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Phonon wind and drag of excitons in monolayer semiconductors
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We study theoretically the nonequilibrium exciton transport in monolayer transition metal dichalcogenides.
We consider the situation where excitons interact with nonequilibrium phonons, e.g., under the conditions of
localized excitation where a “hot spot” is formed. We develop the theory of the exciton drag by the phonons and
analyze in detail the regimes of diffusive propagation of phonons and ballistic propagation of phonons where the
phonon wind is generated. We demonstrate that a halolike spatial distribution of excitons akin observed in [Phys.
Rev. Lett. 120, 207401 (2018)] can result from the exciton drag by nonequilibrium phonons.
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I. INTRODUCTION

Two-dimensional semiconductors based on transition
metal dichalcogenides form a family of materials whose opti-
cal properties are dominated by excitons, electron-hole pairs
bound by the Coulomb interaction [1–5]. Sharp excitonic res-
onances with high oscillator strengths at the room temperature
open up wide prospects for light-matter coupling studies and
applications in the fields of photonics and polaritonics [6].

Recently, an increased interest to the transport properties of
excitons has appeared [7–10]. It is motivated by the possibility
to access fundamental parameters of exciton dynamics such
as momentum scattering time and diffusion coefficient as
well as by the possibilities of applications of two-dimensional
materials for the energy harvesting. In recent work [10],
different regimes of exciton transport have been revealed in
monolayer WS2: at low exciton densities, the classical diffu-
sion of excitons has been observed. An increase in the density
of excitons enables the Auger process [7,11–16] giving rise
to an efficient nonradiative exciton-exciton annihilation. It
changes the shape of the exciton distribution profile in the real
space and gives rise to an apparent increase of the observed
diffusion coefficient. Finally, at even higher exciton densities,
the Gaussian-like distribution of the excitons evolves into
long-lived halo shaped profiles with the dip in the middle. The
effect is attributed to the memory effects resulting, e.g., from
the heating of excitons due to the efficient Auger process [10].

The energy of overheated excitons can be dissipated by
emission of phonons. It gives rise to a formation of a “hot
spot” in the sample where the average kinetic energy of some
of the phonon modes exceeds by far the lattice temperature
outside of spot. These nonequilibrium phonons start to prop-
agate out of the hot spot bringing away extra energy and
momentum. As a result of the exciton-phonon interaction the
excitons tend to drift away from the excitation spot as well.
In this scenario, phonons can drag excitons just like nonequi-
librium phonons push electrons in metals and semiconduc-
tors [17], see Ref. [18] for review. Furthermore, if phonons
propagate ballistically, the phonon “wind” is formed [19–22]
resulting in unusual exciton propagation regimes somewhat
resembling superfluid flow [22–25].

While the phonon drag of excitons has been studied
in detail for bulk materials and conventional quasi-two-
dimensional systems, its specific features in atomically thin
transition metal dichalcogenides have not been explored. In
particular, while in bulk semiconductors and quantum wells,
the excitons mainly interact with three-dimensional phonons
because a weak acoustic contrast is insufficient to strongly
confine the phonons in the quantum well plane, in monolayer-
thin materials and in van der Waals heterostructures the
phonons are strongly confined in the two-dimensional layer.
It results in the enhancement of the phonon density of states.
This together with the fact that the exciton radii in these
monolayer materials are quite small results in rather strong
the exciton-phonon interaction in two-dimensional materials
[26–33].

Here we develop the kinetic theory of the exciton transport
in two-dimensional transition metal dichalcogenides in the
case where excitons interact with nonequilibrium phonons.
In Sec. II, we formulate the problem and present the kinetic
equations for the exciton and phonon distribution functions.
Next, in Sec. III, we reduce the kinetic equations to an
effective drift-diffusion model for excitons. Section IV con-
tains analytical and numerical results on exciton propagation
under the conditions of phonon drag and phonon wind. Brief
conclusion is presented in Sec. V.

II. KINETIC THEORY

A. Model

We consider a monolayer of transition metal dichalco-
genide semiconductor and assume that at the initial time
moment t = 0 it is excited by a short and tightly focused
optical pulse with the photon energy exceeding the exciton
resonance energy similarly to the experimental situation of
Ref. [10]. The absorption of the pulse results in the formation
of electron-hole pairs and excitons which lose energy by
phonon emission. We assume that initially the exciton density
is high enough so that the Auger-like exciton-exciton annihila-
tion process takes place as well. It results in the nonradiative
“bimolecular” recombination where one exciton recombines
with its energy and momentum being transferred to another
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FIG. 1. (a) Schematics of the system and excitation. Red cloud
shows excitons (effective radius a), yellow circle shows the phonon
hot spot (effective radius r0). (b) Scheme of phonon wind acting on
excitons. Excitons are sketched as bound pairs of an electron (blue
dot) and a hole (red dot); arrows illustrate exciton drift with the
velocity vdr .

exciton which ends up in a highly excited state [10,12,15,16,
34–36]. It starts losing energy emitting more phonons. Im-
portantly, high-energy phonons with almost flat dispersion
that can include both optical phonons at the Brillouin zone
center and the zone-edge modes serve as a major source of
energy loss of nonequilibrium quasiparticles [37]. As a result,
their velocity is close to zero and such phonons accumulate.
They form a hot spot in monolayer semiconductor. Eventually,
owing to lattice anharmonicity optical phonons and zone edge
these phonons decay to the acoustic phonons with small wave
vectors and almost linear dispersion. The latter propagate out
of the hot spot bringing away energy and momentum and pro-
duce the drag of the excitons. Another potential experimental
option is to generate phonons by additional intense laser
beam or electric current pulse, in which case one can control
phonon distribution independently [38–40]. Schematically,
the system under study is shown in Fig. 1(a) and the process
of momentum transfer from nonequilibrium acoustic phonons
with linear dispersion to excitons is shown in Fig. 1(b)

Thus, in order to describe the exciton dragging by nonequi-
librium phonons it is sufficient to consider the acoustic
phonons only taking into account the processes described
above as a source of nonequilibrium acoustic phonon popula-
tion. In what follows, we describe the acoustic phonons by the
distribution function Nq(r, t ), where q is the wave vector of the
phonon, r is the position, and t is time. Similarly, the excitons
are described by the distribution function fk(r, t ) with k and r
being the exciton wave vector and its coordinate, respectively.

Below in Sec. II B, we present the set of coupled kinetic
equations for the exciton and phonon distribution functions.

B. Kinetic equations

The kinetic equation for the phonon distribution Nq(r, t )
describing phonon redistribution in the real and momentum
space has the form

∂Nq

∂t
+V q · ∇rNq+ Nq − N̄q

τ
ph
p

= −Nq

τ0
+Qph-exc{Nq}+Ṅq(r, t ).

(1)

Here, V q = sq/q is the phonon velocity in the state with the
wave vector q with s being the speed of sound, τ0 is the
phonon lifetime, τ

ph
p is isotropization time of the phonon dis-

tribution function (phonon momentum relaxation time), and
the overline denotes averaging over the directions of q. The
right-hand side of Eq. (1) describes the processes where the
total number of phonons changes, Qph-exc{Nq} is the phonon-
exciton collision integral and Ṅq(r, t ) is the generation rate
in the course of the exciton cooling and Auger recombina-
tion. Here and in what follows we distinguish between the
processes of acoustic phonon generation in the course of
exciton energy relaxation via optical and zone-edge phonons,
described by the term Ṅ , and the interaction between the
excitons and low-energy acoustic phonons, described by the
term Qph-exc. Equation (1) can be derived from the continuity
equation for the distribution function taking into account the
incoherent processes (phonon generation, annihilation and
scattering) as collision integrals, whose form is specified
below.

The kinetic equation for the exciton distribution function
has a form similar to Eq. (1)

∂ fk

∂t
+ vk · ∇r fk + fk − f̄k

τp
= − fk

τd
+ Qexc-ph{ fk} + ḟk(r, t ).

(2)

Here, ḟk(r, t ) is the exciton generation rate due to optical
excitation, vk = h̄k/m is the exciton velocity, m is its trans-
lational motion mass, τp and τd are the momentum relaxation
and population decay time (lifetime) of exciton, respectively,
Qexc-ph{ fk} is the exciton-phonon collision integral. Being
interested in the exciton transport in the presence of nonequi-
librium phonons we also disregard any nonlinear effects
resulting from exciton-exciton interaction such as exciton-
exciton scattering, energy renormalization as well as the
Auger recombination, see Sec. IV for brief discussion.

Kinetic Eqs. (1) and (2) are coupled via the collision inte-
grals Qph-exc{Nq} and Qexc-ph{ fk}. These integrals describe the
processes of phonon emission and absorption due to exciton-
phonon interaction. Hereafter we assume that the excitons
are nondegenerate, fk � 1 and the collision integral operator
Qph-exc{Nq} acting on the phonon distribution function has a
form

Qph-exc{Nq} =
∑

k

[
W em

k (1 + Nq) fk − W abs
k Nq fk

]
, (3)

where the rates of the phonon emission W em
k and absorption

W abs
k are given by the Fermi golden rule

W em/abs
k = 2π

h̄
|Mq|2δ(Ek − Ek−q ∓ h̄sq) (4)
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with Mq being the matrix element of the exciton-phonon inter-
action [30] and Ek = h̄2k2/2m is the exciton dispersion. For
simplicity and better clarity we disregard here the complex
band structure involving several valleys and also spin de-
grees of freedom: given similar masses and phonon coupling
strengths across different valleys, it is further justified by
inefficient intervalley and spin-flip scattering processes with
low energy and momentum acoustic phonons.

In what follows, we assume that the phonon occupancies
are high, Nq � 1, in agreement with the situation we are
describing. This condition is fulfilled since the energies of
acoustic phonons h̄sq interacting with excitons is typically
much smaller than exciton energy [30,37], thus, under exper-
imental conditions it is much smaller than the temperature
both of the lattice and of the excitons. In this regime, it
is sufficient to consider only stimulated processes and the
collision integral can be further simplified as

Qph-exc{Nq} = WqNq, (5)

where

Wq = 2π |Mq|2
h̄

∑
k

δ(Ek − Ek−q − h̄sq)( fk − fk−q).

The exciton interaction with acoustic phonons is just weakly
inelastic, see Refs. [30,37] for discussion. Thus we have

Wq = 2π |Mq|2
h̄

∑
k

δ(Ek − Ek−q)(h̄sq f̄ ′
k + δ fk − δ fk−q),

(6)

where f̄ ′
k = d f̄ /dEk . Equations (5) and (6) demonstrate that

exciton-phonon collisions induce (generally anisotropic) cor-
rection to the phonon lifetime, it will be ignored in what
follows.

Under the same assumptions as above (i.e., low exciton
occupancy, fk � 1, and high phonon occupancy, Nq � 1), we
arrive at the following form of the exciton-phonon collision
integral:

Qexc-ph{ fk}
=

∑
q

Nq
[

fk+qW
em

k+q + fk−qW
abs

k−q − fk
(
W em

k + W abs
k

)]

= 2π

h̄

∑
q

|Mq|2( fk+q − fk)[Nqδ(Ek+q − Ek − h̄sq)

+ N−qδ(Ek+q − Ek + h̄sq)]. (7)

In the elastic approximation, where h̄sq in the energy
conservation law is omitted, all the effect of exciton-phonon
collisions is reduced to the isotropization of the exciton
distribution function. In what follows we assume that this
contribution to τ−1

p is already included in the momentum
relaxation rate in the kinetic Eq. (2).

Thus, in order to describe the exciton drag by the phonons,
we need to take into account nonelasticity in Eq. (7) in
the lowest nonvanishing order. To that end, we arrive at the
collision integral in the simple form

Qexc-ph{ fk} = 2πs f̄ ′
k

∑
q

q|Mq|2(Nq − N−q)δ(Ek+q − Ek).

(8)

In derivation of Eq. (8), we assumed that the anisotropic in the
momentum space part of the exciton distribution function is
much smaller that the isotropic one and neglected it. We stress
that the right-hand side of the collision integral Qexc-ph{ fk} (8)
is nonzero due to the fact that the phonons propagate out of
the hot spot, Fig. 1. Correspondingly, the spatial gradient of
Nq produces the anisotropic part of the phonon distribution
function Nq − N−q �= 0.

In the following section, we reduce the kinetic equations to
the drift-diffusion equation for excitons which is suitable for
description of the phonon drag.

III. EXCITON DRIFT-DIFFUSION MODEL

A. Phonon distribution function

Hereafter we assume that propagating excitons provide
minor effect on phonon distribution function. This is reason-
able because the phonons are generated while the major part
of the exciton population relaxes in energy and decays due
to the Auger process. The collision integral (5) is proportional
to the number of excitons and is small. Consequently, we
neglect the Qph-exc in the right-hand side of Eq. (1). Hence, the
solution of this equation is expressed via the Green’s function
Gq(r, t ) as

Nq(r, t ) =
∫

dr′
∫

dt ′ Gq(r − r′, t − t ′)Ṅq(r′, t ′), (9)

The Green’s function Fourier-transform satisfies the equation[
−iω + 1

τ
+ i(V q · Q)

]
Gq(Q, ω) = Ḡq(Q, ω)

τ
ph
p

+ 1 (10)

with 1/τ = 1/τ0 + 1/τ
ph
p . Its solution reads

Gq(Q, ω) = τ
Ḡq(Q, ω)/τ ph

p + 1

1 − iωτ + iQl cos ϕ
, (11)

where l = sτ , ϕ is the angle between Q and q, and the angular-
average Green’s function can be readily expressed as

Ḡq(Q, ω) = PQ,ωτ

1 − PQ,ω
τ

τ
ph
p

, PQ,ω = 1√
(1 − iωτ )2 + Q2l2

.

This yields the following closed form expression for the
Green’s function:

Gq(Q, ω)

= τ
√

(1 − iωτ )2 + Q2l2

(
√

(1 − iωτ )2 + Q2l2 − τ/τ
ph
p )(1 − iωτ + iQl cos ϕ)

.

(12)

We assume that at t = 0 the Nq phonons with the wave-
vector absolute value q were generated in the small spot of
the area πr2

0 at r = 0, Fig. 1(a). Accordingly, we take the
generation rate Ṅq(r, t ) in the form1

Ṅq(r, t ) = πr2
0Nqδ(r)δ(t ). (13)

1Generalization of the results to the large hot spot size is trivial and
beyond the scope of the present paper. Basic results remain the same,
see Appendix B.
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In this case, we get

Nq(r, t ) = πr2
0NqGq(r, t )

= πr2
0Nq

∫
d2Q

(2π )2

∫
dω

2π
Gq(Q, ω)ei(Q·r−ωt ). (14)

In what follows, we consider two important limits for
phonon propagation. First one is the case of ballistic propaga-
tion where the momentum relaxation of phonons in unimpor-
tant, τ0/τ

ph
p � 1. In this regime, we have Gq(Q, ω) ≈ (τ−1

0 −
iω + iQs cos ϕ)−1 and

Nball
q (r, t ) = πr2

0Nqδ

(
r − st

q
q

)
e−t/τ0 . (15)

Equation (15) clearly shows that the phonons propagate along
straight lines from the origin to the point r with the fixed speed
s and q ‖ r.

Second important regime of phonon transport is the diffu-
sive propagation, where the momentum scattering time τ

ph
p �

τ0. In the diffusion regime, there are three small parame-
ters: ωτ

ph
p , Ql, τ ph

p /τ0 � 1 and the distribution of phonons is
practically isotropic in the momentum space. Since we are
interested in the transfer of phonon momentum to excitons we
need to account for its small anisotropy in the first order. As a
result we have for the phonons Green’s function

Gq(Q, ω) ≈ 1 − iV q · Qτ
ph
p

τ−1
0 − iω + DphQ2

, (16)

where we introduced the phonon diffusion coefficient

Dph = l2

2τ
= s2τ

ph
p

2
. (17)

We stress that Eqs. (16) and (17) are valid in the regime of
slow, diffusive, dynamics of phonon distribution, i.e., on the
frequency scales ω � 1/τ

ph
p and on the wave vector scales

Q � 1/l , while the product ωτ0 can be arbitrary. That is why
it is sufficient to take into account only the lowest nonvan-
ishing terms in ω and Q in the denominator and recover the
diffusion pole in the form (−iω + DphQ2)−1. In this regime,
the short-time dynamics of the phonon distribution function
can be included by appropriate modification of the initial
condition (13). Finally, for the phonon distribution, we have

Ndiff
q (r, t ) = (

1 − τ ph
p V q · ∇r

)
Nqr2

0
e−r2/4Dpht−t/τ0

4Dpht
. (18)

It is possible to recast Eq. (18) in somewhat different
notations which are convenient for what follows. To that end
we represent the wave-vector average phonon distribution
as N̄diff

q (r, t ) = kBT (r, t )/(h̄sq), where kB is the Boltzmann
constant and T (r) is the local (i.e., coordinate dependent)
temperature of the small energy acoustic phonon subsystem.2

2Such description is valid for thermalized phonons which form
Planck distribution due to anharmonic processes. Also we assume
that kBT � h̄sr−1

0 , where r0 is the hot spot size.

Hence,

Ndiff
q (r, t ) = (

1 − τ ph
p V q · ∇r

)kBT (r, t )

h̄sq
, (19)

where T (r) satisfies standard heat conduction equation

∂T (r, t )

∂t
= Dph�T (r, t ) − T (r, t )

τ0
+ Ṫ (r, t ), (20)

with Ṫ (r, t ) being the energy generation rate in the units of
k−1

B . Equations (19) and (20) allow one to calculate the phonon
flux for an intense local heating of the sample. We emphasize
here that T (r) is not necessary equals to the local lattice
temperature and may not represent the heating of the material
in the conventional sense.

B. Drift-diffusion equation for excitons

Let us now analyze the impact of exciton-phonon interac-
tions on the exciton distribution. To that end, we note that the
collision integral (8) can be recast as

Qexc-ph{ fk} = − f̄ ′
k (vk · Fk), (21)

where the scalar product of the exciton velocity and the
effective force can be presented in the form

(vk · Fk) = − ms

π h̄2

∫ 2π

0
dϕqq|Mq|2	(2k − q)(Nq − N−q).

(22)

Here the phonon wave-vector absolute value in the integral
and the angle ϕq are interrelated as q = −2k cos (ϕq − ϕk) by
virtue of the energy conservation law

δ(Ek+q − Ek) = 2m

h̄2q
δ[q + 2k cos (ϕq − ϕk)].

In what follows, we assume that the excitons propagate
diffusively in the sample, i.e., we are interested in the exciton
dynamics on the time scales which exceed by far the exciton
momentum scattering time τp. Therefore, under assumption
τd � τp, the kinetic Eq. (2) with the collision integral in the
form of Eq. (21) can be replaced by the effective drift diffusion
equations. In order to derive these equations, we introduce
the exciton density n(r, t ) and the exciton flux density j(r, t )
according to

n = g
∫

dk
(2π )2

fk, j = g
∫

dk
(2π )2

vk fk. (23)

Here, g is the spin and valley degeneracy factor which
takes into account the band structure of the transition metal
dichalcogenides monolayers (within simplest approximation
where the intervalley excitons are neglected, g = 4 or 2
depending whether both bright and spin dark excitons or
only one species are involved). Naturally, the integration in
Eqs. (23) picks the zeroth and first angular harmonics of the
exciton distribution which determine, respectively, the particle
density and flux.

Integrating Eq. (2) over the wave vectors and taking into
account the fact that the exciton-phonon interaction does not
change the number of excitons, we arrive at the continuity

045426-4



PHONON WIND AND DRAG OF EXCITONS IN MONOLAYER … PHYSICAL REVIEW B 100, 045426 (2019)

equation for the exciton density

∂n

∂t
+ div j + n

τd
= ṅ(r, t ), (24)

where

ṅ(r, t ) = g
∫

dk
(2π )2

ḟk(r, t ) (25)

is the exciton generation rate. The equation for the flux density
j can be derived in the same way by multiplying Eq. (2) by
vk and integrating over k. In order to simplify the resulting
expressions we assume that τp is independent of exciton
energy and that the excitons on average have a Boltzmann
distribution

f̄k ∝ n(r, t )

Tx(r, t )
exp

(
− Ek

kBTx(r, t )

)
, (26)

with the effective exciton temperature Tx(r, t ) which, in gen-
eral, is not equal to the acoustic phonon subsystem tempera-
ture T (r, t ) and depends on the position and time. Calculation
of the exciton thermalization rate is beyond the scope of the
paper. It can be carried out following Refs. [41–43]. As a
result we have

j = −Dx∇rn − ηn∇rTx + τp

m
F(r, t )n. (27)

Here the first term is responsible for the exciton diffusion with

Dx(r, t ) = kBTx(r, t )τp

m
, (28)

being the exciton diffusion coefficient, the second term ac-
counts for the Seebeck effect [44,45], see also Ref. [46] for
advanced calculations of the Seebeck coefficient for excitons,
with

η = kBτp

m
, (29)

and the last term accounts for the force F(r, t ) acting from the
phonons on the excitons (phonon wind and drag effects),

F(r, t ) = − g

(2π )2mn

∫
dkEk f̄ ′

kFk(r, t ). (30)

Note that if Fk is wave-vector independent then F(r, t ) =
F (r, t ). The set of Eqs. (24) and (27) can be combined into
the single drift-diffusion equation for the exciton density

∂n

∂t
+ n

τd
= ∇r

(
Dx∇r + η∇rTx − τp

m
F

)
n + ṅ(r, t ). (31)

The first term in parentheses describes the exciton diffu-
sion and two remaining terms describe the drift due to the
Seebeck effect and interaction with phonons, respectively.
Equation (31) can be recast in a more compact form using
the explicit expressions for Dx and η, Eqs. (28) and (29):

∂n

∂t
+ n

τd
= τp

m
∇r[∇r(kBTxn) − Fn] + ṅ(r, t ). (32)

Equation (31) should be also supplemented by a similar
equation for the exciton temperature Tx(r, t ).

The model formulated above describes the exciton diffu-
sion and drift due the Seebeck effect on overheated excitons
and exciton-phonon interaction. In fact, similar description

is valid if excitons are interacting with other particles or
quasiparticles in the two-dimensional crystal. For example,
the excitons can be dragged by the fluxes of electrons and
holes, which can be generated in the sample, e.g., due to the
hot exciton dissociation. In this case, F has a meaning of the
momentum transfer rate from the electrons and holes to the
excitons. We also note that nonlinear effects due to exciton-
exciton interactions, such as Auger recombination and renor-
malization of the exciton energy can be straightforwardly
introduced into Eq. (31). Similar drift-diffusion description
of excitons can be also applicable provided that exciton-
exciton collisions [47] are more efficient as compared with the
exciton-phonon and exciton-impurity scattering by analogy
with the hydrodynamical regime of electron transport, see
Refs. [48,49] and references therein.

IV. RESULTS

In this section, we present the results of the exciton propa-
gation modeling in the framework of the drift-diffusion model,
Eq. (31). First, we determine the effective force F(r, t ) acting
from the phonons on the excitons and, second, we present the
results of analytical and numerical calculations.

A. Phonon-induced driving forces

The exciton-phonon coupling in transition metal dichalco-
genide monolayers is mainly governed by the deformation
potential interaction [29,30]. In the long-wavelength limit rel-
evant for our work, where the product qaB � 1, with aB being
the exciton Bohr radius, the phonon-induced deformation of
the crystalline lattice is homogeneous on the scale of the
exciton size. Thus the energy shift of the exciton state is
simply provided by the variation of the band gap energy and
only longitudinal acoustic phonons contribute to the effect.
Accordingly, we present the matrix element Mq in Eqs. (4)
and (8) as

|Mq|2 = �q, (33)

where � is a constant related to the conduction band, Dc, and
valence band, Dv , deformation potentials as [30]

� = h̄

2�sS (Dc − Dv )2,

with S being the normalization area and � being the mass
density of the two-dimensional crystal.

For diffusive phonon propagation where τ
ph
p � τ0, Eq. (19)

yields

Ndiff
q − Ndiff

−q = −2τkB

h̄q2
q · ∇T . (34)

and by virtue of Eqs. (21), (22), and (30) we have

Fdrag = −2sτkB

h̄2 �∇T = − τ

τx
kB∇T . (35)

In the last equation, we introduced the characteristic exciton-
phonon scattering time as

1

τx
= 2m2s

h̄4 �. (36)
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Equation (35) has a clear physical sense: −kB∇T is the mo-
mentum per unit of time carried by the phonons and the factor
τ/τx (note that in diffusive regime τ = τ

ph
p ) gives the fraction

of phonon momentum transferred to exciton in the course of
exciton-phonon interaction. Such regime of the exciton drift
where phonons are diffusive is denoted as the phonon drag
regime.

It is instructive to compare the phonon drag force in
Eq. (35) and the effective force due to the Seebeck effect
caused by the exciton temperature gradient, second term in
Eq. (27), see also second term in the brackets in Eq. (31).
Under our assumptions the corresponding exciton Seebeck
force is simply given by

FS = −kB∇Tx. (37)

Provided that the temperature gradients of excitons and
phonons are the same, the ratio |Fdrag|/|FS| = τ/τx < 1,
because total scattering rate of phonons is larger than their
rate of collisions with excitons. Generally, the temperatures
of excitons and phonons as well as their gradients can differ,
particularly, in the situation where the phonons are generated
by additional light pulse. The study of competition between
the Seebeck effect and phonon drag is beyond the scope of
this work, we just stress that both effects produce additive
contributions to the exciton flux.

We recall that according to Eqs. (18) and (19) the tempera-
ture distribution under pulsed excitation has a Gaussian form
and the phonon drag force in Eq. (35) acquires a form

Fdrag = τ

τx
kBπr2

0T0
e−r2/4Dpht−t/τ0

8(Dpht )2
r. (38)

We recall that T0 is the effective temperature in the hot spot
and r0 is the hot spot radius, see Fig. 1. It is assumed that
r0 � r,

√
Dpht and

√
Dxt at the relevant space and time scales.

For ballistic phonon propagation where τ
ph
p � τ0, Eq. (15)

yields

Nball
q − Nball

−q = Nqe−t/τ0
δ(r − st )

2πr
× [δ(ϕq − ϕr) − δ(ϕq − ϕr + π )]. (39)

Further, to obtain simple analytical expressions, we again
approximate Nq as Nq = kBT0/h̄sq with T0 being the effective
temperature of the hot spot and r0 being its radius, Fig. 1(a).
As a result, we obtain

Fwind = kBT0r2
0

sτx

δ(r − st )e−r/sτ0

2πr

r
r
. (40)

It is instructive to generalize Eq. (40) to a situation where the
phonons are generated in the hot spot during a finite time τε .
To that end we replace δ(t ) by τ−1

ε exp (−t/τε ) in Eq. (13).
After some algebra we obtain instead of Eq. (40) the following
expression for the force:

Fwind = kBT0r2
0

2πrs2τxτε

	(st − r) exp

(
r − st

sτε

− r

sτ0

)
r
r
. (41)

Equation (41) demonstrates that, neglecting phonon de-
cay (τ0 → ∞), the momentum flux by the ballistic
phonons decays as inverse distance due to phonon propa-
gation [19] as it follows from the momentum conservation,

Fig. 1(b). Finite lifetime of phonons gives rise to additional
∝ exp (−r/sτ0) decay with sτ0 being the mean distance
which phonon propagates before it decays. The factor
	(st − r) exp [(r − st )/(sτε )] accounts for the retardation
while phonons arrive from the hot spot. The regime of exciton
drift due to the interaction with ballistic phonons is denoted
hereafter as a phonon wind.

B. Solution of drift-diffusion equation

We start with the simplified analysis of the exciton drift-
diffusion Eq. (31) and identify the most important limits. We
also confirm our analytical results by the numerical solution
of the drift-diffusion equation.

It is noteworthy that in the diffusive regime of exciton
propagation the exciton momentum is lost at a very short
time scale τp. That is why as soon as the force field F
vanishes, i.e., due to the phonon diffusion or finite phonon
lifetime, the exciton distribution evolves according to the
diffusion equation, spreads in the space and decays due to
the finite exciton lifetime τd . By contrast, while substantial
number of phonons are present, a competition between the
drift and diffusion takes place. The diffusive flux of excitons
∝ Dx|∇n| ∼ Dxn/a, where a is the exciton spot size, Fig. 1(a).
The drift flux of excitons is given by τpFn/m. Thus the drift
of excitons dominates provided

τp

m
F � Dx

a
, or F � kBTx

a
. (42)

The latter condition follows from the expression for exciton
diffusion coefficient (28). This condition can be naturally
fulfilled in the phonon wind regime. The situation can be
different in the case of the Seebeck or the phonon drag effect.
Indeed, taking into account that the force is given by the
temperature gradient [see Eqs. (35) and (37)] and making
crude estimates with τ

ph
p ∼ τx we obtain that the drift and

diffusion provide comparable contributions to the exciton
dynamics if T � Tx.

In order to obtain the analytical result, we assume that the
drift dominates, i.e., that Eq. (42) is fulfilled. In this case the
diffusive term in Eq. (31) can be neglected, we neglect also
the Seebeck effect putting ∇Tx to zero. The remaining equa-
tion can be solved by the method of characteristics. Namely,
we find the exciton dynamics from the second Newton’s law
which at t � τp reads

dr
dt

≡ vdr = τp

m
F(r, t ). (43)

Here, vdr is the exciton drift velocity in the force field F.
The trajectories r(ρ0, t ) where ρ0 is the initial position of the
exciton at t = 0 provide implicit dependence of ρ0 on r and t
which makes it possible to express the exciton distribution via
the initial one. Assuming axial symmetry of the problem we
obtain, see Appendix A for details,

n(r, t ) = n0[ρ0(r, t )]
dρ2

0

dr2
e−t/τd . (44)

Let us first focus on the phonon wind regime where the
force field F(r, t ) is given by Eq. (41). It is noteworthy
that exciton drift velocity, Eq. (43), cannot exceed the speed
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of sound s. Indeed, the exciton-phonon scattering tends to
equalize the velocities of the particles while the exciton mo-
mentum scattering processes result in the velocity dissipation.
We assume in what follows that vdr � s in agreement with the
assumptions made at derivation of Eq. (31); the effects where
vdr is comparable with the speed of sound are beyond the
scope of the present work, see, e.g., Ref. [22] where saturation
effects were studied. Thus, in Eq. (41), one can neglect r as
compared with st and represent Fwind in a very simple form

Fwind = U (r, t )

r

r
r
, (45)

where the parameter U (r, t ) = U0 exp (−t/τε − r/sτ0) with
U0 ∝ kBT0 describes the hot spot efficiency. Equation (45)
resembles the force field produced by a Coulomb center in
a two-dimensional geometry. This is indeed consistent with
the coordinate dependence of the momentum flux produced
by the ballistic nonequilibrium phonons [19]. Equation (43)
together with Eq. (45) can be easily integrated with the
result

er/sτ0 (r − sτ0) − eρ0/sτ0 (ρ0 − sτ0) = R0(1 − e−t/τε ),

R0 = τpU0

m

τε

sτ0
. (46)

Particularly, for the excitons starting from the ρ0 = 0 the
dynamics is given by the following asymptotes depending on
the relations between the parameters:

r(t ) ≈
√

2U0t, t � τ0, τε, (47a)

r(t ) ≈
√

2U0τε, t � τε, τε � (sτ0)2

U0
, (47b)

r(t ) ≈ sτ0, t � τ0, τ0 � τε, sτ0 � R0, (47c)

r(t ) ≈ sτ0 ln

(
R0

sτ0

)
, t � τ0, τ0 � τε, sτ0 � R0. (47d)

Physically, at t → 0 the excitons are strongly accelerated
by the phonon wind since the force field (45) diverges as 1/r
and giving rise to a formally infinite velocity in Eq. (43). It
results in r ∝ √

t dependence, as demonstrated by Eq. (47a).
As time goes by, the action of the phonon wind diminishes
and excitons stop to be driven, r = const, either because the
phonons vanish [short τε , Eq. (47b)], or because excitons
eventually left the area covered by the phonon wind [long τε ,
Eqs. (47c) and (47d)]. Thus, at long-time scales, the exciton
dynamics is controlled by the diffusion and recombination
processes.

This regime of exciton propagation is illustrated in Fig. 2.
In our numerical calculations, we took the initial distribution
of excitons in the form

n0(ρ) = Nx

πr2
0

exp

(
−ρ2

a2

)
. (48)

Here, Nx = 2π
∫ ∞

0 n0(ρ)ρdρ is the total number of excitons
in the excitation spot and a is the effective spot radius, a2 =
2π

∫ ∞
0 n0(ρ)ρ3dρ (half width at half maximum is a

√
ln 2).

The exciton distribution was calculated by solving the drift-
diffusion Eq. (31) neglecting the Seebeck effect, i.e., putting
η = 0; the detailed analysis of the Seebeck effect on the exci-
ton propagation is given in Ref. [46]. We have also replaced

(b)

0 ns

1 ns

(a)

FIG. 2. Exciton propagation in the phonon wind regime. (a) Pro-
files of exciton density at t = 0 (red dotted curve) and t = 0.5 ns
(red solid curve). Black dashed line shows the exciton profile at
t = 1 ns in the absence on nonequilibrium phonons (U = 0). Inset
shows profiles of the exciton density with time for 0 � t � 1 ns
in equal steps. (b) False color plot of exciton density as a function
of coordinate and time. White dashed lines show the solution of
Eq. (46) at ρ0 = 0. The arrow indicates the limiting value r(t →
∞) found from Eq. (46). Inset shows the halolike shape of the
exciton cloud at t = 0.5 ns. The parameters of exciton diffusion
roughly correspond to Ref. [10]: initial spot size a = 0.4 μm, exciton
lifetime τd = 1.1 ns, exciton diffusion coefficient Dx = 0.34 cm2/s;
photon wind parameters are τε = τd , sτ0 = 1 μm, R0 = 0.0825 μm.
In our calculations, we take large phonon lifetime of about 1 ns
which can be relevant to low temperatures and clean samples [50,51]
where the boundary scattering [52] is unimportant. In the numerical
calculation, we also took into account the initial size of the phonon
hot spot r0 = 0.08 μm.

the generation term ṅ in the right-hand side with the initial
condition (48) assuming instantaneous generation of excitons.
For the phonon wind mechanism, we take the force field in the
form of Eq. (45).

Figure 2(a) shows the exciton distribution in the presence
of wind (red solid line) and in the absence of wind (black
dashed line) at a fixed time t = 1 ns. The phonon wind
markedly changes the distribution giving rise to the dip in the
center which evolves in time as shown in the inset and also in
more detail in Fig. 2(b) where the false color plot of exciton
distribution is shown. We also illustrate the propagation of
excitons which started at the origin (dashed lines) calculated
after Eq. (46). It illustrates rapid expansion of the cloud and
formation of a ring-shaped pattern [inset in Fig. 2(b)] at
short time scales, Eq. (47a), and saturation at longer times,
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FIG. 3. Exciton propagation in the phonon drag regime. False
color plots of exciton density for and effective temperature gradients
(given in the units of drift velocity corresponding to the force at the
phonon hot spot edge r = r0 at t = 0): (a) F (r0, 0)τp/m = 0.045 and
(b) 0.45 μm/ns. Other parameters are the same as in Fig. 2: initial
spot size a = 0.4 μm, exciton lifetime τd = 1.1 ns, exciton diffusion
coefficient Dx = 0.34 cm2/s; phonon lifetime τ0 = 1.1 ns, phonon
hot spot radius r0 = 0.08 μm, and phonon diffusion coefficient
Dph = Dx .

Eq. (47b). The halolike shape of the exciton cloud is a result
of the drift dominating over the exciton diffusion: the particles
leave the hot spot faster than their distribution smoothens
by the diffusion process. The sensitivity of exciton density
profiles to the parameters of the phonon system, τε and τ0, is
briefly analyzed in Appendix C. Taking shorter values of these
times still results in the halo formation, but the size of the
ring is respectively smaller, in agreement with approximate
analytical expressions (47b) and (47c).

An interplay between the drift and diffusive behavior can
be observed also in the phonon drag regime as illustrated
in Fig. 3. This calculation has been carried out similarly to
the presented above, but the force field was taken in the
form of Eq. (38). Panels (a) and (b) demonstrate the exciton
distribution evolution for two values of initial temperature
gradient which correspond to relatively low and relatively
high drift velocity of excitons, respectively. As expected, the
significant drift of excitons and the halo formation are possible
only provided that the drift velocity is large enough, so that
the product vdrτd �

√
Dxτd . Similar behavior is also possible

in the regime of Seebeck effect, where the exciton drift is
produced by the gradient of their temperature. The detailed

study of the Seebeck effect requires self-consistent solution
of the exciton drift-diffusion equation and the equation for the
exciton temperature. This effect is beyond the scope of the
present work.

Above we demonstrated the scenario for nondiffusive prop-
agation of excitons: energy relaxation of excitons results in
the formation of highly nonequilibrium acoustic phonons
which, in turn, drag excitons out of the excitation spot. The
spatial profile of the exciton density acquires a nonmonotonic
halolike shape with the dip in the middle and increased
exciton density on the periphery. Such profiles of the exci-
ton density have been recently observed in Ref. [10]. They
were tentatively attributed to the memory effects such as the
heating of the exciton gas and subsequent variation of the
Auger recombination rate. The nonradiative exciton-exciton
annihilation additionally decreases the number of excitons in
the middle of the excitation spot. Here, the memory comes
from the overheated phonon subsystem or from the elevated
temperature of the excitons (in the case of the Seebeck ef-
fect induced drift). The full quantitative description of the
experimental data requires also inclusion of the Auger re-
combination of excitons (which, according to our estimations,
does not substantially qualitatively affect the profiles shown in
Figs. 2 and 3) as well as the analysis of the phonon transport
conditions. Particularly, at the room temperature the phonon
lifetimes are expected to be sufficiently short ruling out the
phonon wind effect. By contrast, at low temperatures, the
phonon wind could dominate the exciton drift. In this work,
we abstain from the detailed comparison of the predictions
with experimental results of Ref. [10], since a combination
of several factors may affect the halolike profile formation
in the experiments at the room temperature. In particular, the
combination of the wind and drag effects (on short and long
timescales), possibly, exciton-exciton or exciton-free carriers
interaction, as well as the Seebeck effect (discussed as an
origin of the halolike profiles in Ref. [46]) could result in
the observed exciton density profiles. Further experiments,
e.g., aimed at studies of exciton propagation as a function of
temperature would be helpful to finally establish the origin of
the halo effect.

V. CONCLUSION

We have developed analytical theory of exciton drift and
diffusion in the presence of nonequilibrium phonons in two-
dimensional transition metal dichalcogenides. We demon-
strate that the flow of phonons can drag excitons out of the
excitation spot giving rise to the halolike shape of the exciton
spatial profile. Different regimes of the drift are identified:
for ballistic phonons the excitons are affected by the phonon
wind, while for the diffusive phonons the exciton drift can
be caused by the effective force resulting from the phonon
temperature gradient.
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APPENDIX A: ANALYTICAL SOLUTION OF THE
DRIFT EQUATION

Here we present analytical solution of Eq. (31) at Dx =
0 and τd → ∞. This drift equation for the density n in the
presence of the central force f has the following form:

∂n

∂t
= −∇(n f ), f = r

r
f (r, t ). (A1)

Then the drift Eq. (A1) assumes the form

∂n

∂t
= −2

∂ (rn f )

∂r2
. (A2)

We introduce the solution of the characteristic equation
[second Newton’s law, Eq. (43)] with the initial condition
r(t = 0) = ρ0:

dr

dt
= f (r, t ), r = r(ρ0, t ), ρ0 = ρ0(r, t ). (A3)

The following relation between the derivatives of ρ2
0 takes

place:

∂ρ2
0

∂t
= −2 f r

∂ρ2
0

∂r2
. (A4)

We now prove that the solution of Eq. (A2) has the form of
Eq. (44) with τd → ∞:

n(r, t ) = n0[ρ0(r, t )]
∂ρ2

0

∂r2
. (A5)

Indeed, the left-hand side has the form

∂n

∂t
= n′

0
∂ρ0

∂t

∂ρ2
0

∂r2
+ n0

∂2ρ2
0

∂t∂r2
, (A6)

whereas the right-hand side is

−2
∂ (rn f )

∂r2
= n′

0
∂ρ0

∂r2

∂ρ2
0

∂t
+ n0

∂2ρ2
0

∂r2∂t
. (A7)

FIG. 4. Exciton propagation in the phonon wind regime. Com-
parison of the analytical solution, Eq. (44), with ρ0(r, t ) given by
Eq. (B2) and the numerical solution of Eq. (31) at t = 0.5 ns. Inset
shows profiles of the exciton density with time for 0 � t � 1 ns in
equal steps. The parameters of exciton diffusion roughly correspond
to Ref. [10]: initial spot size a = 0.4 μm, exciton lifetime τd =
1.1 ns, exciton diffusion coefficient Dx = 0.34 cm2/s; photon wind
parameters are τε = τd ,

√
τετpU0/m = 0.9 μm, phonon hot spot

r0 = 0.4 μm.

Evaluating the derivatives, we see that the left- and right-hand
sides coincide proving Eq. (A5).

APPENDIX B: INTERPLAY OF THE DRIFT
AND DIFFUSION

It is instructive to provide the detailed comparison of the
analytical (at Dx = 0) and full numerical solutions of drift-
diffusion Eq. (31) in the regime of the phonon wind. We take
in Eq. (45)

U (r, t ) = U0
[
1 − exp (−r2/r2

0 )
]
e−t/τε .

In order to produce the analytical solution, we first find the
exciton trajectories in the force field:

exp [(r/r0)2] − 1

exp [(ρ0/r0)2] − 1
= exp

[
2τετpU0

mr2
0

(1 − e−t/τε )

]
. (B1)

Equations (B1) or (B2) provide implicit dependence of ρ0 on
r and t , i.e., the initial position of exciton to reach at the time
t the position ρ. Explicitly, it reads

ρ0(t, r) = r0

√√√√√ln

⎡
⎣1 + exp

(
r2/r2

0

) − 1

exp
[

2τετpU0

mr2
0

(1 − e−t/τε )
]
⎤
⎦. (B2)

FIG. 5. Exciton propagation in the phonon wind regime. (a) Cal-
culated exciton density profile for the same parameters as in Fig. 2
but for τε = 0.1 ns. (b) Calculated exciton density profile for the
same parameters as in Fig. 2 but for sτ0 = 0.1 μm.
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Figure 4 illustrates good agreement of the approximate an-
alytical and exact numerical solution of the drift-diffusion
equation.

APPENDIX C: HALO SENSITIVITY TO THE
SYSTEM PARAMETERS

In Fig. 5, we analyze the sensitivity of the exciton density
profiles in the phonon wind regime to the key parameters
of the phonon system, which are largely unknown at this

stage: hot spot generation time τε and phonon lifetime τ0.
We took the same parameters of the system as we used to
calculate Fig. 2 but used shorter value of τε in Fig. 5(a) and
shorter value of the product sτ0 in Fig. 5(b). In both cases, the
halo formation is clearly seen, but the halo radius is smaller
than that in Fig. 2(b). This is consistent with approximate
analytical expressions (47b) and (47c), respectively. Minor
differences from the analytical expressions results from the
approximations used to derive Eqs. (47a), while the evolution
of the halo peaks is well described by Eq. (46) (see dashed
lines in Fig. 5).
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