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Scattering of surface plasmons on graphene by abrupt free-carrier generation
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We explore the temporal dynamics of a surface plasmon on a graphene sheet after an abrupt increase
of graphene’s carrier density. The plasmon is transformed into two frequency-upshifted surface plasmons
propagating in the forward and backward directions, transient free-space radiation, and two-stream dc motion
of carriers. The two-stream carrier motion carries zero net electric current and therefore does not generate any
magnetic field. Nevertheless, it can consume a substantial fraction, up to a half, of the initial plasmon energy
in the form of the kinetic energy of the carriers. We revisit the recent claim in the literature that graphene’s
nonstationarity can amplify plasmons.
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I. INTRODUCTION

Graphene appears to be a promising plasmonic material
for the terahertz and infrared frequency ranges due to its
capability of supporting low loss and highly confined surface
plasmons that can be dynamically tuned by varying the car-
rier density via electrical gating or optical excitation. These
advantages over plasmons in metals make graphene plasmons
attractive for a wide range of photonic applications, such
as surface-enhanced infrared absorption spectroscopy [1,2],
infrared and terahertz photodetectors [3,4], sources [5,6], and
modulators [7–9].

The tunability of graphene plasmons is vital for developing
graphene-based active plasmonics [10]. By temporally vary-
ing the graphene conductivity, one can change the dispersion
properties of graphene plasmons and by this means modulate
their frequency. Frequency manipulation of optical signals is
important, for example, for the wavelength division multi-
plexing technology in all-optical signal processing [11,12].
Dynamic frequency conversion of light confined in silicon-
based photonic structures, both cavities and waveguides, have
been experimentally demonstrated by photogeneration of free
carriers in silicon [13–18]. For developing high-speed op-
toelectronic devices, rapid variations of graphene properties
are of considerable interest. In particular, ultrafast optical
excitation of free carriers in graphene on the scale of a few
tens of femtoseconds has been demonstrated [19–21]. The
ultrafast dynamics of graphene plasmons after a photoexcita-
tion of carriers has been revealed [22]. Elucidating the role
of electron-hole pair creation and hot carrier dynamics on
sub-100-fs time scales is currently a subject of intensive study
[23,24].

Theoretical understanding of plasmon transformation on
a time-varying graphene requires a careful consideration on
the basis of nonstationary constitutive relations. Previously,
the theory of wave transformation in time-varying media has
been mainly developed for the waves in bulk materials, such as
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dielectrics or plasmas [25–29]. The transformation of surface
waves was investigated in the geometries of plasma half-space
[30–32] or plasma layers [31,33], both for slow [31] and
rapid [30,32,33] plasma density variations. It was found that
medium nonstationarity can give rise to specific effects such
as frequency shifting, reflection at the temporal boundaries,
temporal scattering of surface waves to bulk radiation, and
generation of self-consistent distributions of static magnetic
field and dc currents (the so-called free-streaming modes)
in plasma. These effects, however, were not considered for
the waves guided by two-dimensional structures, such as
graphene sheets.

The problem of graphene plasmon transformation by time
modulation of graphene’s free-carrier density was addressed
very recently in Refs. [34] and [35]. The most salient pre-
diction of these works is that nonstationarity can amplify
plasmons by imparting energy to them. In Ref. [34], the
plasmon amplification occurs if the carrier density abruptly
decreases. In Ref. [35], on the contrary, the amplification was
predicted for a carrier density increase.

In a more recent paper [36], however, the claim of plasmon
amplification, made in Ref. [34] for the carrier density de-
crease, was refuted and the origin of the mistake was pointed
out. Namely, the approach of Ref. [34] is based on the conti-
nuity of the plasmon’s magnetic field and its time derivative
at the temporal discontinuity and on a simultaneous neglect of
the transient bulk radiation. The transient radiation is indeed
negligible in the quasistatic regime studied in Ref. [34]. The
plasmon’s magnetic field, however, is also negligible, and
using the continuity of this field and its derivative without
including transient radiation is incorrect. For a correct consid-
eration, one should use the initial conditions for the dominant
components of the plasmon, i.e., its in-plane electric field and
surface current [36].

In Ref. [35], the consideration is also limited by the qua-
sistatic approximation but, unlike Ref. [34], other initial con-
ditions, namely, the continuity of the plasmon’s electric and
magnetic fields at the temporal discontinuity, are used without
any justification. Due to different initial conditions, the results
of Refs. [34] and [35] contradict each other. Moreover, as was
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shown in Ref. [36], the results of Ref. [35] for the carrier
density decrease are also incorrect.

Unlike Refs. [34] and [35], the approach of Ref. [36]
is based on accurately solving the Maxwell equations with
an assumption that a decrease of the carrier density (the
carrier removal) leaves the current of the remaining carriers
unchanged. By using this approach, it was shown that the total
energy of the scattered (transmitted and reflected) plasmons
and transient bulk radiation is smaller than the initial plasmon
energy by the amount of the kinetic energy of the removed
carriers.

In this paper, we extend the approach of Ref. [36] to the
problem of graphene plasmon scattering by an abrupt in-
crease of carrier density. As constitutive relations, we use the
time-domain Drude equations for the background and newly
created carriers. Based on accurate solution of the Maxwell
equations, our consideration is not limited by the quasistatic
approximation; nevertheless we analyze the quasistatic regime
in detail because of its practical importance. We also carefully
study the energy balance in the system and show that the
plasmon amplification does not exist at the carrier density
temporal increase, in contrast to the prediction of Ref. [35].
On the contrary, we show that a part of the initial plasmon
energy is consumed by a specific two-stream dc motion of
carriers, thus reducing the energy of the scattered plasmons.
We explain the origin of the mistake in Ref. [35].

Importantly, the formulas for the amplitudes and energies
of the scattered plasmons we obtain below are different from
those in Ref. [36] for an abrupt carrier density decrease. This
refutes the view [34,35] that both an increase and decrease
in carrier density can be described by the same universal
formulas.

II. MODEL AND BASIC EQUATIONS

We consider an infinite graphene sheet placed at the plane
y = 0 (Fig. 1) and surrounded by a dielectric with permittivity
ε (in numerical results we set ε = 1). Graphene is character-
ized in terms of the Drude model by a frequency-dependent
complex (for fields ∝ eiωt ) surface conductivity

σ (ω) = −ic�/(2πω), � = 2e2EF /h̄2, (1)

conveniently expressed through the frequency parameter �,
which is proportional to the Fermi energy EF (c is the speed
of light, e is the electron charge, and h̄ is the reduced Planck
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FIG. 1. Schematic view of a surface plasmon propagating along
a graphene sheet at t < 0 and scattered to reflected and transmitted
plasmons and bulk radiation at t > 0. Inset: Time dependence of the
graphene carrier density.

constant). Since the Fermi level depends on the electron
surface density N as EF = h̄vF

√
πN , with vF ≈ 106 m/s

the Fermi velocity of graphene, the parameter � scales as
� ∝ √

N . For example, for a typical doping, N = 1013 cm−2,
the Fermi energy is EF ≈ 370 meV and � resides in the
subterahertz regime: � ≈ 0.276 × 1012 s−1.

Drude-like Eq. (1) neglects the interband transitions and
temperature effects [37,38]. This is a good approximation for
highly doped graphene with EF � kBT (kB is the Boltzmann
constant, T is the temperature, kBT ≈ 26 meV at T ≈ 300 K)
and EF > h̄ω/2 (h̄ω ≈ 4–400 meV for the terahertz and mid-
infrared frequency ranges). For the sake of clarity, we omitted
collisions in Eq. (1). The presence of carrier collisions will
lead to a gradual damping of the scattered surface plasmons
but should not significantly affect the fields immediately after
the rapid carrier density increase.

We assume that initially, at t < 0, the electron density N
has a value of N1, and, correspondingly, EF and � are EF1

and �1. A transverse magnetic (TM) surface plasmon with
frequency ω1 propagates along the graphene sheet in the x
direction (Fig. 1). The electromagnetic field of the plasmon
has three components: Ex, Ey, and Hz. The tangential electric
field Ex can be written as

Ex(x, y, t ) = E0eiω1t−ih1x−κ1|y|, (2)

where the propagation (h1) and decay (κ1) constants are
defined by substituting ω1 and �1 to the dispersion relations
for graphene plasmons [39]:

h(ω) = ω

c

√
ε

√
1 + εω2

�2
, κ(ω) = εω2

c�
. (3)

There is a surface current density jx = σ1Ex(x, 0, t ), with
σ1 = σ (ω1,�1) [Eq. (1)], associated with the plasmon that
leads to a discontinuity in the plasmon’s magnetic field across
the graphene sheet: Hz jumps from H0 = iω1E0/(cκ1) at y =
0− to −H0 at y = 0+.

The time-averaged plasmon energy (per unit surface area)
W0 = WE + WH + Wk consists of the energies of its electric
(WE ) and magnetic (WH ) fields and the kinetic energy Wk of
the oscillating carriers:

WE ,H = E2
0 ε

4πκ1

(
h2

1

κ
2
1

± 1

)
, Wk = 2π | j0|2

c�1
, (4)

where j0 = σ1E0, and we adopted that the real field is twice
the real part of the complex field.

At small frequencies, ω1/�1 � 1, the plasmon is weakly
localized and propagates with the phase velocity close to
c/

√
ε. At large frequencies, ω1/�1 � 1, the plasmon is

strongly confined to the sheet and its phase velocity ω1/h1 ≈
c�1/(ω1ε) � c/

√
ε (the quasistatic or nonretarded limit)

[39]. In this limit, the magnetic energy is negligible, WH �
WE , and the plasmon energy consists mainly of the electric
and kinetic parts, Wk ≈ WE .

At t = 0, the carrier density grows instantly from N1 to N2

(Fig. 1) and, therefore, the Fermi level increases from EF1 to
EF2. This leads to a change in the parameter � from �1 to
�2 in the graphene conductivity and, as a result, to temporal
scattering of the initial surface plasmon.
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To find the scattered fields at t > 0 we use the Maxwell
equations

ih1Ey + ∂Ex

∂y
= 1

c

∂Hz

∂t
, (5a)

∂Hz

∂y
= ε

c

∂Ex

∂t
+ 4π

c

[
j (b)
x + j (n)

x

]
δ(y), (5b)

ih1Hz = ε

c

∂Ey

∂t
, (5c)

where δ(y) is the δ function and j (b,n)
x are the current densities

of the “background” (that existed at t < 0) and “new” (created
at t = 0) carriers, respectively. In Eq. (5), we took into account
the invariance of the spatial dependence e−ih1x set by the
initial plasmon in the translationally invariant along the x-axis
system. The currents j (b,n)

x obey at t > 0 the time-domain
Drude equations

∂ j (b)
x

∂t
= c�1

2π
Ex,

∂ j (n)
x

∂t
= c(�2 − �1)

2π
Ex. (6)

Equations (5) and (6) are to be supplemented by initial con-
ditions at t = 0+. By integrating Eq. (5) over the infinitesimal
jump time, we obtain continuity of the fields at the carrier
density jump. It is reasonable to assume that current of the
“background” electrons remains unchanged at the jump and
the “new” electrons are born with zero current:

j (b)
x (t = 0+) = j (b)

x (t = 0−), j (n)
x (t = 0+) = 0. (7)

Equation (7) corresponds to physically reasonable conditions
that the oscillation velocity of the “background” electrons
cannot change instantaneously and the “new” electrons can-
not acquire an oscillation velocity immediately after their
creation. These conditions are analogous to those for three-
dimensional time-varying plasmas [29,33]. The fields and
current j (b)

x at t = 0− are given by the initial plasmon.

III. ANALYTICAL SOLUTION

To solve Eqs. (5) and (6) with the specified initial condi-
tions, we apply the Laplace transform technique [30,33]. In
the Laplace domain, we arrive at inhomogeneous Helmholtz
equations for the transform Ẽx(x, y, s) of Ex(x, y, t ) (s is
the Laplace variable) in the y < 0 and y > 0 regions with
boundary conditions of continuity of Ẽx and a given jump
of ∂Ẽx/∂y at y = 0. By solving this boundary problem, we
obtain

Ẽx(x, y, s) = Ex(x, y, 0)

s − iω1
+ A(s)e−ih1x−κ(s)|y|, (8)

where κ(s) =
√

h2
1 + εs2/c2 and

A(s) = −κ(s)(�2 − �1)E0

�2(s − iω1)D(s)
, D(s) = κ(s) + εs2

c�2
. (9)

The first term on the right-hand side of Eq. (8) is a forced
response and its inverse Laplace transform contributes to
Ex(x, y, t ) beginning at t = 0+ at any y. This contribution is
identical to the field of the initial plasmon given by Eq. (2).

The second term on the right-hand side of Eq. (8) is a free-
wave response. The inverse Laplace transform of this term

FIG. 2. (a) Closed path for contour integration in the s plane.
The crosses indicate poles (the pole at s = 0 is only for j̃x), the
zigzag lines show branch cuts. (b) Kinematic diagram illustrating the
frequency shifting. The lines 1 and 2 are the dispersion curves for
the plasmons at densities N1 and N2, respectively. The shaded region
shows the continuous spectrum for bulk waves. The lines 3 define the
spectrum of the transient radiation.

vanishes for t < |y|/c because of the presence of exp[st −
κ(s)|y|] in the integrand of the inversion integral (the integra-
tion path in this case should be closed on the right half-plane
of the complex variable s). For t > |y|/c, the integration path
should be closed on the left half-plane, thereby switching
on the free-wave contribution. Thus, the region of transient
processes starts to expand from y = 0 beginning at t = 0+ into
both half-spaces y ≶ 0 with the velocity c/

√
ε.

At t → ∞ the electromagnetic fields separate into two
parts: surface plasmons localized in the vicinity of the
graphene sheet and transient bulk radiation going to y →
±∞. For the evaluation of the plasmons and angular distri-
bution of the outgoing radiation, the closed integration path in
the inverse Laplace transform of the second term in Eq. (8)
is chosen as shown in Fig. 2(a). The integration path lies
in the Riemann sheet of the complex s plane where Reκ(s)
is positive to ensure evanescence of the fields at y → ±∞.
The branch cuts [due to the double-valued function κ(s)] run
along the imaginary axis from the branch points ±ich1/

√
ε to

infinity.
The residue of A(s) at the pole s = iω1 cancels the forced

response. The surface plasmons are described by the residues
at the poles where D(s) = 0. This equation has two roots s =
±iω2 with

ω2 = �2√
2ε

[(
1 + 4c2h2

1

/
�2

2

)1/2 − 1
]1/2

. (10)

With fixed spatial dependence e−ih1x, the roots ±iω2 cor-
respond to the plasmons propagating in the +x direction
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(transmitted) and −x direction (reflected). The plasmons are
frequency upshifted (ω2 > ω1) as illustrated by Fig. 2(b). By
evaluating the residues at s = ±iω2, the amplitudes of the
transmitted and reflected plasmons are given by

Et,r
x = εω3

2(�2 − �1)

�2(ω2 ∓ ω1)
(
2εω2

2 + �2
2

)E0. (11)

The plasmon energies can be calculated by using Eqs. (4) and
(11).

The transient radiation is described by the integrals along
the branch cuts [Fig. 2(a)]. These integrals give the expan-
sion of the transient field into plane waves. The frequency
ω of an outgoing partial plane wave is related to the an-
gle of propagation θ measured from the x axis as ω(θ ) =
ch1/(

√
ε cos θ ). The waves with positive frequencies prop-

agate at angles −π/2 < θ < π/2, the waves with negative
frequencies propagate at angles π/2 < |θ | < π . All transient
radiation is frequency upshifted with respect to the initial
plasmon [Fig. 2(b)]. The partial waves of the lowest fre-
quency |ω| = ωl = ch1/

√
ε propagate along the graphene

sheet, whereas the higher-frequency waves propagate in the
normal to the sheet directions (|ω| → ∞ at θ → ±π/2). The
energy Wrad radiated from a unit area of the graphene sheet
is obtained by integration of the energy flux through the unit
area parallel to the sheet and can be expressed in terms of its
angular density w(θ ) as

Wrad =
∫ π

−π

dθw(θ ), w(θ ) = c2h1

4π2

|A[iω(θ )]|2
cos2 θ

. (12)

To find the currents in the graphene sheet after the carrier
density jump, we derive the transforms of the currents from
Eqs. (6) and (7) as

j̃ (b)
x = c�1

2πs
Ẽx + 1

s
j (b)
x (0−), j̃ (n)

x = c(�2 − �1)

2πs
Ẽx, (13)

where the transform Ẽx(x, y, s) is taken at y = 0. The residues
of Eq. (13) at the poles s = ±iω2 define the net current jx =
j (b)
x + j (n)

x associated with the transmitted and reflected plas-
mons: jt,r

x = ±σ2Et,r
x e±iω2t−ih1x, where σ2 = −ic�2/(2πω2).

The residues of j̃ (b,n)
x at s = 0 [Eq. (13) and Fig. 2(a)] give

the oppositely directed dc currents of the “background” and
“new” electrons:

j (b,dc)
x = − j (n,dc)

x = σ1
�2 − �1

�2
E0e−ih1x. (14)

Due to a zero net current [ j (b,dc)
x + j (n,dc)

x = 0] this two-stream
carrier motion does not generate any magnetic field.

IV. ANALYSIS AND RESULTS

A. Transmitted and reflected plasmons

Figure 3(a) shows the ratio of the final and initial plasmon
frequencies ω2/ω1 as a function of �2/�1. The ratio increases
with �2/�1; the closer the initial plasmon to the quasistatic
regime (the higher ω1/�1), the larger the increase of ω2/ω1.
For ω1/�1 � 10, ω2/ω1 ≈ √

�2/�1, as in Ref. [34] (see also
Sec. IV E). Since ω2/ω1 increases with �2/�1 slower than
�2/�1, the relative plasmon frequency ω2/�2 decreases with

tE
rE

FIG. 3. Frequency ω2 of the excited plasmons relative to (a) the
initial frequency ω1 and (b) to the frequency parameter �2 as
functions of �2/�1 for different ω1/�1. (c) Transmission (solid)
and reflection (dashed) coefficients tE , rE as functions of �2/�1

for different ω1/�1. In (a) and (c), the dots and crosses show the
dependencies in the quasistatic limit, Eqs. (18) and (19).

�2/�1 [Fig. 3(b)] and the excited plasmons become less
confined.

Figure 3(c) shows the transmission tE = Et
x/E0 and reflec-

tion rE = Er
x /E0 coefficients, calculated by using Eq. (11), as

functions of �2/�1. The transmission coefficient decreases
monotonically with �2/�1; the smaller ω1/�1, the steeper
the decrease. The reflection coefficient has a maximum whose
position shifts to larger values with increasing ω1/�1. For a
fixed �2/�1, rE is larger for larger ω1/�1. For ω1/�1 � 10,
tE and rE approach the quasistatic dependencies derived below
in Sec. IV E.

In general, according to Figs. 3(a) and 3(c), the quasistatic
approximation works very well even for moderate values
ω1/�1 � 10.

B. Transient radiation

The transient radiation with frequency ω(θ ) = ωl/ cos θ

[Fig. 4(a)] propagates from the graphene sheet to y → ±∞
and its angular distribution is described by Eq. (12). Fig-
ure 4(b) shows typical angular distributions. The weakly
localized plasmon, ω1/�1 = 1, produces a rather narrow ra-
diation peak at a small angle. The strongly localized plasmon,
ω1/�1 = 15, emits in a broader angular range, including the
angles |θ | > 90◦.
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FIG. 4. Far-field angular distributions of (a) the frequency ω(θ )
and (b) the radiated energy w(θ )/W0 for �2/�1 = 2 and different
ω1/�1. In (b), the values are to be multiplied by the indicated factors.

C. Two-stream dc motion of carriers

The dc currents of the “background” and “new” electrons,
described by Eq. (14), totally compensate each other in every
point of the graphene sheet, thus producing a zero net current
and zero magnetic field. Nevertheless, these “hidden” currents
consume a part of the initial plasmon energy in the form of
the kinetic energy of carriers. This energy can be calculated
by substituting Eq. (14) to the formula similar to Eq. (4) and
expressed through the kinetic energy Wk of the initial plasmon
[Eq. (4)] as

Wdc = (1 − �1/�2)Wk. (15)

According to Eq. (15), Wdc is restricted from above by Wk .
Nevertheless, Wdc can comprise up to a half of W0 at ω1/�1 �
1 (quasistatic regime) and �2/�1 � 1 (large carrier density
jumps).

D. Energy balance

The energy of the initial plasmon (W0) transforms into the
energies of the transmitted (Wt ) and reflected (Wr) plasmons,
the energy of the transient outgoing radiation (Wrad), and the
energy of the two-stream dc motion of carriers (Wdc):

W0 = Wt + Wr + Wrad + Wdc. (16)

Figure 5 shows the energy distribution as a
function of the carrier density jump for weakly
(ω1/�1 = 1) and strongly (ω1/�1 = 15) con-
fined initial plasmons. The energy of a weakly
confined plasmon [Fig. 5(a)] is mainly divided between the
transmitted plasmon, the dc motion, and the bulk radiation.
For large density jumps, Wrad becomes dominating. The
smaller is ω1/�1, the larger is Wrad, and the smaller is Wdc.
The energy of the reflected plasmon is negligible for any
carrier density jump. The energy of a strongly confined
plasmon [Fig. 5(b)] is mainly divided between the transmitted

(a)

(b)

FIG. 5. Energy distribution as a function of �2/�1 for
(a) ω1/�1 = 1 and (b) ω1/�1 = 15. In (b), the dots show the
dependencies in the quasistatic limit, Eq. (20).

plasmon and dc motion, although the energy of the reflected
plasmon becomes substantial at large �2/�1.

E. Scattering in quasistatic regime

In the practically most important case of a strongly con-
fined (with ω1/�1 � 1) initial plasmon, the scattering prob-
lem can be solved in a simpler (approximate) way, without
using the general approach of Sec. III. In the quasistatic limit
ω1/�1 � 1, the magnetic field of the plasmon is negligible,
|H0/E0| = �1/(εω1) � 1, and temporal discontinuity pro-
duces only very weak bulk radiation [Fig. 5(b)]. Thus, we
can write the electric field at t > 0 as a superposition of the
transmitted and reflected plasmons,

Ex(x, y, t ) = E0(tE eiω2t + rE e−iω2t )e−ih1x−κ1|y|. (17)

In Eq. (17), the spatial structure of the plasmons is set by
the initial plasmon [Eq. (2)]. By using Eq. (3), this spatial
invariance immediately gives

ω2/ω1 = γ , γ =
√

�2/�1. (18)

The results given by Eq. (18) for ω1/�1 � 1 agree well with
accurate Eq. (10), see Fig. 3(a).

The currents at t > 0 can be obtained by substituting
Eq. (17) to Eq. (6). By applying further the continuity of Ex

and jx at t = 0, we find

tE = (1 + γ −1)/2, rE = (1 − γ −1)/2. (19)

Equations (19) agree well with the general formulas Eq. (11)
for ω1/�1 � 1, as seen from Fig. 3(c).

With Eqs. (19) in hand, the energies can be written as

Wt,r = W0(1 ± γ −1)2/4, Wdc = W0(1 − γ −2)/2, (20)

with W0 = εE2
0 /(πκ1). These approximate formulas work

very well for ω1/�1 � 10 (Fig. 5).
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F. Comparison with other works

Formulas in Eq. (19) are different from those obtained
within the similar approach for a carrier density decrease [36]:

tE = (1 + γ )/2, rE = (1 − γ )/2. (21)

The difference between Eqs. (19) and (21) can be explained
by different initial conditions for the surface current—its
continuity at an abrupt carrier density increase [Eq. (7)] and
sudden reduction at a density decrease [36]. Thus, there are no
universal formulas to describe both an increase (γ > 1) and
decrease (γ < 1) of the carrier density, contrary to the view
adopted in Refs. [34,35].

To compare our results with those in Refs. [34,35], we
obtain from Eq. (19) the transmission (tH ) and reflection (rH )
coefficients in terms of the magnetic field:

tH = (1 + γ )/2, rH = (1 − γ )/2. (22)

These formulas differ by a factor of γ from the corresponding
formulas in Ref. [34]:

|tH | = (1 + γ )/(2γ ), |rH | = |1 − γ |/(2γ ). (23)

The origin of the difference between Eqs. (22) and (23) is in
incorrect initial conditions used in Ref. [34], as was explained
in the Introduction.

Interestingly, the coefficients obtained in Ref. [35] coincide
with Eq. (22). This justifies the applicability of the initial
conditions in Ref. [35], in particular, the continuity of the
magnetic field, to the case of a carrier density increase.
Why can this continuity, being incorrect for a carrier density
decrease [36], be used for an increase? The physical reason
for this is the continuity of the surface current at a carrier
density increase [Eq. (7)] and the zero net current [Eq. (14)]
and magnetic field in the two-stream dc motion of carriers.
Thus, our rigorous solution clarifies the applicability of the
heuristic initial conditions in Ref. [35].

Despite the correctness of the transmission and reflection
coefficients in Ref. [35] for a carrier density increase, it
was incorrectly concluded that nonstationarity can amplify
plasmons by imparting energy to them. Equation (22) in-
deed gives tH > 1 for γ > 1, i.e., the magnetic field of the
transmitted plasmon is larger than that of the initial plasmon.
This, however, does not mean an amplification. The electric
field of the transmitted plasmon decreases with γ : tE < 1 for
γ > 1, according to Eq. (19). As a result, the energy of the
transmitted plasmon also decreases: Wt < W0 for γ > 1, see
Eq. (20). The increase of the plasmon’s magnetic field with
increasing carrier density can be explained by a decrease of
the relative frequency ω2/�2 with γ (Fig. 3) and, as a result,

a reduction in the plasmon confinement. Since the plasmon
magnetic field is negligible in the quasistatic approximation,
its increase practically does not contribute to the plasmon
energy.

Finally, the considerations in Refs. [34] and [35] did not
analyze currents in graphene and therefore completely missed
the two-stream dc motion of carriers consuming the initial
plasmon’s energy (Sec. IV C).

V. CONCLUSION

To conclude, the temporal scattering of a surface plasmon
on a doped graphene sheet by an abrupt increase of graphene’s
free-carrier density has been considered. An accurate analyt-
ical solution of the Maxwell equations supplemented by the
time-domain Drude equations has been obtained by means
of the Laplace transform technique. It has been shown that
scattering gives rise to frequency-upshifted transmitted and
reflected plasmons, frequency-upshifted bulk radiation, and
peculiar two-stream dc motion of carriers. The two-stream
motion arises due to different initial velocities of the back-
ground and newly created carriers at the temporal discon-
tinuity. The motion carries zero net current and therefore
does not generate a magnetic field. This mode, however,
takes some energy of the initial plasmon. Thus, the energy
of the transmitted and reflected plasmons and bulk radiation
is smaller than the initial plasmon energy. This refutes the
prediction of plasmon amplification in Ref. [35].

In the quasistatic regime, simple formulas for the ampli-
tudes and energies of the transmitted and reflected plasmons,
as well as for the energy of the dc carrier motion, have been
obtained. In this regime, up to a half of the initial plasmon
energy can be transformed into the two-stream dc motion of
carriers: Wdc ≈ W0/2 at �2/�1 � 1. The remaining energy is
distributed between the transmitted and reflected plasmons. In
particular, Wt ≈ Wr ≈ W0/4 at �2/�1 � 1.

It has been also shown that there are no universal formulas
to describe both an increase and decrease of the carrier den-
sity. If, for example, one needs to consider plasmon scattering
on a rectangular temporal profile of the carrier density, the
formulas of this work and Ref. [36] should be successively
applied to the first and second time steps, respectively. Re-
markably, both steps will reduce the plasmon energy.
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