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Splitting of conductance resonance through a magnetic quantum dot in graphene
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We report a dual resonance feature in the ballistic conductance through a quantum Hall graphene nanoribbon
with a magnetic quantum dot. Such a magnetic quantum dot localizes Dirac fermions exhibiting anisotropic
eigenenergy spectra with broken time-reversal symmetry. Interplay between the localized states and quantum
Hall edge states is found to be twofold, showing Breit-Wigner and Fano resonances, which is reminiscent of
a double quantum dot system. By fitting the numerical results with the Fano-Breit-Wigner line shape from
the double quantum dot model, we demonstrate that the twofold resonance is due to the valley mixing that
comes from the coupling of the magnetic quantum dot with quantum Hall edge channels; an effective double
quantum dot system emerges from a single magnetic quantum dot in virtue of the valley degree of freedom.
It is further confirmed that the coupling is weaker for the Fano resonance and stronger for the Breit-Wigner
resonance.
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I. INTRODUCTION

A quantum dot (QD), one of the most important ingredi-
ents in nanotechnology, shows many unique properties in the
mesoscopic regime between bulk semiconductors and individ-
ual atoms such as Coulomb blockade [1,2] and Kondo effect
[3,4]. Among such applications is included the electronic
transport through quantum dots, which provides promising
routes toward cutting-edge technology such as quantum com-
puting [5–10] and resonant tunneling devices [1,11,12]. For
the coherent transport in quantum dot devices, however, an
extremely clean and low temperature environment is generally
required.

On the other hand, graphene, a two-dimensional carbon
crystal with two distinct Dirac cones having linear dispersion
in the electronic band structure, shows prominent transport
behavior with high carrier mobility and long mean free path
making graphene promising as a candidate material to succeed
silicon in the nanoelectronic industry [13,14]. Graphene’s su-
periority can be further enhanced utilizing specific substrates,
especially hexagonal boron nitride together with an encapsu-
lation technique [13], so that experimental investigations on
theoretical predictions that require ballistic coherent transport
over a micrometer scale is made possible such as Veselago
lens [15–17], valley-isospin dependent quantum Hall effects
[18], etc.

While substantial effort has been made to investigate
transport through electrostatic QDs in graphene [19–23],
electrostatically controllable quantum dots using local gates,
which are common in two-dimensional electron gas systems,
is difficult to be applied due to the Klein tunneling. Under
magnetic field, on the other hand, it is possible to confine
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the motion of electrons at the interface of the field strength
[24–27]. Such localized electronic states can be understood
as snake trajectories which is reminiscent of quantum Hall
interface states at a p-n junction [28–35]. At a boundary
of a circular field-free domain within a homogeneous mag-
netic field, the snake trajectory of an electron results in a
closed orbit confining the electronic states within the field-free
region, generating a magnetic quantum dot (MQD). Such
localized states with discrete energy spectra have been known
to exist within a MQD that can be realized by screening a
homogeneous magnetic field locally [36]. With MQDs, one
can bypass the Klein tunneling problem [37–40].

In the present work we investigate electronic transport in
graphene nanoribbons where a MQD is located between two
quantum Hall edge channels (Fig. 1). We analyze the feature
of resonance tunnelings in the conductance through the MQD,
evidencing the existence of the localized states in the MQD.
The results of the analysis are discussed in the context of the
coupling between the extended edge states and the discrete
localized states in the MQD, showing the Breit-Wigner and
Fano resonances at specific energies corresponding to the
energy levels of the MQD.

The present paper is composed of the following sections.
Section II outlines the MQD in a 2D graphene sheet. We
offer a preliminary study of eigenenergy spectra for the MQD
which indicate the formation of localized states. The continu-
ity of the wave functions are assumed across the boundary of
the MQD in the analytical calculations. In Sec. III, numerical
results of the ballistic conductance across the MQD in a
graphene nanoribbon are analyzed. We compute transport
properties numerically with the scattering matrix formalism
based on the tight-binding method. Resulting resonant fea-
tures in the conductance spectra are discussed addressing
Fano and Breit-Wigner resonances. We additionally remark
on the dot–edge-distance dependence of the splitting between
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FIG. 1. Schematic diagram of the system considered in this
work. The external magnetic field is expelled out in the circular area
characterized by radius r0. There are four leads labeled as L1, L2,
L3, and L4 for scattering matrix calculations from a lead to another
lead.

two types of resonances. Finally, Sec. IV brings our work to a
conclusion.

II. ELECTRONIC PROPERTIES OF MQD

We now discuss localized-state solutions in our system
which is modeled as a circularly symmetric quantum dot
using magnetic fields. A MQD with a radius r0 is modeled
as �B = Bẑ for r > r0 and �B = 0 for r < r0. Such a nonuni-
form magnetic field can be practically realized by top-gated
structures using a disklike superconductor electrode with a
thin dielectric spacer such as few-layered h-BN between the
top local gate and graphene. Although we have noted that
the eigenstate solutions of the same system is given by De
Martino et al. [37], full spectra necessary for the analysis of
our transport calculations are not provided in detail. On that
account, we include a brief description of the solution with
further analysis of the spectra with density profiles of wave
functions in this paper.

A Dirac Hamiltonian of the system reads

Hν = vF (πxσx + νπyσy) + Uσ0, (1)

where vF � 106 ms−1 is the Fermi velocity, πi = pi + eAi is
the kinetic momentum under magnetic field, σx and σy are
Pauli matrices, σ0 is the unity matrix, and ν = ±1 for K
and K ′ valleys. For simplicity, we suppose that the system is
electrostatically homogeneous; U = 0. By choosing an appro-
priate gauge in a plane polar coordinate, the Dirac equations
are written as

h̄vF e−iφ

[
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∂

∂r
− iν

(
− i

r

∂

∂φ
+ eAφ

h̄

)]
ψB,ν = EψA,ν , (2)
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ψA,ν = EψB,ν , (3)

where Aφ = B
2r (r2 − r2

0 ) is nonzero only for r > r0. Due to
the rotational symmetry, the solution of the Dirac equation
has the form �(r, φ) = eimφR(r), where m is an integer and
R(r) = (RA, eiφRB, eiφRA′ , RB′ )T [41,42]. In the following, all
the formulas are dimensionless based on magnetic length
and Landau energy gap: lB = √

h̄/eB for the length and
E0 = √

2h̄vF /lB =
√

2h̄v2
F eB for the energy. For K valley,

eliminating ψB in Eqs. (2) and (3) yields(
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4
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)
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(5)

for r > r0, where meff ≡ m − s. Here s ≡ Bπr2
0e/h is the

“missing” flux, which indicates the amount of magnetic flux
screened out from the MQD. The solutions for the differential
equations are Bessel’s function of the first kind for r < r0 and
a confluent hypergeometric function for r > r0 and ψB can
accordingly be obtained using Eq. (3) [37].

On the other hand, for K ′ valley, exactly the same differ-
ential equations, Eqs. (4) and (5), are obtained for ψB′ by
eliminating ψA′ from Eqs. (2) and (3) with ν = −1. This
guarantees degeneracies in the spectrum between the two
valleys. The valley degeneracy can only be lifted, but not
sufficiently, by breaking A-B sublattice symmetry such as
infinite mass boundary condition [41,43–45], which is not
the case for a magnetic gauge potential like our system. In
fact, the splitting of the resonance peaks in the conductance
spectrum, the main topic of this paper, is due to the valley
mixing, which would not occur if the degeneracy is lifted.

The eigenenergies labeled by an additional quantum num-
ber n can be obtained by imposing the continuity condition of
R(r) at r = r0 for each value of m [37] (Fig. 2). As is men-
tioned above, the two valleys are degenerate in the eigenen-
ergy spectra. Due to the broken time-reversal symmetry, the
eigenenergies exhibit asymmetric behavior with respect to
the sign of m. For small |m| there are small discrepancies
between time-reversal partners Enm and En,−m. It is due to
the fact that the wave functions with small |m| mainly reside
within the quantum dot where the magnetic field is zero so
that the time-reversal symmetry is barely broken. On the other
hand, for larger |m|, larger discrepancies are observed between
time-reversal partners.

One noticeable analysis is the direction of the persis-
tent current along the MQD boundary, defined by Inm =
(1/h̄)∂Enm/∂m. The signs of Inm indicates that the semiclas-
sical trajectories for the localized states can be either clock-
wise or counterclockwise rotation of snake orbits along the
MQD boundary [36]. Interestingly, there is a flat eigenenergy
spectrum at zero energy, not depending on m. The zero-energy
states are understood by solving the differential equation with
E = 0. The resulting eigenstates of the zero energy are given
by a linear summation of electron states on A(B) sites and hole
states on B(A) sites [42].

Analysis of each energy eigenstate �nm corresponding to
Enm shows that n and m are the radial and angular quantum
numbers, respectively. Each eigenstate �nm describes how
the localized states are formed in the MQD. Some of the
localized state wave functions are plotted in Figs. 2(b)–2(g).
Note that the intensities of the wave functions are isotropic but
dependent on quantum numbers n and m. The wave functions
for m = 0 (�10 and �20) exhibit their maxima at the center
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FIG. 2. (a) Eigenenergy spectra εnm of the magnetic quantum dot. Dotted lines indicate Landau levels of graphene under a homogeneous
magnetic field. Colored solid dots correspond to εnm values, connected by the same-color solid lines of which colors refer to different n indices.
(b)–(g) Localized state intensities of the MQD for different indices. Dotted lines indicate the boundary of the MQD.

of the MQD, whereas the wave functions for m �= 0 (�11

and �12) show their minima at the MQD center. Especially,
as displayed in Fig. 2(f), the localized state wave functions
for m = −20 are found totally outside the MQD boundary,
forming cyclotron orbits in a uniform-magnetic-field region.
As we already mentioned, this is consistent with the finding
that Enm converges to nth Landau level as |m| increases with
m < 0. The slope of the linear dispersion can be estimated
to be the kinetic energy of a Dirac particle located near the
boundary of the QD, E ∼ m/(

√
2r0). The critical value for m

where the dispersion changes from linear to flat Landau levels
can be estimated by equating the linear dispersion with the
corresponding Landau level energy which is identity in our
magnetic unit for n = 1 so that mc ∼ √

2r0 ≈ 10. This value
matches reasonably well with the dispersions in Fig. 2(a). On
the other hand, in Fig. 2(g), �1,20 exhibits a distinct feature
to �1,−20 because of the broken time-reversal symmetry. The
localized state wave function for m = 20 mainly reside within
the MQD.

III. BALLISTIC CONDUCTANCE THROUGH
MAGNETIC QUANTUM DOT

So far we have studied the eigenenergies and localized
state wave function of the isolated MQD in an infinitely large
graphene sheet. In practice, as depicted in Fig. 1, the sizes of
graphene samples for conductance measurements are finite,
and quantum Hall edge channels are formed along the edge
of the sample. For a MQD on such a finite-sized sample,
the localized states are inevitable to have coupling with the
extended edge states of the sample, leaving resonances in
the conductance spectrum. In this study we use a 98.4-nm-
wide graphene nanoribbon with armchair edges to take into
account the valley-isospin-dependent quantum Hall effects
[18]. A magnetic quantum dot is introduced at the center
of the nanoribbon with a radius of 44.3 nm which is about
5 nm apart from both edges. In our simulations, we have
used B = 15.7 T for which the cyclotron radius rc = 6.5 nm,
so that the aformentioned coupling is substantial. As a con-
sequence of the coupling, Dirac fermions coming from one
edge can be transferred to the other edge through the MQD.
The conductance from L1 to L2 in Fig. 1 is numerically

calculated using S-matrix formalism based on tight-binding
approach with KWANT package [46,47], in order to check how
Dirac fermions pass through the MQD between the two edges.
Hopping energy of 3 eV is used between nearest neighbor pz

orbitals.
Figure 3 presents the conductance as a function of the

energy of Dirac fermions. One can see that there are a number
of resonance peaks. Without MQD the conductance should
be zero since two quantum Hall edge channels cannot talk
to each other in the ballistic regime. Figures 3(a) and 3(b)
show that energies of the resonance peaks match well to
the eigenenergies of the localized states in the MQD. Such
correspondence implies that the conductance resonances are
indeed consequences of the coupling between the edge chan-
nels and the localized states on the MQD. Figures 3(c)–3(f)
demonstrate that each resonance does result from the localized
states in the MQD with a good agreement with the analytic
solutions given in Figs. 2(b)–2(e).

A detailed look into Fig. 3 further shows interesting fea-
tures within the resonance peaks. There are two distinct
shapes of resonances for each localized states, broad and sym-
metric peaks for the Breit-Wigner resonances, and sharp and
asymmetric peaks for the Fano resonances. A Breit-Wigner
resonance occurs when an extended state is strongly coupled
with localized states. On the other hand, a Fano resonance
is an interference effect due to the weak coupling between
extended and localized states. Such conductance spectra are
discovered in charge transport through coupled double quan-
tum dots, where Breit-Wigner and Fano resonances occur at
energies corresponding to bonding and antibonding of the two
dots [48]. In this study, even though there is only one MQD,
there are two degenerate valley states, which are split with
valley mixing due to the coupling with the edge channels
[18,49–51]. Quantitative analysis of the coexistence of Fano
and Breit-Wigner resonances is done by performing numerical
fitting using the double QD model [48], finding the peak
positions EFano and EBW, and their widths γFano and γBW.

We first note that the Fano peak in a peak splitting on a
MQD has lower energy compared to the Breit-Wigner peak,
which is contrary to a general double QD. In a double QD, the
Fano peak is for the antibonding state of two dots which has
higher energy than the bonding. A graphene nanoribbon with
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FIG. 3. (a) Conductance calculated between L1 and L2 leads as
a function of Dirac fermion energy. First four resonances are denoted
by their corresponding localized states labeled as (n, m). (b) Enlarge-
ment of the eigenenergy spectra focusing on the lower eigenenergies.
Black and red symbols represent the eigenenergy bands for n = 1 and
n = 2, respectively. Parameter r0 = 4.2 is used in the eigenenergy
calculation. (c)–(f) Image plots of wave functions of the scattering
region in S-matrix formalism acquired from KWANT codes, for given
Dirac fermion energies corresponding to the first four resonances in
the conductance spectra (a). The dashed line indicates the size of the
MQD. Note that the image plots are normalized by their maximum
values for clarity of viewing.

armchair edges allows only antisymmetric states of valleys,
ψK − ψK ′ [52,53]. With a MQD, although symmetric states
of two valleys are allowed due to the partial existence of
zigzag edge along the boundary of the dot, antisymmetric
states are still preferred energetically, i.e., have lower energy.
Symmetric valley mixing has the disbenefit of kinetic energy
at the armchair edge while antibonding of two dots in the
double QD model has the disbenefit of kinetic energy at the
node of wave function between the two dots.

In order to further understand the valley splitting in the
MQD with the edge channels, we investigate how the con-
ductance spectra for the resonances behave depending on the
distance between the MQD and the edges d . Figure 4(a)
shows the d dependence of the conductance resonances in
case of (n, m) = (1, 0). It is clearly seen that the Fano and
Breit-Wigner resonant peaks become closer to each other
as d increases, eventually converging to a single peak for

(a) (b)

(c)

FIG. 4. (a) Conductance spectra around the first resonance peaks
as functions of Dirac fermion energy for various edge-dot distances
from d = 5 to 13.4 nm with an increment 0.37 nm. (b) The energy
splitting δE as a function of d from the fitted data. (c) Coupling
strengths of Fano and Breit-Wigner resonances, γFano and γBW, from
the numerical fitting as functions of d .

sufficiently large d . It is because the MQD gets decoupled
from the edge. The exponential behaviors of the resonant peak
splitting δE = EBW − EFano, and coupling strengths γFano and
γBW, in terms of d [Figs. 4(b) and 4(c)] imply that such valley
splitting stems from the coupling with the edge; the coupling
strength between the MQD and the edge is proportional to
wave function overlap between the localized states and the
edge channels. Figure 4(c) also confirms the fact that the
coupling for the Fano resonance should be much weaker than
that for the Breit-Wigner resonances. The two-level splitting
for a single MQD is a unique feature of a graphene nanoribbon
with the presence of valley isospin degeneracy.

IV. CONCLUSIONS

In conclusion, using both numerical and analytical ap-
proaches, we have shown that the quantum Hall conductance
on a graphene sample with a MQD exhibits two distinguished
resonant spectra, Fano and Breit-Wigner resonances, as a
consequence of the valley mixing in the MQD. Even though
an isolated MQD has valley degeneracy, the coupling between
the MQD and edge channels leads to valley mixing for a finite-
size quantum Hall graphene system. By fitting the resonant
spectra, we have demonstrated that the two-level splitting
due to the valley mixing becomes smaller as the distance
between the MQD and edge channels increases, accompanied
with narrower spectral widths of resonances. It shows that the
valley mixing is due to the wave function overlap between the
MQD and the edge channel. Analysis of the numerical results
has confirmed that the coupling for the Fano resonances is
much weaker than that for the Breit-Wigner resonances. When
compared to conventional two-dimensional electron gas sys-
tems, the coexistence of Fano and Breit-Wigner resonances
for a single dot structure on a graphene nanoribbon is a unique
phenomena, which is due to the valley degree of freedom. The
reason why the Fano peak in a MQD has lower energy than
the Breit-Wigner peak differently from a double QD model
is also explained from the perspective of edge coupling. The
last comment we want to add is that a sub-Kelvin temperature,
required for an experimental measurement of the sharp Fano
resonances, is experimentally accessible with the most current
technologies [54].
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