 = ±1],
respectively. In the presence of T P symmetry, the symmetry class
is CII+ or CI+ (CII− or CI−) when the additional symmetry satisfies
[CP,CP′] = 0 ({CP,CP′} = 0), respectively.

T P CP � Homotopy d = 0 1 2 3 4 5 6 7

C 0 −1 0 π0(Cd+1) 0 Z 0 Z 0 Z 0 Z

CII+ −1 −1 1 π0(Cd ) Z 0 Z 0 Z 0 Z 0

CI+ 1 −1 1 π0(Cd ) Z 0 Z 0 Z 0 Z 0

CII− −1 −1 1 π0(Rd+3) 0 Z 0 0 0 Z Z2 Z2

CI− 1 −1 1 π0(Rd+7) 0 Z Z2 Z2 0 Z 0 0

For class CI [(T P)2 = 1 and (CP)2 = −1], the extension
problem is written as Cld,4 → Cl1+d,4 where Cl1+d,4 has
generators

{Jγ0, Jγ1, . . . , Jγd ; T P, JT P, JTC, �}. (H21)

Thus, the corresponding classifying space is Rd−2.
From the above calculation, we obtain the classifica-

tion results; for classes BDI, DIII, CII, and CI, we see
π0(Rd ), π0(Rd+2), π0(Rd+4), and π0(Rd+6), respectively.
Here, we have used the Bott periodicity π0(Rd ) = π0(Rd+8).

3. Application to the symmetry classes CII, C, and CI with
additional chiral symmetry and CP′ symmetry

As discussed in Sec. IV B, mechanical systems, preserv-
ing particle-hole symmetry [(CP)2 = −1], possess additional
particle-hole symmetry CP′ with (CP′)2 = 1 which commutes
with �. Thus, we need to address the classification of the
Hermitian Hamiltonian by taking into account these two types
of particle-hole symmetry.

The classification results are summarized in Table V. By a
proper choice of gauge, we can see that the operators CP and
CP′ satisfy the commutation or the anticommutation relation,
and that both of CP and CP′ commute with T P. The subscript
of symmetry class indicates the commutation ([CP,CP′] =
0) or anticommutation ({CP,CP′} = 0) relation, e.g., for
class CII+, the commutation relation ([CP,CP′] = 0) holds.
Here, the classification result for each case is obtained by
assuming

[CP′, �] = 0, (H22)

as well as Eq. (H2). We note that generic mechanical systems
satisfy these relations

In the following we discuss the details.

a. Class C

We note that a proper choice of gauge results in
[CP,CP′] = 0 in the absence of the time-reversal symmetry.
Thus, we address the classification for [CP,CP′] = 0.
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In this case, the Hamiltonian satisfies the following rela-
tions:

(CP)H (k)(CP)−1 = −H (k), (H23a)

�H (k)�−1 = −H (k), (H23b)

UH (k)U −1 = H (k), (H23c)

with U = CPCP′. Here, we note that the following relations
hold:

U 2 = −1, (H24a)

[U,CP] = 0, (H24b)

[U, �] = 0. (H24c)

Because Eq. (H23c) holds, the Hamiltonian can be block
diagonalized with the ±i sector of U . Applying the CP trans-
formation exchanges the ±i sector while the chiral symmetry
is closed for each sector.

Therefore, the mass terms of the block-diagonalized
Hamiltonian are classified as follows. For each sector of U , the
extension problem is written as Cl1+d → Cl2+d where Cl2+d

has generators

{�, γ0, γ1, . . . , γd}. (H25)

Thus, the classifying space for the above extension problem is
C1+d . Noticing that CP transformation maps the Hamiltonian
of −i sector to that of +i sector, we obtain the classification
result π0(C1+d ).

b. Class CII+

For symmetry class CII+ where [CP,CP′] = 0 holds, the
following symmetry constraints are satisfied:

(T P)H (k)(T P)−1 = −H (k), (H26a)

�H (k)�−1 = −H (k), (H26b)

�H (k)�−1 = −H (k), (H26c)

UH (k)U −1 = H (k), (H26d)

with U = CPCP′ (U 2 = −1) and � = T PCP.
Defining V = �� with V 2 = −1 [see Eq. (H2)], we have

the following set of the operators:

[V,U ] = 0, (H27a)

{V, T P} = 0, (H27b)

{V, �} = 0, (H27c)

[U, T P] = 0, (H27d)

[U, �] = 0, (H27e)

[�, T P] = 0, (H27f)

where unitary matrices U and V commute with the Hamilto-
nian.

Thus, the Hamiltonian can be block diagonalized with U
and V . Each sector is labeled with the set of eigenvalues (u, v)
where u = ±i (v = ±i) denotes eigenvalue of U (V ), respec-
tively. Equations (H27b) and (H27d) indicate that applying the
operator T P maps (u, v) sector to (−u, v) sector. Equations
(H27c) and (H27e) indicate that applying the operator � maps

(u, v) sector to (u,−v) sector. These facts indicate that no
symmetry is closed for each sector.

Therefore, the mass terms of the block-diagonalized
Hamiltonian are classified as follows. For each sector, the
extension problem is written as Cld → Cl1+d where Cl1+d has
generators

{γ0, γ1, . . . , γd}. (H28)

Thus, the classifying space for the above extension problem
is Cd . Noticing that applying T P or � maps the Hamiltonian
of (i, i) sector to that of the other sectors, we obtain the
classification result π0(Cd ).

c. Class CI+

We consider the case where (T P)2 = 1 and {CP,CP′} = 0
holds. Defining � = iT PCP (�2 = 1), we have Eq. (H26). We
note that

[V, T P] = 0, (H29a)

{�, T P} = 0 (H29b)

hold instead of Eqs. (H27b) and (H27f). The other relations in
Eq. (H27) hold.

In this case, the Hamiltonian can be block diagonalized for
(u, v) sectors where u = ±i (v = ±i) denotes eigenvalue of U
(V ), respectively. Equations (H27d) and (H29a) indicate that
applying the operator T P flips sign both of u and v. Equations
(H27c) and(H27e) indicate that applying the operator � flips
sign of v.

Therefore, the mass terms of the block-diagonalized
Hamiltonian are classified as follows. For each sector, the
extension problem is written as Cld → Cl1+d where Cl1+d has
generators

{γ0, γ1, . . . , γd}. (H30)

Thus, the classifying space for the above extension problem
is Cd . Noticing that applying T P or � maps the Hamiltonian
of the (i, i) sector to that of the other sectors, we obtain the
classification result π0(Cd ).

d. Class CII−

We consider the case where the Hamiltonian satisfies
Eq. (H26) with U = CPCP′ (U 2 = 1) and {CP,CP′} = 0. In
this case, the operators satisfy the following relations:

[U, T P] = 0, (H31a)

{U, �} = 0, (H31b)

{U,V } = 0, (H31c)

{V, T P} = 0, (H31d)

{V, �} = 0, (H31e)

with � = T PCP and V = �� (V 2 = −1).
Thus, the Hamiltonian can be block diagonalized with

U . We can see that applying � or V exchanges the plus
and the minus sectors, while the T P symmetry is closed for
each sector [see Eq. (H31)]. Namely, the block-diagonalized
Hamiltonian preserves the symmetry of � and T P.

Therefore, the mass terms of the block-diagonalized
Hamiltonian are classified as follows. For each sector, the
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extension problem is written as Cl2+d,1 → Cl3+d,1, where
Cl3+d,1 has generators

{T P, JT P, Jγ0, Jγ1, . . . , Jγd ; �}. (H32)

Thus, the classifying space for the above extension problem is
Rd+3. Noticing that applying � maps the Hamiltonian of the i
sector to that of the other sector, we obtain the classification
result π0(Rd+3).

e. Class CI−

We consider the case where (T P)2 = 1 and {CP,CP′} = 0
hold. With � = iT PTC and U = CPCP′ (U 2 = 1), we can
see that the Hamiltonian satisfies Eq. (H26).

In this case, we obtain the classification results in a similar
way to the previous case. First, we note that

[V, T P] = 0 (H33)

holds instead of Eq. (H31d). The other relations of Eq. (H31)
hold. Thus, block diagonalizing the Hamiltonian with U , we
can see that applying � or V exchanges the plus and the minus
sectors, while the T P symmetry is closed for each sector
[see Eq. (H31)]. Namely, the block-diagonalized Hamiltonian
preserves the symmetry of � and T P.

Therefore, the mass terms of the block-diagonalized
Hamiltonian are classified as follows. For each sector, the ex-
tension problem is written as Cld,3 → Cl1+d,3, where Cl1+d,3

has generators

{Jγ0, Jγ1, . . . , Jγd ; T P, JT P, �}. (H34)

Thus, the classifying space for the above extension problem
is Rd+7. Noticing that applying � maps the Hamiltonian of
the plus sector to that of the other sector, we obtain the
classification result π0(Rd+7).
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